• Nenhum resultado encontrado

Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran

N/A
N/A
Protected

Academic year: 2021

Share "Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran"

Copied!
18
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Agricultural

Water

Management

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / a g w a t

Estimation

of

ET

o

with

Hargreaves–Samani

and

FAO-PM

temperature

methods

for

a

wide

range

of

climates

in

Iran

Tayeb

Raziei

a,b,∗

,

Luis

S.

Pereira

b

aSoilConservationandWatershedManagementResearchInstitute(SCWMRI),Tehran,Iran bCEERBiosystemsEngineering,InstituteofAgronomy,TechnicalUniversityofLisbon,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24September2012 Accepted21December2012 Available online 14 February 2013 Keywords:

Referenceevapotranspiration Dewpointtemperature Radiationadjustmentcoefficient Temperatureadjustment Humidvs.aridregions Windspeed Spatialvariability

a

b

s

t

r

a

c

t

Monthlydatarecordsof40Iranianstationsdistributedoverthecountry,fortheperiod1971–2005, wereutilizedforestimationofreferenceevapotranspiration(ETo)usingPenman–Monteith(PM-ETo),

Hargreaves–Samani(HS)andFAO-PMtemperature(PMT)methods.ToestimateETowithHSandPMT

methods,appropriatekRs,anempiricalradiationadjustmentcoefficient,wereconsideredforeachstation,

whereasTminwasadjustedforestimationofTdewandusedonlyforPMTcomputation.Itwasfoundthat

theappropriatekRsforbothHSandPMTmethodsareidenticalforagivenstationanditisgenerally

smallerinsub-humidandhumidthaninsemi-aridtohyper-aridclimates.TheperformanceofthePMT wasfurtherimprovedinbotharidandhumidclimateswhenTminwasadjusted.Theresultsuggested

thattheHSandPMTmethodsappropriatelypredictEToforallclimaticregionsofIraniftheappropriate

kRswasutilized.However,theconsideredmethodsshowedweakperformancesforsomestationsinarid

andhyper-aridclimatesofeasternandsouthernIranowingtotheeffectofextremeandvariablewind speedinherentinthePM-ETo.Thus,theroleplayedbywindspeedinEToestimationwasexamined;

theresultindicatedthattheexistenceofextremewinds,andalsothetimevariabilityofwindspeed, isresponsiblefortheobserveddiscrepanciesbetweenPMTandPM-EToestimates.Thespatialpatterns

ofETocomputedwithHSandPMTmethodsfoundtobeidenticalandresembletothatofPM-ETo,all

showingagradualincreasingfromnorthtosouth,withthelowestETovaluesobservedovernorthern

humidandsub-humidclimatesofIranandlargerEToforaridandhyper-aridclimatesinthesouthern

andeasterncountry.ResultsindicatedthattheHSandPMTmethodsareappropriatealternativesfor estimationofEToforallclimaticregionsofIran.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Adequateestimation ofreferenceevapotranspiration (ETo)is

ofparamountimportanceinagriculturaland hydrological

stud-ies,water resourcesmanagement and watershed management.

Inparticular,itisrequiredforestimationofcropwater

require-ments,supportingirrigationscheduling,droughtmanagementand

climatechangestudies.ThemethodologiesofEToestimation

rede-fined by Food and Agricultural Organization of United Nations

(FAO)weresuccessfully appliedatdifferenttime scalesin

vari-ousclimaticregionsoftheworld(Allenetal.,1998,2006;Smith,

2000).ThePenman–MonteithETo(PM-ETo)equationreferstograss

asreference cropandrequires solarradiation dataor sunshine

∗ Corresponding author at: Soil Conservation and Watershed Management ResearchInstitute(SCWMRI),Tehran,Iran,andCEER–BiosystemsEngineering, InstituteofAgronomy,TechnicalUniversityofLisbon,Portugal.

Tel.:+351213653480.

E-mailaddresses:tayebrazi@yahoo.com(T.Raziei),lspereira@isa.utl.pt (L.S.Pereira).

durationforestimatingnetradiation(Rn),maximumandminimum

temperature(Tmax andTmin,respectively),psycrometricor

rela-tivehumiditydataforestimatingthevapourpressuredeficit(VPD)

andwindspeed(U)WhenformulatingthePM-EToequation

advec-tioneffectswerenotconsidered(Allenetal.,1998;Pereiraetal.,

1999).Advectionimpactsoncropevapotranspirationmustbe

con-sideredthroughthecropcoefficientsandnotETo(Allenetal.,1998).

However,whensearchingfor ETo dataestimationunder

advec-tiveconditions,BerengenaandGavilán(2005)foundthatdailyETo

estimatesusingthePM-EToequationmatchedwellthelysimeter

observationsofgrassET.Goodresultsarereportedfordaily

compu-tationsusinghourlydatainlocationshavingadvectiveinfluences

(Allenetal.,2006).

ToappropriatelycomputetheparametersofPM-ETo the

pro-cedures proposed by Allen et al. (1998) should be followed.

AlternativeprocedureshavebeentestedbyNandagiriandKovoor

(2005), who have shown the need for strict adherence to the

recommendedparametercomputationprocedures,especiallyfor

estimatingvapourpressuredeficitandnetradiationparameters.

Gavilán et al. (2007) reported that the methods proposed by

Allen etal. (1998) for estimating Rn and G are appropriate for 0378-3774/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

estimationofEToforbothdailyandhourlytimescales.Gongetal. (2006)performedasensitivityanalysisofPM-EToparametersand

pointedtotheveryhighinfluenceofsolarradiationandrelative

humidityinaccurateestimationofPM-ETo.However,lackoffull

weatherdatasetsinmanypartsoftheworld,particularlyinremote

areas,limitstheapplicationofPM-ETo.Thus,alternativeaccurate

approachesrequiringlimiteddataareneeded,whichhasledtoa

hugenumberofrelatedstudiesfocusingvariousclimates.

AccordingtoAllenetal.(1998),andbasinguponformer

stud-iestocomparetheperformanceofETtemperaturemethods,mainly

thestudybyJensenetal.(1990),whenfullweatherdataarelacking

ETocanbeestimatedeitherusingtheempiricalHargreaves–Samani

(HS)equation(HargreavesandSamani,1985),orempirically

esti-matingRn,VPDandUforusinginthePM-EToequation,including

throughusingdatafromneighbourweatherstations(Allen,1997).

VariousETtemperaturemethodswerethenexcluded– and

con-sequentlyarenotconsideredinthisstudy–,particularlytheET

climaticequationofThornthwaite(1948),thatlargely

underesti-matesgrassETo comparativelytoPM-ETo (Allenetal.,1994).In

bothaforementionedmethodstheminimumsetofdatarequired

consistsofTmaxandTmin.ThelatterapproachforusingthePM-ETo

withonlyTmaxandTminiscalledhereinasPMtemperature(PMT)

methodandisalsoreferredinliteratureasreducedsetPMmethod

(e.g.,MartinezandThepadia,2010).BoththeHSandPMTmethods

havereceivedacontinuousattentionfromresearchcontrarilyto

theuseofneighbourweatherdata;however,arecent

methodol-ogybasedonprincipalcomponentanalysistoestimateETowhen

nolocalclimaticinputsareavailable(MartíandZarzo,2012)may

providenewdevelopmentsinthisdomain.

TheEToestimatedbytheHSequationhavebeensuccessfully

comparedwiththeETocomputedwiththePM-EToequationusing

fulldatasets,orwithgrasslysimeterdata,indicatingthattheHS

methodperformswellinmostclimaticregions,withthe

excep-tionofhumidareawhereittendstooverestimateETo(Nandagiri

andKovoor,2006;TrajkovicandKolakovic,2009;Martinezand Thepadia,2010;Tabari,2010).SincetheHSmethodwasempirically

developedbasedondatafromaridtosub-humidenvironments,it

maynotfitwelltoconditionsfardifferentfromthoseconsidered

foritscalibrationasitisthecaseforhumidclimates.Temesgen

etal.(2005)alsostatedthattheHSmethodunderestimatesETo

fordryandwindylocationsduetonotconsideringawindfactor

andconcludedthatitismoreaccuratewhenappliedfor5or

7-dayaveragesthanfordailytimescales.However,despiteaquite

goodperformanceoftheHSequationinmostapplications,

par-ticularlywhenitisusedforirrigationschedulingpurposes,many

authorsattemptedtorecalibratetheHScoefficientsorparameters

inordertoimproveitsperformance(e.g.,DroogersandAllen,2002;

Trajkovic,2007;Fooladmandetal.,2008),ortomodifythe

equa-tionitself(DiodatoandBellocchi,2007).Thisresultedinalarge

numberofversionsoftheHSequation,thatrelateswiththe

pur-poseofmanyresearcherstofindlocallycalibratedversionsofthe

HSequation.

Basedonacarefulanalysisofthehistoryandapplicationsofthe

HSequation,Hargreavesand Allen(2003)concludedthat

recal-ibratingtheexponentsand coefficientsoftheHSequationonly

increasedthecomplexityoftheequation.TheHSmethodis

usu-allypreferredwithrespectivetoothermorecomplicatedequations

sinceitisreasonablyadequateandrequiresonlymaximumand

minimumairtemperatures(HargreavesandAllen,2003).Thisis

veryimportantinregionswheresolarradiation,airhumidity,and

windspeeddataarelackingorareofloworquestionablequality,

whilethemaximumandminimumairtemperaturesareavailable

inmostofagro-climaticandweatherstationssinceairtemperature

canbemeasuredwithlesserrorsandbylesstrainedindividuals

than theother required climate variables used in combination

equations.

TheaccuracyofthePMTequationhasbeenassessedbyseveral

authorsthroughcomparingitsresultswiththoseofthePM-ETo

or otherETequations, HSincluded. Popovaet al.(2006) found

moreaccurateresultsforPMTthanforHS,whichtendedto

over-estimate ETo in the Trace plain areaof southern Bulgaria. For

Pyrenees,López-Morenoetal.(2009)obtainedbetterresultswith

PMTwhencomparedwithHSmethod.Similarly,JablounandSahli

(2008)foundbetterestimatesforPMTthanforHSinNorthernand

CentralTunisia.AnapplicationofPMTforNorthernChina,

char-acterizedwithmonsoonclimate,alsohaveshownthatthePMT

estimatesbetterfitted tothePM-ETo than HS(Liu and Pereira,

2001;Pereiraetal.,2003).ApplicationofPMTtodifferentclimates

ofSouthAfricashowedtobesuperiortoHSandthatbetterresults

wereobtainedwhenappliedto5-dayratherthandailytimescales

(Annandaleetal.,2002).TheestimatedETocomputedbyPMTand

HSmethodforSerbiasuggestedthatPMTfittedbetterPM-ETothan

HS(Trajkovic,2005).Differently,it wasfoundthattheHS

pro-ducedsmalleroverestimationerrorsthanPMTinahumidclimate

(MartinezandThepadia,2010).Kra(2010)appliedamodifiedPMT

methodinWestAfrica, while Caietal. (2007)useda modified

PMTapproachfor estimatingETo withdaily forecastmessages;

lately,thePMTwasadaptedfor usingdailyforecasted weather

dataforirrigationschedulingpurposes(Caietal.,2009).Paredes

andRodrigues(2010)foundsmallerrorswithPMTrelativetoHS,

thusadoptingittoestimateEToinPortugalforirrigation

sched-ulingpurposes;theyfoundthatestimationerrorswerelargerin

humidlocationscomparativetodryerones.Gocicand Trajkovic

(2010)proposedasoftwaretoestimateEToforminimizing

com-putationerrorsusingthePMToranadjustedHSequationwhen

weatherdataaremissing.However,currentliteratureshowthat

therearenoattemptstocalibratetheradiationadjustment

coef-ficientkRsusedtoestimatesolarradiationfromthetemperature

differenceinPMTand,non-explicitly,inHS(HargreavesandAllen,

2003;Samani,2000,2004).Thiscalibrationisthereforealineto

beexploredinthisstudy.Moreover,literaturelookstobe

contro-versialwhencomparingHSandPMTresultsaswasidentifiedby

Todorovicetal.(2013).

Duetothecomplexorographyandwidelatitudinalextent,Iran

containsdiverseclimatesrangingfromveryhumidintheCaspian

Searegion toarid and hyper aridin the central, southern and

easternIran.Inthisvastarea,thestationsrecordingtheclimate

variablesneededforestimationofPM-EToareverysparseandin

manycaseshaveincompleterecords,particularlyinthe

central-southerncountrywheretheIraniandesertsaresituated.Therefore,

tohave a reliableestimation of ETo at a finespatial resolution

overthecountry,itisimportanttouseaccuratemethods

requir-inglimitedweatherdatathatcanbeavailableinadensenetwork

throughthecountryasitisthecasefortemperature.Toourbest

knowledge,Dinpashoh(2006)istheonlyauthorthathasestimated

EToforthewholecountryusingPM-EToandHSmethods,butdid

nottestedthepossibleadvantagesinusingcalibratedvaluesfor

theradiationadjustmentcoefficientortemperatureadjustmentfor

dewpointtemperatureestimationforthePMTmethodasproposed

byAllen(1996).TheadequatenessofusingPM-EToinIranisalso

demonstratedbyDinpashohetal.(2011)throughatrendanalysis

ofPM-ETofor16Iranianweatherstations.

Several authors have also assessed the application of other

methodsrequiringminimumdataforestimationofETo insome

partsofIranratherthanforthewholecountry(Fooladmandand

Haghighat,2007;AhmadiandFooladmand,2008;Rahimikhoob, 2010;Tabari etal., 2011a;Tabariand Aghajanloo,2012).

How-ever,acalibrationoftheradiationadjustmentcoefficientwasnot

attemptedinanyofthelaterreferredstudiesandthePMTandHS

methodswerenotcompared.Therefore,theobjectiveofthepresent

studyistoevaluatethepotentialandaccuracyofthePMTandHS

(3)

Fig.1.Spatialdistributionof(a)theutilizedweatherstationsand(b)thearidityindexoverIran.

andtorefinethemethodologiesforbetteradaptingboththePMT

andHSmethodstotheexistingenvironmentalconditions.Thus,it

isaimedtocomparethePMTandHSmethods,tofindthebest

val-uesfortheradiationadjustmentcoefficienttobeusedwithboth

methods,toassesstheadvantageincorrectingtheminimum

tem-peraturewhenestimatingVPD,andtoassesstheimpactsofhigh

windspeedinaridzones.Theseobjectivesaresettosupportawide

rangeofirrigationmanagementandwaterresourcesapplications,

particularlyrelativetodroughts,foruseinregionswhereweather

dataaremissing,areincompleteorareofquestionablequality.

2. Materialsandmethods

2.1. Data

Thedatausedforthisstudyaremonthlyaveragesofmaximum

andminimumtemperature(◦C),relativehumidity(%),sunshine

duration(h)andwindspeed(ms−1)relativeto40Iranian

synop-ticstationsdistributedoverthecountryasdepictedinFig.1a;the

associatedcoordinatesareshowninTable1.Themajorityofthe

selectedstationshavethelongestandnearlycompletedatarecords

fortheperiod1971–2005,particularlyconsideringsunshine,

rela-tivehumidityandwindspeeddata.Theselectedstationsarefirst

ordersynopticstationsthatpassedcarefulqualitycontrolbythe

Iranianmeteorologicalorganizationand arequiteregularly

dis-tributedthroughthecountry(Fig.1a).However,thetimeseries

oftheconsideredvariableswerefurtherinvestigatedforpossible

non-homogeneitiesbycomparingthetimeseriesofagivenstation

withthoseofneighbouringstations.Theresultprovedthatallthe

variableswerehomogeneous,withtheexceptionofwindspeed

recordsatTabass,Bam,Semnan,Kashan,Khoramabad,Dezfuland

Chabaharstations,whichexhibitedextremestepchangesand

non-homogeneity.Therefore,thewinddatasetsatthese7stationswere

correctedthroughestablishinglinearregressionbetweenthe

con-sideredstationdataandthoseofneighbouringstationsasproposed

byAllenetal.(1998).

Theconsideredstationsforthepresentstudyencompassseveral

representativestationsforeachclimaticsub-regionofIran,defined

hereinonthebasisoftheglobalaridityindex(UNEP,1997)adopted

bytheUnited-NationsConventiontoCombatDesertification.The

Table1

Coordinatesandthearidityindex(AI)oftheutilizedweatherstations.

Stations Lat. Lon. Alt AIindex Stations Lat. Lonn. Alt AIindex

Astara 38.4 48.9 −18.0 1.67 Shiraz 29.5 52.6 1484.0 0.35 Anzali 37.5 49.5 −26.2 2.09 Tabriz 38.1 46.3 1361.0 0.35 Rasht 37.3 49.6 −6.9 1.64 Torbat 35.3 59.2 1450.8 0.35 Ramsar 36.9 50.7 −20.0 1.45 Zanjan 36.7 48.5 1663.0 0.44 Babolsar 36.7 52.7 −21.0 1.04 Abadan 30.4 48.3 6.6 0.07 Ilam 33.6 46.4 1337.0 0.68 Ahwaz 31.3 48.7 22.5 0.10 Gorgan 36.9 54.3 13.3 0.61 Bam 29.1 58.4 1066.9 0.04

Kermanshah 34.4 47.2 1318.6 0.56 BandarAbas 27.2 56.4 9.8 0.09

Khoramabad 33.4 48.3 1147.8 0.55 Birjand 32.9 59.2 1491.0 0.20 Sanandaj 35.3 47.0 1373.4 0.59 Bushehr 29.0 50.8 19.6 0.15 Arak 34.1 49.8 1708.0 0.41 Chabahar 25.3 60.6 8.0 0.07 Dezful 32.4 48.4 143.0 0.25 Isfahan 32.6 51.7 1550.4 0.14 Ghazvin 36.3 50.1 1279.2 0.41 Kashan 34.0 51.5 982.3 0.12 Hamedan 35.2 48.7 1679.7 0.48 Kerman 30.3 57.0 1753.8 0.17 Khoy 38.6 45.0 1103.0 0.41 Sabzevar 36.2 57.7 977.6 0.20 Mashhad 36.3 59.6 999.2 0.33 Semnan 35.6 53.6 1130.8 0.14 Mehrabad 35.7 51.3 1190.8 0.24 Tabass 33.6 56.9 711.0 0.06 Urmia 37.5 45.1 1315.9 0.48 Yazd 31.9 54.3 1237.2 0.05 Shahrekord 32.3 50.9 2048.9 0.48 Zabol 31.0 61.5 489.2 0.04 Shahroud 36.4 55.0 1345.3 0.20 Zahedan 29.5 60.9 1370.0 0.08

(4)

UNEParidityindex,whichisalsoadoptedbyFAOandused

world-wideconsistsoftheratioofmeanannualprecipitation(P)tomean

annualpotentialevapotranspirationcomputedwiththe

Thornth-waitemethod(Thornthwaite,1948).Thecomputedaridityindex

fortheconsideredstationsarealsopresentedinTable1to

climat-icallycharacterizetheusedstations,whilethespatialdistribution

oftheindexoverthecountryisdepictedinFig.1b.Themapof

arid-ityindexpointstothehumidandsub-humidclimatesovercoastal

areasoftheCaspianSeainnorthernIran.Dry-sub-humidclimate

featuresoccurinthehighestpartsoftheAlborzmountainchainin

thenorth,thusactingasatransitionalband,isolatinghumidand

sub-humidclimatesofthecoastalareasoftheCaspianSeafrom

thesemi-aridareasofinteriorIran(Fig.1b).Thedry-sub-humid

climatealsocharacterizesaremarkablepartofwesternIrandue

toitsrelativelyhighannualprecipitationaccompaniedwithcold

wintersandmoderate summers.Semi-aridclimatesrefer tothe

mountainousareasofwestern,northernandnorth-easternIran,

whereasaridandhyper-aridclimatesdominatecentral,southern

andeasternIran(Fig.1b).Theclimatesub-regionsofIranproduced

hereinbasedonthespatialvariabilityofthearidityindex,though

methodologicallyandconceptuallydifferent,areinrelativelygood

agreementwiththeresultsoftheprecipitationbased

regionaliza-tionstudiesforIraninillustratingthemainstructureoftheIranian

climate(e.g.,Dinpashohetal.,2004;Razieietal.,2008).

2.2. MethodstoestimateETo

ThePM-ETo equationis aimedto definethegrass reference

evapotranspiration, i.e., the rate of evapotranspiration from a

hypotheticalcropwithanassumedfixedheight(12cm),surface

resistance(70sm−1)andalbedo(0.23),approximatelyresembling

theevapotranspirationfromanextensivesurfaceofadisease-free

greengrasscoverofuniformheight,activelygrowing,completely

shadingtheground,andwithadequatewaterandnutrientsupply

(Allenetal.,1998).ThePM-EToequationforcalculationofdailyETo

takestheform:

ETo=0.408(Rn−G)+(900/(T+273))u2(es−ea

)

+(1+0.34u2)

(1)

whereEToisthegrassreferenceevapotranspiration(mmday−1),

Rnisthenetradiationatthecropsurface(MJm−2day−1),Gissoil

heatfluxdensity(MJm−2day−1),Tismeandailyairtemperatureat

2mheight(◦C),u2iswindspeedat2mheight(ms−1),esis

satura-tionvaporpressure(kPa),eaisactualvaporpressure(kPa),es−ea

isvaporpressuredeficit(kPa), isslopeofthevaporpressure

curve(kPa◦C−1),and ispsychometricconstant(kPa◦C−1).This

equationusesstandardmeteorologicalrecordsofsolarradiation

orsunshineduration,minimumandmaximumairtemperature,air

humidityandwindspeed.Toensuretheintegrityofcomputations,

theweathermeasurementsshouldbemadeat2m(orconverted

tothatheight)aboveanextensivesurfaceofgreengrass,shading

thegroundandnotshortofwater.TheparametersofEq.(1)can

beestimatedfromtheobservedclimaticvariablesfollowingthe

standardmethods proposedbyAllenetal. (1998),whereasthe

missingclimaticdatacanbeestimatedempiricallyasfollows.

Rniscomputedasthealgebraicsumofthenetshortandlong

waveradiation(RnsandRnl,respectively).Rns,resultsfromthe

bal-ancebetweenincomingandreflectedsolarradiation(Rs)adopting

analbedoof0.23,andRnlresultsfromthebalancebetweenthe

down-comingandtheoutgoinglongwaveradiationemittedbythe

vegetationandthesoil.Computationswereperformedasproposed

byAllenetal.(1998).WhenRsisnotmeasured,itcanbeestimated

fromtheobserveddurationofsunshinehourswiththeAngström

(1924)equation: Rs=



as+bsn N



Ra (2)

whereRsissolarorshortwaveradiation(MJm−2day−1),nisactual

sunshineduration(h),Nismaximumpossiblesunshineduration

(h),n/N isrelativesunshine duration,Ra isextraterrestrial

radi-ation(MJm−2day−1),asisthecoefficientexpressingthefraction

ofextraterrestrialradiationreachingtheearthonovercastdays

(n=0),andas+bsisthefractionofextraterrestrialradiation

reach-ingtheearthonclearskydays(n=N).RaandNarecomputedfor

anygivendayasafunctionofthelatitudeofthesite(Allenetal.,

1998).WhenusingmonthlytimestepsRaandNarecomputedfor

thecentraldayofthemonth.Thevaluesas=0.25andbs=0.50are

recommendedwhenthesefractionsarenotlocallycalibratedusing

asetofgoodqualitydataonbothn/NandRs.

Whenradiationandsunshinedurationmeasurementsarenot

available,thePMTmethodusestheHargreavesradiationequation

(HargreavesandSamani,1982)fortheestimationofsolarradiation

(Rs)inalternativetoEq.(2):

Rs=kRs



(Tmax−Tmin)Ra (3)

wherekRsistheempiricalradiationadjustmentcoefficient(◦C−0.5).

For‘interior’locations,wherelandmassdominatesandairmasses

arenotstrongly influencedbya largewater body,Allen(1997)

andAllenetal.(1998)proposedkRs∼= 0.16for‘interior’areasand

kRs∼= 0.19for‘coastal’locations.Thesevaluesarethesameasthose

proposedpreviouslybyHargreaves(1994).Inherenttoits

empir-icalnature,thereissomeuncertaintyrelativelytothiscoefficient

(Samani,2004).Popovaetal.(2006)reportedthatfortemperate

climatekRs valueschangelittle.Differently,fora wide rangeof

climatesasintheMediterraneancountriesalargevariationwas

observed(Todorovicetal.,2013).

Vapourpressure deficit(VPD) is computedasthe difference

betweenthesaturationvapourpressure(es)andtheactualvapour

pressure(ea).esiscomputedastheaverageofthesaturationvapour

pressureatTmaxandTmin.Variousapproximationsmaybeusedto

estimateeadependinguponavailabledata.Whenonlymeandaily

relativehumidity(RHmean)dataareavailable,asforthecomplete

datasetsusedinthisstudy,eaiscomputedas(Allenetal.,1998):

ea= RHmean

50/(eo(T

min))+50/(eo(Tmax))

(4)

Intheabsenceofhumiditydata,eamaybeobtainedbyassuming

thatthedewpointtemperature,Tdew,isclosetothedailyminimum

temperature,Tmin.Then,iftheweatherstationcanbeconsidereda

referencesitewhereTdew=Tmin,eaiscalculatedby

ea=eo(Tmin)=0.611exp



17.27T min Tmin+237.3



(5)

TheHSmethod(HargreavesandSamani,1985)requiresonly

observedTminandTmaxfortheestimationofETo(mmday−1),which

isgivenas:

ETo=0.0135kRsRa





(Tmax−Tmin)(T+17.8) (6)

whereRaistheextraterrestrialradiationasdefinedearlier,andis

thelatentheatofvaporization(MJkg−1)forthemeanair

tempera-tureT(◦C),thatiscommonlyassumedequalto2.45MJkg−1.0.0135

isafactorforconversionfromAmericantotheInternationalsystem

ofunitsandkRsistheradiationadjustmentcoefficientdefinedin

Eq.(3).InthecommonversionofHSequationthevaluekRs∼= 0.17

(5)

2.3. TemperatureadjustmentforestimatingPMT-ETo

Dataqualityassessmentanddatacorrectionfornon-reference

weathersites,i.e.,wherearidityis dominant,wereproposedby

Allenetal.(1998)asapre-conditionforaccuracyofPM-ETo

calcula-tions.Infact,thePM-ETodefinitionimpliestheconsiderationofan

activelygrowinggrasscropcompletelyshadingthegroundandnot

shortofwater.However,many,ifnotthemajorityoftheweather

dataaroundtheglobearereportedfromnon-referencesites,and

theirusetoestimateETomaycauselessaccuracyofestimates.If

dataqualityisessentialforanykindofevapotranspiration

stud-ies(Allenetal.,2011),requirementsforariditycorrectionsrelate

specificallywiththePM-EToequationandcropreference

defini-tion.ThatcorrectionwasanalyzedbyAllen(1996),Jensenetal.

(1997)andTemesgenetal.(1999),andreferstocorrect

temper-atureby2or3degrees toapproach Tmin ofTdew whenthesite

temperatureishigherthanthatexpectedforareferencesitewhile

airhumidityislower.Temesgenetal.(1999)haveshownsmall

effectsofthiscorrectiononEToestimatedwiththeHSequation

becausethisequationdoesnotexplicitlyusedewpoint

temper-atureandwindspeed,bothofwhichareaffectedbysitearidity.

Theseauthorsalsoconsideredthatwherethearidityofthesite

increasesitmixesupthetopandbottomlayersoftheatmosphere.

Themixing of differentlayers in turnreducesthetemperature

range(TR=Tmax−Tmin)bydecreasingTmaxduringdaytimeandby

increasingTmin duringnight-time,therebykeeping theincrease

inestimatedETolowerthanthatforPM-EToasaridityincreases.

ThehumiditytermisonlyimplicitlycontainedintheTRtermof

theHargreaves equation.The analysisby Hargreaves andAllen

(2003)agreeswiththehypothesisofTemesgenetal.(1999),thus

notconsideringtheneedforsiteariditycorrectionwhentheHS

equationisused.

ThePMTmethodusesasinputonlymeasuredminimumand

maximumairtemperaturefortheestimationofETobythe

PM-ETo equation(Eq. (1)), whereas wind speed is fixedto 2ms−1

(the average value of 2000 weather stations over the globe)

andsolarradiationandactualvapourpressureareestimatedby

Eqs.(3) and (5), respectively (Allen et al.,1998; Popovaet al.,

2006).

Asdiscussedbefore,whenapplyingthePMTmethodthereis

a need for adjustmentof temperature used for the estimation

ofactualvapourpressure. Tmin mightbegreaterthan Tdew in a

non-referenceweather station, as for a stationlocatedinside a

townorhavingdryorbareground.Then,theestimatedvaluefor

Tdew fromTmin mayrequirecorrection(Allen,1996;Allenetal.,

1998; Temesgen et al., 1999), which is expected to be higher

inmorearidclimates.Considering theclimatezonesdefinedin

Table 2 and illustrated in Fig. 1b, the corrections of Tdew are

proposed for all months where P/ETo<0.65 (Todorovic et al.,

2013).

Differently,inhumidclimatewherecommonlyairhumidityis

highandtemperaturesarerelativelylow,verylikelyTdewishigher

ormuchhigherthanTmin.Therefore,forthehumidstationssituated

intheCaspianSearegion,consideringtherelationsforTdewinmoist

airproposedbyLawrence(2005),andfollowingthegoodresults

Table2

CorrectionofTdewestimatesfromTminforestimationofactualvaporpressure.

Climatezones AnnualP/ETo CorrectedTdew(◦C)

Hyper-arid <0.08 Tdew=Tmin−4

Arid 0.08–0.20 Tdew=Tmin−2

Semi-arid 0.20–0.50 Tdew=Tmin−1

Drysub-humid 0.50–0.65 Tdew=Tmin−1

Moistsub-humid 0.65–1.0 Nocorrectionforaridity

Humid >1.0 Nocorrectionforaridity

previouslyobtainedfortheMediterraneanarea(Todorovicetal.,

2013),Tdewwasestimatedasfollows:

Tdew=



T min+Tmax 2



−ad (7)

withad=2◦Cforthemonthswhen0.8<P/ETo<1.0andad=1◦Cif

P/ETo>1.0.

2.4. Evaluationprocedure

Atrialanderrorprocedurewasappliedtoalldatasetstofindthe

bestvaluesforkRssincetherelationsproposedbySamani(2000,

2004)didnotshowtobeappropriate.PMTcomputationswere

per-formedwithtemperaturecorrectionforaridityeffects(Table2)or

forhumidityimpactsonTdewasdescribedinSection2.3.Theresults

ofETo estimatedbyPMTandHSmethodsusinglimitedweather

datawerecompared withthoseofreferencePM-ETo computed

usingfulldatasets.ToassesstheperformanceofHSandPMT

meth-odswithrespecttoPM-ETo,relativetoallpairsofobservedand

predictedvaluesforeachstation,inadditiontoalinearregression

forcedtotheorigin,severalstatisticalindicatorswerealsoused.

Theseindicatorsareexplainedbelowandtheirequationsaregiven

inliterature,e.g.,thecomparativestudyofETomodelsbyTodorovic

etal.(2013).

Ifthecoefficientofregressionbiscloseto1thenthepredicted

valuesarestatisticallyclosetotheobservedones;whenthe

coeffi-cientofdeterminationR2iscloseto1.0thenmostofthevariation

oftheobservedvalues canbeexplainedbythemodel.Theroot

meansquareerror,RMSEcharacterizesthevarianceoftheerrors;

thesmallerRMSEthebetteristhemodel’sperformance.

Themodellingefficiency,EF,wasusedtodeterminetherelative

magnitudeoftheresidualvariancecomparativelytothemeasured

datavariance;itisdefinedfromtheratioofthemeansquareerrorto

thevarianceintheobserveddata(NashandSutcliffe,1970;Moriasi

etal.,2007).EFindicatesthatwhentheresidualvarianceequalsthe

observeddatavarianceitresultsEF=1.0;contrarily,whenEFequals

zeroorisnegativethisindicatesthattheobservedmeanisasgood

orbetterpredictorthanthemodel.TheWillmott(1981)indexof

agreement,dIA,isalsoanon-dimensionalmeasurethatrepresents

theratiobetweenthemeansquareerrorandthe“potentialerror”,

definedasthesumofthesquaredabsolutevaluesofthedistances

fromthepredictedvaluestothemeanobservedvalueanddistances

fromtheobservedvaluestothemeanobservedvalue(Moriasietal.,

2007):dIAvariesbetween0and1;avalueof1indicatesaperfect

agreementbetweenthemeasuredandpredictedvalueswhile0

indicatesnoagreementatall(Moriasietal.,2007).

TheabovestatisticsmeasurethedegreeofaccuracyofETo

esti-mationusingPMTandHSmethodswithrespecttothePM-ETo,

however notgiving informationwhethertheaccuracy between

thetwo competing modelsissignificantly different.Toaddress

this issue, a test statistic proposed by Diebold and Mariano

(1995),whichiscommonlyusedinfinancialliterature,isadopted.

Althoughthis test isusually usedfor out-of-sampleforecasting

accuracyanalysis(MohammadiandSu,2010),hereitisusedtotest

theaccuracyofwithin-samplepredictionfollowingModarresand

Ouarda(2012),who recentlyapplieditinhydrologicalsciences.

Inthepresentstudy,thetestcanindicateifthereisasignificant

differencebetweenPMTandHS’sperformancesinestimatingETo.

Formally,lete1,t ande2,t,t=1,...,m,denotemodelerrors from

PMTanHSmodelsandg(e1,t)andg(e2,t)aretheirassociatedloss

functions,i.e.,thesquared-errorloss,anddt=g(e1,t)−g(e2,t)isthe

lossdifferential,thentheBstatistics(DieboldandMariano,1995)

isdefinedas:

B=



d

s/m

(6)
(7)

Fig.2. (Continued).

wheredisthesamplemean,sisthevarianceoflossdifferential

andmisthenumberofobservations.Givencovariancestationarity

andshortmemorywithregardtodt,thetestimpliesan

asymp-toticdistributionwithzeromeanandunitvariance.Underanull

hypothesisofzeromean,thetwomodelshaveequalaccuracyif

thelossdifferentialhaszeroexpectationforalltobservations.The

nullhypothesisisrejectedinfavourofthealternativehypothesis

whenthestatisticB,inabsolutevalue,exceedsthecriticalvalueof

astandardunitGaussiandistribution(DieboldandMariano,1995).

3. Results

3.1. PerformanceofHSmethod

TheperformanceoftheHSmethodisevaluatedagainstthe

com-putedPM-EToinallconsideredstations(Fig.2andTable3).Fig.2

illustratestherelationshipbetweenPM-EToandHSestimateswhen

appropriatekRswereusedforallthestations.InTable3,in

addi-tiontothegoodnessoffitindicators,theappropriatekRsutilized

forcomputingHSforeachoftheconsideredstationsarealsogiven.

Fig.2 shows that the estimatedHS strongly correlateswith

PM-EToatmostofthestations,implyingthattheHSmethod

appro-priatelypredictsthePM-EToinallclimaticregionsofIranwhenthe

appropriatekRsisselected.AvisualinspectioninFig.2andTable3

suggeststhattheHSmethodperformswellforallclimaticzones

ofIranshowninFig.1b,particularlyforthestationscharacterized

withsemiaridtohumidclimatesinwesternandnorthernIran.The

HSestimatesforthestationslocatedinthecentral-southernand

easternaridtohyper-aridclimatesofIranshowalsoasatisfactory

agreementwithPM-ETo,thoughaverypooragreementwasfound

forZabolineasternIran.AslighterdeviationoftheHSestimation

fromthePM-EToforhigherETvalueswasalsoobservedforsome

otherstationscharacterizedwithsemi-aridtohyper-aridclimates

thougharereasonablyingoodagreement.Theobserveddeviation

insuchstations,particularlyforextremevalues,issupposedtobe

relatedtotheeffectofwindspeedonPM-ETocomputationthatis

addressedinSection3.4.

Goodresultsforhumidclimates(Fig.2andTable3)are

con-tradictingfindingsbymanyauthors(e.g.,TrajkovicandKolakovic,

(8)

Table3

StatisticallycomparingtheperformanceoftheHSwiththePM-ETo.

Climaticzone Stations kRs b R2 RMSE(mmd−1) EF dIA

Humid Astara 0.15 1.00 0.98 0.18 0.98 0.99

Anzali 0.18 1.03 0.92 0.37 0.96 0.98

Rasht 0.13 1.00 0.96 0.24 0.98 0.99

Ramsar 0.15 1.01 0.93 0.28 0.97 0.99

Babolsar 0.16 1.04 0.95 0.30 0.98 0.99

Moistsub-humid Ilam 0.20 1.02 0.95 0.52 0.99 0.99

Drysub-humid Gorgan 0.14 1.03 0.92 0.38 0.98 0.99

Kermanshah 0.16 1.00 0.97 0.40 0.99 0.99 Khoramabad 0.13 0.98 0.98 0.28 0.99 1.00 Sanandaj 0.16 1.04 0.95 0.54 0.98 0.99 Semi-arid Arak 0.16 1.00 0.97 0.33 0.99 0.99 Dezful 0.14 0.99 0.97 0.41 0.98 0.99 Ghazvin 0.15 0.98 0.98 0.31 0.98 0.99 Hamedan 0.17 1.01 0.96 0.45 0.98 0.99 Khoy 0.14 1.03 0.97 0.30 0.98 0.99 Mashhad 0.17 1.01 0.91 0.62 0.96 0.98 Mehrabad 0.21 1.02 0.98 0.37 0.98 0.99 Urmia 0.16 1.01 0.98 0.27 0.98 0.99 Shahrekord 0.14 1.00 0.96 0.37 0.98 0.99 Shahroud 0.18 0.99 0.94 0.49 0.98 0.99 Shiraz 0.17 1.00 0.97 0.37 0.99 1.00 Tabriz 0.21 1.02 0.95 0.56 0.99 1.00 Torbat 0.19 1.00 0.86 0.81 0.91 0.97 Zanjan 0.16 0.98 0.96 0.40 0.99 0.99 Arid Ahwaz 0.18 1.02 0.95 0.64 0.95 0.99 BandarAbas 0.19 1.02 0.82 0.63 0.94 0.97 Birjand 0.19 1.01 0.89 0.75 0.96 0.98 Bushehr 0.20 1.02 0.90 0.59 0.97 0.99 Isfahan 0.17 1.02 0.95 0.45 0.96 0.99 Kashan 0.15 1.03 0.99 0.27 0.99 1.00 Kerman 0.18 0.99 0.94 0.51 0.97 0.99 Sabzevar 0.20 1.00 0.94 0.62 0.98 0.99 Semnan 0.17 1.01 0.98 0.28 0.99 1.00 Hyper-arid Abadan 0.20 1.00 0.88 1.07 0.97 0.98 Bam 0.18 1.02 0.97 0.34 0.98 0.99 Chabahar 0.20 1.02 0.83 0.43 0.82 0.95 Tabass 0.17 1.03 0.95 0.55 0.95 0.99 Yazd 0.19 1.01 0.93 0.64 0.95 0.98 Zabol 0.22 0.74 0.64 2.86 0.68 0.86 Zahedan 0.19 1.01 0.93 0.60 0.92 0.98

thecalibrationofkRs,whichwasapparentlynotachievedbythe

referredauthors.

Fig.3aillustratesthespatialpatternofkRsappropriatefor

esti-mationofETo usingtheHSmethod.TheappropriatekRsforthe

stationslocatedinthedry-sub-humidtohumidclimatesof

west-ernandnorthernIranfoundtobebetween0.13and0.18,while

itrangesfrom0.14to0.20forthestationssituatedinthe

semi-aridtohyper-aridclimatesofcentral,southernandeasternIran.

ThefiguredepictsagradualincreasinginkRsmovingfromnorth

tosouthandfromwesttoeast,beingrelativelyinconcordanceof

theclimaticzonesofIrandepictedinFig.1.However,thespatial

configurationofthekRsisinterruptedbysomeeyeballs,

particu-larlyinnorthernhalfofthecountry,whereverthekRsvaluesare

fardifferentfromthesurroundingvalues.Inotherwords,thereare

afewcaseswheretheappropriatekRsforasinglestationdiffers

fromthegeneralpatternoftheregion.Forexamplethebestfitted

kRsforTabriz,innorth-westernIran,is0.21,whichismuchhigher

thanthenormoftheregion,whichcouldbeattributedtothelocal

highsummerwindspeed.Contrasting,kRs is0.15forKashan,in

centralIran,whichislowerthanthegeneralkRspatternforarid

andhyper-aridclimates.

TheperformanceoftheHSmethodinrelationtothePM-ETowas

assessedthroughasetofgoodnessoffitindicators(Table3).These

statisticsindicatethattheHSmethodsatisfactorilypredictsEToin

mostofthestations,whichissupportedbyR2higherthan0.90and

theregressioncoefficientbbetween0.98and1.02inapproximately

85%ofthestations.TheRMSEislowerthan0.70and0.50mmd−1

in90%and63%ofthestations,respectively.Theseresultsare

sup-portedwiththemodellingefficiency(EF),largerthan0.95andthe

indexofagreement(dIA)higherthan0.99inapproximately90%of

stations.Differently,largererrorsofestimateandlowergoodness

offitindicatorswereobtainedforZabol,Abadan,Torbat,Birjand,

Bandarabas,SabzevarandMashad,wherethevarianceofthe

resid-ualsoftheestimationishighanddoesnotrespondtotherequired

homoscedasticity,probablyduetolackofconsideringwindspeed

withintheHSmethod.

3.2. PerformanceofthePMTmethod

TheperformanceofthePMTmethodagainstthePM-EToinall

consideredstationswerealsoevaluatedgraphically(Fig.4)and

statistically(Table4).Tmin wascorrectedfor allconsidered

sta-tionsinsemi-aridtohyper-aridclimates(Table2)inordertobetter

estimateTdewforPMTcomputation.Forhumidclimates,Tdewwas

differentlyestimatedwithEq.(7).Atrialanderrorprocedurewas

adoptedtosearchfortheappropriatekRsusedforcomputationof

PMT,theirvaluesareindicatedinFig.4andTable4.Forsome

sta-tions,asanalyzedinSection3.4,windspeedcorrectionswerealso

(9)

Fig.3. SpatialpatternsoftheselectedkRsoverIranfor:(a)HSand(b)PMTmethods.

AsillustratedinFig.4,theestimatedPMTstronglycorrelate

lin-earlywithPM-EToinmostofthestations,implyingthatthePMT

appropriatelypredictsthePM-EToinallclimaticzonesofIran.Fig.4

suggeststhatthePMTparticularlyperformswellforthestations

characterizedwithsemiaridtohumidclimatesofwesternand

northernIran.ThePMTalsoperformsreasonablywellinhumid

climateoftheCaspianSearegioninthenorth,whereTdewwas

com-putedwithEq.(7),whichallowedtoconsidertheeffectofhighair

Table4

StatisticallycomparingtheperformanceofthePMTwithPM-ETo.

Climaticzone Stations kRs b R2 RMSE(mmd−1) EF dIA

Humid Astara 0.16 0.99 0.98 0.19 0.98 0.99

Anzali 0.20 1.00 0.94 0.32 0.94 0.99

Rasht 0.13 1.01 0.94 0.28 0.95 0.99

Ramsar 0.16 1.03 0.94 0.29 0.93 0.98

Babolsar 0.16 1.01 0.95 0.29 0.95 0.99

Moistsub-humid Ilam 0.19 0.99 0.96 0.44 0.96 0.99

Drysub-humid Gorgan 0.12 1.01 0.93 0.36 0.93 0.98

Kermanshah 0.14 1.03 0.97 0.41 0.97 0.99 Khoramabad 0.10 1.00 0.94 0.41 0.95 0.99 Sanandaj 0.12 1.00 0.94 0.50 0.95 0.98 Semi-arid Arak 0.14 1.01 0.96 0.39 0.96 0.99 Dezful 0.10 0.99 0.93 0.55 0.94 0.98 Ghazvin 0.13 1.02 0.97 0.34 0.97 0.99 Hamedan 0.15 1.01 0.96 0.46 0.96 0.99 Khoy 0.11 1.03 0.94 0.39 0.94 0.98 Mashhad 0.15 1.01 0.90 0.62 0.93 0.98 Mehrabad 0.21 1.01 0.98 0.40 0.97 0.99 Urmia 0.14 1.00 0.97 0.30 0.97 0.99 Shahrekord 0.11 1.03 0.93 0.44 0.93 0.98 Shahroud 0.17 1.00 0.94 0.49 0.95 0.99 Shiraz 0.16 1.01 0.96 0.44 0.96 0.99 Tabriz 0.20 0.99 0.96 0.45 0.97 0.99 Torbat 0.18 1.02 0.87 0.79 0.90 0.97 Zanjan 0.14 0.99 0.96 0.39 0.96 0.99 Arid Ahwaz 0.18 1.02 0.92 0.81 0.93 0.98 BandarAbas 0.17 1.00 0.90 0.46 0.92 0.98 Birjand 0.17 1.01 0.91 0.63 0.92 0.98 Bushehr 0.19 1.00 0.92 0.53 0.93 0.98 Isfahan 0.15 1.02 0.94 0.49 0.94 0.98 Kashan 0.11 1.00 0.96 0.36 0.97 0.99 Kerman 0.17 1.01 0.90 0.66 0.92 0.98 Sabzevar 0.20 1.01 0.95 0.55 0.96 0.99 Semnan 0.16 1.03 0.98 0.28 0.98 0.99 Hyper-arid Abadan 0.21 1.01 0.89 1.06 0.90 0.95 Bam 0.16 1.01 0.97 0.33 0.97 0.99 Chabahar 0.18 1.01 0.88 0.36 0.87 0.97 Tabass 0.15 1.01 0.92 0.61 0.94 0.98 Yazd 0.18 1.00 0.92 0.63 0.93 0.98 Zabol 0.20 0.67 0.67 3.29 0.53 0.81 Zahedan 0.18 0.99 0.92 0.58 0.93 0.98

(10)

humidity.TheestimatedPMTformostofthestationslocatedinthe

central-southernandeasternaridandhyper-aridclimatesofIran

showalsosatisfactoryagreementwithPM-ETo,thoughrelatively

weakassociationwerefoundforAbadan,Torbat,Birjand,Chabahar

and,mainly,forZabolstation(Fig.4andTable4).Allthesestations

alsoperformedpoorlyfortheHSmethod.

Thestationslocatedinwesternandnortherndry-sub-humidto

humidclimatesofIranhavekRsbetween0.10and0.18,whilekRs

(11)

Fig.4. (Continued).

variesfrom0.11to0.20forthestationssituatedinthesemi-arid

tohyper-aridregionsofcentral-easternIran(Table4andFig.3b).

AswasthecasefortheHSmethod,therearesomecaseswherethe

selectedkRsforastationdiffersfromtheregionalpattern,e.g.,the

selectedkRsforTabrizstationinnorth-westernIranismuchhigher

thanthekRsvaluesofthesurroundingstations.Fig.3bshowsthe

spatialpatternofkRsusedforestimationofPMToverIran,depicting

apatternverysimilarofthatfortheHSmethodinFig.3a.

Appar-ently,thekRsisinfluencedbyelevation,topographyandthearidity

indexthoughinthepresentstudyweakcorrelations(notshown)

werefoundbetweentheaforementionedfactorsandthekRsvalues

relativetoboththePMTandHSmethods.

ThestatisticsshowninTable4indicatethatthePMTmethod

sat-isfactorilypredictsEToinmostofthestations,whichissupported

byR2higherthan0.90andbcoefficientbetween0.98and1.02in

90and85%ofthestations,respectively.TheRMSEislowerthan

0.70and0.50mmd−1in90%and68%ofthecases,EFanddIAwere

≥0.90and≥0.98formorethan90%ofthestations.Theseresults

areonlyslightlybetterthanthecorrespondingresultsfortheHS

methodinTable3.ResultssuggestagoodestimationofETowith

PMT,particularlyforpracticalirrigationschedulingandforusing

indroughtindicescomputationsuchasthePDSI(e.g.,Pauloetal.,

2012).ResultsindicatethattheuseofPMTmethodforETo

esti-mationinthestudyareaisworthwhilewhenonlylimiteddataare

available.However,coefficientsofdetermination<0.90forZabol,

Chabahar,AbadanandTorbatsuggestthattheestimatedPMTin

thesestationssubstantiallydeviatesfromthePM-ETo.Theachieved

resultsforPMTareconsistentwiththoseobtainedforHS,which

showstheweakestagreementswithPM-EToforthesamestations

asPMT.

3.3. RoleoftemperatureadjustmentforTdewestimation

Theeffectivenessoftemperatureadjustmentinimprovingthe

PMTestimationwasstatisticallyevaluatedforallconsidered

sta-tions, by comparingthe regression coefficient b,R2 and RMSE

statisticsrelatingPMTandPM-ETodata,beforeandafter

tempera-tureadjustment(Table5).

Resultssuggestedthattemperatureadjustmentsforhumidand

(12)

Table5

StatisticallyassessmentoftheeffectsoftemperatureadjustmentinPMTestimation.

Climaticzone Stations kRs Beforecorrection Aftercorrection

b R2 RMSE(mmd−1) b R2 RMSE(mmd−1) Humid Astara 0.16 1.00 0.96 0.24 0.99 0.98 0.19 Anzali 0.20 0.97 0.91 0.37 1.00 0.94 0.32 Rasht 0.13 1.05 0.88 0.39 1.01 0.94 0.28 Ramsar 0.16 1.01 0.88 0.33 1.03 0.94 0.29 Babolsar 0.16 0.97 0.88 0.38 1.01 0.95 0.29

Moistsub-humid Ilam 0.19 0.89 0.95 0.65 0.99 0.96 0.44

Drysub-humid Gorgan 0.12 0.97 0.80 0.47 1.01 0.93 0.36

Kermanshah 0.14 0.96 0.96 0.44 1.03 0.97 0.41 Khoramabad 0.10 0.97 0.94 0.43 1.00 0.94 0.41 Sanandaj 0.12 0.93 0.92 0.59 1.00 0.94 0.50 Semi-arid Arak 0.14 0.94 0.95 0.44 1.01 0.96 0.39 Dezful 0.10 0.91 0.89 0.75 0.99 0.93 0.55 Ghazvin 0.13 0.95 0.96 0.38 1.02 0.97 0.34 Hamedan 0.15 0.95 0.95 0.51 1.01 0.96 0.46 Khoy 0.11 0.98 0.92 0.41 1.03 0.94 0.39 Mashhad 0.15 0.93 0.87 0.73 1.01 0.90 0.62 Mehrabad 0.21 0.90 0.98 0.57 1.01 0.98 0.40 Urmia 0.14 0.95 0.95 0.38 1.00 0.97 0.30 Shahrekord 0.11 0.99 0.91 0.45 1.03 0.93 0.44 Shahroud 0.17 0.91 0.93 0.77 1.00 0.94 0.49 Shiraz 0.16 0.95 0.95 0.51 1.01 0.96 0.44 Tabriz 0.20 0.88 0.95 0.70 0.99 0.96 0.45 Torbat 0.18 0.90 0.83 0.88 1.01 0.88 0.77 Zanjan 0.14 0.93 0.95 0.46 0.99 0.96 0.39 Arid Ahwaz 0.18 0.95 0.92 0.80 1.02 0.92 0.81 BandarAbas 0.17 0.87 0.79 0.84 1.00 0.88 0.51 Birjand 0.17 0.93 0.89 0.68 1.01 0.91 0.63 Bushehr 0.19 0.89 0.88 0.78 1.00 0.92 0.52 Isfahan 0.15 0.93 0.93 0.56 1.02 0.94 0.49 Kashan 0.11 0.91 0.96 0.50 1.00 0.96 0.36 Kerman 0.17 0.94 0.90 0.68 1.01 0.90 0.66 Sabzevar 0.20 0.91 0.94 0.71 1.01 0.95 0.55 Semnan 0.16 0.94 0.98 0.36 1.03 0.98 0.28 Hyper-arid Abadan 0.21 0.95 0.89 1.05 1.01 0.89 1.06 Bam 0.16 0.90 0.96 0.56 1.01 0.97 0.33 Chabahar 0.18 0.84 0.73 0.80 1.01 0.88 0.36 Tabass 0.15 0.93 0.91 0.69 1.01 0.92 0.61 Yazd 0.18 0.92 0.92 0.73 1.00 0.92 0.63 Zabol 0.20 0.61 0.66 3.67 0.67 0.67 3.29 Zahedan 0.18 0.92 0.92 0.71 0.99 0.92 0.58

simplyusingTmin,considerablyimprovesPMTestimation,whereb

andR2 increasedandRMSEdecreased aftertemperature

adjust-ment for allstations characterizedwith humidand sub-humid

climatesofIran.Asanexample,thecoefficientofdetermination

forRashtandRamsarstationsincreasedfrom0.88 to0.94after

temperaturecorrection;for Ilam, RMSEdecreased from0.65 to

0.44mmd−1.Theseresultsindicatethatthegoodperformanceof

PMTestimationanalyzedintheprevioussectionislargelydueto

temperatureadjustmentforhumidity.

Temperatureadjustmentforstationssituatedinsemi-arid,arid

and hyper-aridclimates of Iranalso showedto haveimproved

EToestimation.Differentlyfromhumidclimateswhere

tempera-tureadjustmentnoticeablyimprovedtheR2statistic,theinfluence

of temperatureadjustment in semi aridto hyper-arid climates

largelyconsistedinsubstantially increasingtheregression

coef-ficient, withb approaching the 1:1 line. These results indicate

thatthetemperatureadjustmentforaridity,withloweringTdew

relativetorawTmin,leadstoovercomethecommonunder

esti-mationofPMTinaridconditions.Meanwhile,despitenegligible

improvements of R2, noticeable improvements in RMSE

statis-ticwereobservedformostofthestationssituatedinsemi-arid,

aridandhyper-aridclimates.Thisfactsuggeststhattemperature

adjustmentisofparamountimportanceforPMTestimationinsuch

climates.

3.4. RoleofwindspeedinPMTestimation

AswereshowninFigs.2and4,theestimatedETo bytheHS

andPMTmethodsshowpooragreementwiththePM-EToatsome

stationssituatedintheverydryclimateofeasternandsouthern

Iran,whereHSandPMTmethodslargelyunderestimateEToforthe

warmseason.Inexploringthepossiblefactorresponsibleforthe

observeddisagreement,wenoticedthattheconsideredstationsare

locatedintheareawhereextremewindspeedoccurs,particularly

inthesummer.

Thespatialpatternofthemeanseasonalwindspeedoverthe

countryisdepictedinFig.5tosupportananalysisaboutthe

pos-sibleroleplayedbythewindfactorinETo estimation.InFig.5a

andditisevidentthatthemeanautumnandwinterwindspeed

donotexceed2ms−1 inmostpartsofthecountryexceptfora

narrowbandinsouthernandeasternIran,wherewindspeedis

between3and4ms−1.Fig.5bshowsanincreaseofwindspeed

insouthernandeasternpartsofIranduringspring,contrarilyto

northernhalfofthecountry.Differently,windspeedinsummer

increasesdrasticallyineasternIran(Fig.5c),whereitmayexceed

8ms−1.Thesedataindicatethat themeanseasonalwindspeed

insouthernandeasternIran,particularlyforthewarmspringand

summerseasons,isoftenmuchhigherthanthecommondefault

(13)

Fig.5.Spatialpatternsofmeanseasonalwindspeed(ms−1)overIranfor:(a)autumn,(b)spring,(c)summerand(d)winter.

deviationofPMTestimatesrelativetoPM-ETodata,duringthose

seasons.Theroleof extremewindspeedonPM-ETo estimation

maybeveryimportant,mainlywhen itis associatedwithvery

hotweatherinsummer,whichcallsforusinganestimateofwind

speeddifferentthanthatofthedefaultvalueof2ms−1.SincetheHS

equationdoesnotincludeanywindspeedparameter,itsresultsare

likelyunderestimatingEToinwindyandhotconditionslikeZabol

andvariousotherstationslocatedinaridandhyper-aridclimates

ofsouthernandeasternIran(Fig.2).

Asdepictedin Fig.5,thehighest windspeed,particularlyin

summer,is observedinZabol,eastern Iran,where thePMTand

HSestimationshaveshowntheworstagreementwiththePM-ETo

(Figs.2and4).Thisresultsfromthefactthattheobservedwind

speedinthisstationisseveraltimeshigherthanthedefaultvalue

of2ms−1,particularlyduringtheveryhotsummerandlatespring.

Thesummerwindspeedisalsoconsiderablyhigherthan2ms−1in

Abadan,Sabzevar,Birjand,Torbat,ShahroudandMashadstations

insouthernandeasternIran,wheretheEToestimatedbyPMTand

HShaveshownaweakagreementwiththePM-EToforextremeETo

values.Thesummerwindspeedisalsohigherthanthefixedvalue

of2ms−1inTabriz,north-westernIran,givingrisetoawide

dis-persionofthehighestETovaluesinthescatterplotsofthisstation

(Figs.2and4).Inmostofthesestations,thehigherdeviationof

thePMT(andHS)estimationsfromthePM-ETocorrespondtothe

extremeETovaluesthatoccurredinthewarmseasonoftheyear.

Therefore,theobserveddisagreementbetweenthePMT(andHS)

estimationsandPM-ETointhesestationscanbepartiallyduetonot

consideringthewindspeedinfluenceinHSmethodandadefault

valueofonly2ms−1inPMT,whichismuchsmallerthantheactual

windspeedthatisusedforthePM-ETocomputation.

ToexaminetheroleplayedbywindspeedinPM-EToestimation,

Fig.6illustratestherelationshipbetweenestimatedETobyPMTand

PM-EToatsomeselectedstations,consideringdifferentscenarios:

(1)usingthedefaultwindspeedvalueof2ms−1inPMT

computa-tions,

(2)consideringonlythePM-ETodatacorrespondingtowindspeed

notexceeding2ms−1,

(3)usingobservedlocalwindspeedinPMTreplacingthedefault

windspeedvalue,and

(4)usingaverageseasonalwindspeedtoreplacethedefaultvalue

of2ms−1inPMTcomputation.

Asshown in Fig.6a–f, thePMTmethodextremely

underes-timatesETo valuescorrespondingtothesummers inShahroud,

Mashad,Torbat,Abadan,BirjandandZabolstations,thusleadingto

verylowcoefficientsofdetermination,eventhoughtheoptimum

bslopecouldbeachievedforsome.Byexcludingtheobservations

withwindspeed>2ms−1fromtheanalysis(scenario2),the

(14)

Fig.6.RelationshipsbetweenestimatedETobyPMTmethodandPM-EToatsomeselectedstationswhen:thewindspeedisfixedat2ms−1forPMTcomputation(a–f);data

withlocalwindspeed>2ms−1wasnotconsidered(g-i);localactualwindspeedwastakenforPMTcomputations(m–r),andregionalaveragesofseasonalwindspeedwere

usedforPMTcomputations(s–x).

increasedcoefficientsofdeterminationandreducedresidualsofthe

variancerepresentedbyanarrowerdispersionbandofthescatter

plotsshowninFig.6g–l.Tofurtherjustifytheroleofwindspeed

intheassociationbetweenthePMTandPM-ETo,Fig.6m–r

illus-tratesthattheassociationbetweenthetwomodelssubstantially

improvedwhenlocalwindspeedwasusedforPMTcomputation

ratherthan thedefaultvalue(scenario 3).Differentlyfrom

dis-cussionsintheliteraturesuggestingthatwindspeedhasverylow

impactonEToestimation,theresultsobtainedwithscenario3

illus-tratedthatitisanimportantfactorinaridandsemi-aridclimates

whenthestationsareexposedtoextremewindspeed,particularly

inhotseasons.Asanexample,Fig.6fshowsthescatterplotfor

theextremelywindystationofZabol,ineasternIran,whichiswell

knownforitsextremesummerwindspeedthatusuallydominates

theregionforthewholesummertime(Fig.5c).Asisdepictedin

Fig.6fbothR2andbareverylowforscenario1,thusindicating

averypoorestimationofETo byPMT.Substantialimprovement

wasobservedfor scenario2,whenthedatawithextremewind

speed(windspeed>4m−1)wereexcluded,whichledtoa

(15)

Table6

TheDieboldandMariano(1995)BtestforequalaccuracyofPMTandHSmethods(statisticallysignificantBstatisticsareinbold).

Climaticzone Stations BStatistic RMSE(PMT) RMSE(HS)

Humid Astara 0.75 0.19 0.18

Anzali −5.82 0.32 0.37

Rasht 4.10 0.28 0.24

Ramsar 0.15 0.29 0.28

Babolsar −1.38 0.29 0.30

Moistsub-humid Ilam −4.57 0.44 0.52

Drysub-humid Gorgan −1.65 0.36 0.38

Kermanshah 0.90 0.41 0.40 Khoramabad −2.24 0.41 0.28 Sanandaj −1.31 0.49 0.54 Semi-arid Arak 3.97 0.39 0.33 Dezful 6.71 0.55 0.41 Ghazvin 1.53 0.34 0.31 Hamedan 1.13 0.46 0.45 Khoy 5.16 0.39 0.30 Mashhad 0.18 0.62 0.62 Mehrabad 2.58 0.40 0.37 Urmia 4.98 0.30 0.27 Shahrekord 5.60 0.44 0.37 Shahroud 0.07 0.49 0.49 Shiraz 5.69 0.44 0.37 Tabriz −7.88 0.45 0.56 Torbat −1.69 0.77 0.81 Zanjan −1.25 0.39 0.40 Arid Ahwaz 5.87 0.81 0.64 BandarAbas −9.72 0.51 0.63 Birjand 2.03 0.63 0.75 Bushehr −5.09 0.52 0.59 Isfahan 7.72 0.49 0.45 Kashan 1.08 0.36 0.27 Kerman 7.94 0.66 0.51 Sabzevar −5.19 0.55 0.62 Semnan −0.55 0.28 0.28 Hyper-arid Abadan 0.67 1.06 1.07 Bam −2.25 0.33 0.34 Chabahar −3.23 0.36 0.43 Tabass 1.95 0.61 0.55 Yazd −0.51 0.63 0.64 Zabol 12.02 3.29 2.86 Zahedan −0.49 0.58 0.60

theselectedthresholdforZabolwassettowindspeed>4m−1since

veryfewcaseshavewindspeed<2m−1.Fig.6ralsodemonstrates

amuchimprovedgoodnessoffitwhenlocalwindspeedwasused

forPMTcomputationratherthanthedefaultvalueof2ms−1

(sce-nario3),thoughtheregressionstillremainsnonlinear,whichcan

berelatedtothequalityofthewinddata;howeveritcouldnotbe

appropriatelyanalyzedasthewindisalocaldependentvariable,

sohavingextremespatialvariabilityinthisregion.

InordertofindapracticalsolutionforimprovingthePMT

esti-mates,itwassupposedthatusinganappropriateregionalwind

speed instead of using a default value couldimprove the PMT

estimationin windyareas(scenario 4);relatedresultsusingan

averagedseasonalwindspeedareshowninFig.6s–x.Inthis

sce-nario,twofixedwindspeedvalueswereused,respectivelyforcold

andhotseasons.AsshowninFig.6s–x,thisapproachwasableto

improveR2butdidnotprovideimprovedregressioncoefficients

sincebvaluesindicateaquitelargeoverestimationofETo.Since

alltheobservationdatasetshavedifferentwindspeeds,usingthe

seasonalmeanvalueimprovedsomepartsofthescatterplotbut

adverselyimpactedsomeother parts.Therefore, it canbe

con-cludedthatsincethewindspeedishighlyvariableintime,itislikely

thatitstimevariationmayhavemoreinfluencethanitsmagnitude

inestimatingPMT.Inmostofthestationsthewindspeedoften

isaround 2ms−1 throughouttheyear,whereas extremewinds

maydominateastationonlyforspecificperiodsoftheyearasis

illustratedinFig.5;henceadoptinganyfixedvaluemayleadto

under-orover-estimationbythePMTmethod.Asillustratedin

Fig.6s–x,usingseasonalwindspeedinsteadofthedefaultvalueof

2ms−1islesssuccessfulinimprovingPMTresultsinwindystations

andisthereforenotadvisable.

3.5. ComparingPMTandHSmethods

As discussed earlier,the performances of both PMTand HS

methodsaregenerallyadequateforestimatingEToforallclimatic

regionsofIranusinglimitedavailabledatasets.Table6presents

theresultoftheDieboldandMariano(1995)Bstatistictestthat

wasusedforcross-comparisonoftheadequacyoftheestimations

bythetwomethodsrelativetothePM-ETo.Thetestvalueisout

oftheinterval[−1.96,1.96]whenthereisasignificantdifference

at95%level.ResultsinTable6showthatHSequationperformed

significantlybetterthanPMTfor14stationswhilePMTperformed

significantlybetterfor9stations.Itisworthnotingthatthestatistic

Bispositive(negative)andsignificantwhenHS(PMT)performed

better.BetterresultsforHSlargelyovercomethoseofPMTforthe

semi-aridregionwhilePMThasshowntobesuperiorforthehumid

andsub-humidareas.However,differenceswerenotsignificant

for43%ofstationsconsideredinthisstudy.Despitethese

statis-tic,theusersshouldanalyzethesizeoferrors,particularlyRMSE,

(16)

Fig.7. SpatialpatternofannualETooverIranestimatedby(a)PM-ETo,(b)HS,and(c)PMTmethods.

theregressioncoefficientb,aswellastheefficiencyindicatorsEF

anddIA.

3.6. SpatialpatternofETo

The spatial pattern of annual ETo over Iran estimated with

thePM-ETo methodusingfulldatasets(Fig.7a)showsagradual

increaseofETofromnorthtoSouth,withthelowestvaluesover

thenorthernhumidandsub-humidclimatesofIranandlargerETo

estimatesforaridandhyper-aridclimatesinthesouthernand

east-erncountry.TherangeofannualETo variesfrom700mminthe

humidcoastalareasofsouth-westernCaspianSeaupto2800mm

inhyper-ariddeserticareasofeasternIran.Mostpartsofthecoastal

areasoftheCaspianSeaandthemountainousareasofnorthernand

north-westernIrandepictETovaluesbetween700and1200mm,

increasingsouthwardand eastwardduetothedecreasein

lati-tudeand/oraltitude.Themountainousareasofmid-westernand

north-easternIran,aswellasthemid-centralregionofthecountry,

exhibitETobetween1200and1600mm,whiletheETovaluesfor

avastareaincentral,southernandeasternIranrangefrom1600

to2000mm.ThehighestETowith2000–2800mmisobservedin

south-westernandeasternIran.ThehighEToinsouth-westernIran

isrelatedtotemperature,thehighestobservedinthecountry.

Dif-ferently,ineasternIran,itrelatestotheveryhighwindspeedand

dryness,withoccurrenceofverylowannualmeanrelative

humid-ity(<40%)thatevenreducedto<25%insummerwhentheregion

isexposedtoextremewindspeed.ThespatialpatternofPM-ETo

overIranrepresentedhereiniscomparabletothatofforDinpashoh

(2006),thoughthenumber ofusedstationsand theconsidered

dataperiodsaredifferent.Theobtainedresultisalsoconsistent

withtheresultsachievedbyTabarietal.(2011a,b)andTabariand

Aghajanloo(2012)foreastern,westernandnorthernIran,

respec-tively,consideringboththemagnitudeandspatialvariabilityof

ETo.

Fig.7bandcshowsthespatialpatternsofETooverIran

com-putedwiththeHSandPMTmethods,respectively.Thesespatial

patternsareidenticalandalsoresembletothatofPM-EToshown

inFig.7a.However,Fig.7bshowslowerestimatesofETofor

east-ernIranrelativetoFig.7aandcsinceitwasnotpossibletouse

localwindspeedforHSestimationcontrarilytothecaseforPM

andPMTmethods.TheobservedconcordanceofHSandPMTmaps

(Fig.7bandc)withthemapofPM-ETo(Fig.7a),consideringboth

thespatialpatternandthemagnitudeoftheestimations,in

addi-tiontoresultsinTables3and4,indicatesthattheHSandPMT

methodsareappropriatealternativesforestimationofEToinall

cli-maticregionsofIran,particularlyfortheveryremoteareas,when

onlyminimum and maximumtemperature areavailable. Using

PMTmaybepreferablewhenthedatasetispartlycomprisingfull

dataorpartiallyfull databecausethenit ispossibletousethe

PMTfortheperiodswhenradiationorhumiditydataarerequired.

ThenthesameFAO-PMequationisusedwitheitherobservation

orestimateddata. Differently,theHSmethodis preferableifit

is not desirable to correct Tmin data tocompensate for station

(17)

4. Discussionandconclusions

Monthlyaveragesofmaximumandminimumtemperature,

rel-ativehumidity,sunshinedurationandwindspeed,corresponding

totheperiod1971–2005at40Iraniansynopticstationsdistributed

over the countrywereutilized for estimation of ETo usingthe

PM-ETo,thetemperaturePMTandHSmethods.Aimingata

com-parativeanalysisofthebehaviourofthesemethods,theclimatic

zonesofIranwereidentifiedutilizingtheUNEParidityindex,which

isbasedontheratioofmeanannualprecipitationtomeanannual

potentialevapotranspiration.ToestimateETo usingboththeHS

andPMTmethods,appropriatevaluesforkRs,anempirical

radi-ationadjustmentcoefficient,weresearchedforeachstation.For

estimationofTdewfromTmintobeusedwiththePMT,thelatterwas

correctedforaridity.Forhumidclimatesanempiricalapproachto

estimateTdew fromthemeantemperaturewasusedandapplied

forPMTestimation.TheperformanceoftheHSandPMTmethods

againstPM-ETowereevaluatedthroughasetofcommonlyused

statistics.

ResultsshowthatsearchingappropriatekRsforestimationof

solarradiationforbothHSandPMTmethodsresultsinsignificant

accuracyimprovementintheestimationofETo.Itwasobserved

thatkRsvaluesforthestationslocatedinthesub-humidandhumid

climatesofwesternandnorthernIranaresmallerthanthosefor

thesemi-aridtohyper-aridclimatesofcentral,southernand

east-ernIran,suggestinganorth-southandwest-eastincreasingspatial

trend. It was also found that the kRs values selected for both

methodsinagivenstationareeitheridenticalorshownegligible

difference.Despiteresultshereinconcernawiderangeofclimates,

itisdesirabletohavetheseresultsconfirmedthroughstudies

rel-ativetootherareasandusingdifferenttimestepcomputations.

Theadjustmentof Tmin for estimatingTdew tobeused with

thePMTmethodhasshowntohighlyimprovetheperformance

ofthemethodforsemi-aridtohyper-aridclimates.Moreover,the

adoptionofanempiricalapproachtoestimateTdewfromthe

mini-mumtemperaturealsosignificantlyincreasedtheaccuracyofPMT

estimationforhumidclimates.Overall,estimatesbyHSandPMT

stronglycorrelatewithestimatesbyPM-ETo,implyingthatthe

con-sideredmethodsappropriatelypredictEToforallclimaticregions

ofIraniftheappropriatekRswasconsidered.Resultsdescribedalso

indicatethatwhendatasetsareincomplete,particularlyrelativeto

radiationandairhumiditydata,ETocalculationsmaybeperformed

fortheperiodswhendataarelackingwiththeFAO-PMequation

usingradiationand/orVPDparametersestimatedfromTmaxand

TminasforthePMTmethod.

ThestatisticaltestondifferencesbetweenHSandPMTmethods

hasshownthatHSismoreoftensignificantlysuperiortoPMTin

thesemi-aridregionwhilethePMTperformedsignificantlybetter

thanHSinhumidandsub-humidareas.However,nosignificant

differenceswerefoundfor43%ofcases.

Aweak/pooragreementwashoweverfoundforsomestations

situatedintheverydryclimateofeasternandsouthernIranowing

to therole played there by extreme and variable wind speed.

TheobserveddiscrepanciesbetweenHS(andPMT)andPM-ETo

inthestationssituatedineasternIranisattributedtotheextreme

windspeed,particularlyduringsummerwhenEToishigher.The

observeddisagreementbetweentheestimationsbyPMT(andHS)

andPM-ETomaybepartiallyduetonotconsideringwindspeedin

HSmethodandtothelesseffectivedefaultwindspeedvalue

usu-allyconsideredforPMTestimation,whichismuchlowerthanthe

actualvalueusedthereforPM-ETocomputation.However,using

seasonalregionalvaluesasdefaultwindspeedvaluesdecreased

the variance of residuals and the heteroscedasticity of

regres-sionsbutincreasedtheregressioncoefficientsandthereforeETo

becameover-estimatedinthesehotandwindylocations.Itislikely

thatthetimevariabilityofwindspeedplaysamajorroleinthe

discrepanciesbetweenPMTandPM-EToestimatesandthereforeit

ishardlypossibletofindadefaultvalueorempiricalfunctionthat

takesthatvariabilityintoaccountinPMTwhenwindspeeddataare

notavailable.Giventhesecircumstances,itislikelynotappropriate

totryfindingamodificationofHSforconsideringwindspeed.

How-ever,consideringtheneedtominimizeerrors inestimatingETo

whenonlytemperaturedataareavailableinareaswherewindmay

playamajorrole,thisproblemremainsopentofurtherresearch

developments.

ThespatialdistributionofannualEToshowedagradual

increas-ing from north to south, with thelowest ETo values observed

overnorthernhumidandsub-humidclimatesofIranandlarger

ETo estimates for aridand hyper-arid climates in thesouthern

andeasterncountry.ThespatialpatternsofETocomputedusing

limitedweatherdatawithHSandPMTmethodsareidenticaland

resembletothat ofPM-ETo,thusconfirmingtheabovereferred

conclusionsindicatingthattheHSandPMTmethodsare

appropri-atealternativesforestimationofEToinallclimaticregionsofIran,

particularlyfortheveryremotestationshavingonlyminimumand

maximumtemperaturerecords.

References

Ahmadi, S.A.,Fooladmand,H.R.,2008. Spatiallydistributedmonthlyreference evapotranspirationderivedfromthecalibrationofThornthwaiteequation:a casestudy,SouthofIran.IrrigationScience26,303–312.

Allen,R.G.,1996.Assessingintegrityofweatherdataforreference evapotranspira-tionestimation.JournalofIrrigationandDrainageEngineering122(2),97–106. Allen,R.G.,1997.Self-calibratingmethodforestimatingsolarradiationfromair

temperature.JournalofHydrologicEngineering2(2),56–67.

Allen,R.G.,Smith,M.,Perrier,A.,Pereira,L.S.,1994.Anupdateforthedefinitionof referenceevapotranspiration.ICIDBulletin43(2),1–34.

Allen,R.G.,Pereira,L.S.,Raes,D.,Smith,M.,1998.CropEvapotranspiration. Guide-linesforComputingCropWaterRequirements.FAOIrrig.Drain.Pap.56.FAO, Rome,300p.

Allen,R.G.,Pruitt,W.O., Wright,J.L.,Howell,T.A.,Ventura,F.,Snyder,R., Iten-fisu,D.,Steduto,P.,Berengena,J.,Baselga,J.,Smith,M.,Pereira,L.S.,Raes,D., Perrier,A.,Alves,I.,Walter,I.,Elliott,R.,2006.Arecommendationon standard-izedsurfaceresistanceforhourlycalculationofreferenceETobytheFAO56

Penman–Monteithmethod.AgriculturalWaterManagement81,1–22. Allen,R.G.,Pereira,L.S.,Howell,T.A.,Jensen,M.E.,2011.Evapotranspiration

informa-tionreporting:I.Factorsgoverningmeasurementaccuracy.AgriculturalWater Management98(6),899–920.

Angström,A.,1924.Solarandterrestrialradiation.QuarterlyJournaloftheRoyal MeteorologicalSociety50,121–125.

Annandale,J.G.,Jovanovic,N.Z.,Benadé,N.,Allen,R.G.,2002.Softwarefor miss-ing dataerror analysisofPenman–Monteithreference evapotranspiration. IrrigationScience21,57–67.

Berengena,J.,Gavilán,P.,2005.Referenceevapotranspirationestimationinahighly advectivesemiaridenvironment.JournalofIrrigationandDrainageEngineering 131(2),147–163.

Cai,J.B.,Liu,Y.,Lei,T.W.,Pereira,L.S.,2007.Estimatingreference evapotranspira-tionwiththeFAOPenman–Monteithequationusingdailyweatherforecast messages.AgriculturalandForestMeteorology145,22–35.

Cai,J.,Liu,Y.,Xu,D.,Paredes,P.,Pereira,L.S.,2009.Simulationofthesoilwater bal-anceofwheatusingdailyweatherforecastmessagestoestimatethereference evapotranspiration.HydrologyandEarthSystemSciences13,1045–1059. Diebold,F.X.,Mariano,R.S.,1995.Comparingpredictiveaccuracy.JournalofBusiness

andEconomicStatistics13,253–263.

Dinpashoh,Y.,2006.StudyofreferencecropevapotranspirationinI.R.ofIran. Agri-culturalWaterManagement84,123–129.

Dinpashoh,Y.,Fakheri-Fard,A.,Mogaddam,M.,Jahanbakhsh,S.,Mirnia,M.,2004. SelectionofvariablesforthepurposeofregionalizationofIran’sprecipitation climateusingmultivariatemethods.JournalofHydrology297,109–123. Dinpashoh,Y.,Jhajharia,D.,Fakheri-Fard,A.,Singh,V.P.,Kahya,E.,2011.Trendsin

referenceevapotranspirationoverIran.JournalofHydrology399,422–433. Diodato,N.,Bellocchi,G.,2007.Modelingreferenceevapotranspirationover

com-plexterrainsfromminimumclimatologicaldata.WaterResourcesResearch43, W05444,http://dx.doi.org/10.1029/2006WR005405.

Droogers,P.,Allen,R.G.,2002.Estimatingreferenceevapotranspirationunder inac-curatedataconditions.IrrigationandDrainageSystems16,33–45.

Fooladmand,H.R.,Haghighat,M.,2007.Spatialandtemporalcalibrationof Har-greavesequationforcalculating monthlyETo basedonPenman–Monteith

method.IrrigationandDrainage56,439–449.

Fooladmand,H.R.,Zandilak,H.,Ravanan,M.H.,2008.Comparisonofdifferenttypes ofHargreavesequationforestimatingmonthlyevapotranspirationinthesouth ofIran.ArchivesofAgronomyandSoilScience54(3),321–330.

Imagem

Fig. 1. Spatial distribution of (a) the utilized weather stations and (b) the aridity index over Iran.
Fig. 2. Relationship between estimated ET o by HS method and the PM-ET o at selected stations.
Fig. 3. Spatial patterns of the selected k Rs over Iran for: (a) HS and (b) PMT methods.
Fig. 4. Relationship between estimated ET o by PMT method and PM-ET o at selected stations.
+4

Referências

Documentos relacionados

Tabela 51 - Motivos para a confirmação de aquisição → assimilação em contexto Waterfall no Brasil ligados às metodologias ágeis e motivos diversos .... 198 Tabela 52 - Motivos

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

A capacidade para exercer influência depende, em grande parte, da eficácia dos processos de comunicação.. Emissor Receptor Receptor Emissor Código O processo de comunicação

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

A reconstruction of the past annual precipitation rates for the last 280 years has been obtained from speleothem annual growth rates, derived from the

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

Foram aprovadas, por unanimidade de votos, as autorizações para cursar disciplinas -