• Nenhum resultado encontrado

Rhizobacterial characterization for quality control of eucalyptus biogrowth promoter products

N/A
N/A
Protected

Academic year: 2021

Share "Rhizobacterial characterization for quality control of eucalyptus biogrowth promoter products"

Copied!
7
0
0

Texto

(1)

brazilian journal of microbiology47(2016)973–979

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Genetics

and

Molecular

Microbiology

Rhizobacterial

characterization

for

quality

control

of

eucalyptus

biogrowth

promoter

products

Talyta

Galafassi

Zarpelon

a

,

Lúcio

Mauro

da

Silva

Guimarães

a

,

Poliane

Alfenas-Zerbini

b

,

Eli

Sidney

Lopes

c

,

Reginaldo

Gonc¸alves

Mafia

d

,

Acelino

Couto

Alfenas

a,∗

aFederalUniversityofVic¸osa,DepartmentofPhytopathology,Vic¸osa,MG,Brazil

bFederalUniversityofVic¸osa,DepartmentofMicrobiology,Vic¸osa,MinasGeraisState,Brazil cBioSojaIndústriasQuímicaseBiológicas,SãoJoaquimdaBarra,SP,Brazil

dFibriaCentrodeTecnologia,Aracruz,ES,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15June2015 Accepted14March2016 Availableonline26July2016 AssociateEditor:JerriÉdsonZilli

Keywords: Formulation PGPR Eucalyptus Biologicalproduct

a

b

s

t

r

a

c

t

Plantgrowth-promotingrhizobacteriastrainsfromspecialformulations havebeenused to optimizeeucalyptuscuttingproduction.Toundertake qualitycontrol forthe formu-latedproducts,therhizobacterialstrainsshouldbecharacterizedtoassesstheir purity andauthentication.Inthepresentstudy,wecharacterizedninestrainsofrhizobacteria, includingthreeBacillussubtilis(S1,S2and3918),twoPseudomonassp.(MF4andFL2),P.putida

(MF2),P.fulva(Ca),Frateuriaaurantia(R1),andStenotrophomonasmaltophilia(CIIb).Thestrains weredifferentiatedbycolonymorphologyafter24hofincubationinthreedifferentsolid stateculturemedia(glucose-nutritiveagar,523mediumandyeastextract-mannitolagar), sensitivitytoapanelof28antibiotics(expressedaccordingtotheformationofinhibition halosofbacterialgrowthinthepresenceofantibiotics),andPCR-RFLPprofilesofthe16S rDNAgeneproducedusingninerestrictionenzymes.Itwaspossibletodifferentiateallnine strainsofrhizobacteriausingtheirmorphologicalcharacteristicsandsensitivityto antibi-otics.ThemolecularanalysisallowedustoseparatethestrainsCIIb,FL2andR1fromthe strainsbelongingtothegeneraBacillusandPseudomonas.Byusingthesethreemethods concomitantly,wewereabletodeterminestrainpurityandperformtheauthentication.

©2016PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Free-livingbacteria orbacteria associatedwith roottissues prevail in the plant rhizosphere.1 Plant growth-promoting rhizobacteria(PGPR),the beneficgroupofthese microorgan-isms,areaclassofnon-pathogenicsoilmicroorganisms.2–4

Correspondingauthor.

E-mail:aalfenas@ufv.br(A.C.Alfenas).

Rhizobacteria are natural inhabitants ofsoil that are able tocolonizetherootsystemsofplants,therebycontributing several important characteristics. For example, enhanced growthcanoccurdirectlythroughtheproductionofgrowth promoters,oritcanbeinhibitedbytheactionofpathogenic microorganisms.5

http://dx.doi.org/10.1016/j.bjm.2016.07.013

1517-8382/©2016PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

PGPRbacteriamaydirectlyinfluenceplantgrowthbyeither synthesizing plant hormones, such as indol-3-acetic acid (IAA),6,7 or favoring the uptake of nutrients from the soil

through different mechanisms, such as nitrogen fixation,8

phosphorusandpotassiumsolubilization9andthesynthesis

ofsiderophoresforironsequestration.10PGPRcanalso

indi-rectlyaffectplantsthroughantagonismbetweenthebacteria andsoil-bornepathogens11 andbyinducingsystemic

resis-tanceinplantsagainstbothrootandfoliarpathogens. Many studies have explored the biocontrol capacity of theseorganisms.Additionally,theirabilitytoproduce antibi-oticsmakesthematargetforthebiologicalcontrolofplant diseases.StrainsofrhizobacteriaisolatedfromEucalyptusspp. have been shown to promote rooting through anincrease inrootbiomassandgrowth ofeucalyptuscuttings12,13 and

the reduction of Cylindrocladium cutting rot, rust infection (PucciniapsidiiWinter)inthenursery,14,15 andbacterialwilt

(Ralstoniasolanacearum).16Basedontheresults,abioproduct

namedRizolyptus®17formulatedwithselectedrhizobacterial

strainshas beenused ineucalyptuscuttingnurseries. The Rizolyptus® isan inoculant basedon onlyone

rhizobacte-riastraininaliquidformulation.However,itisessentialto know the intrinsiccharacteristics ofeach selected growth-promotingrhizobacteriastrainpriortomasspropagationto ensuretheproduct’squality.

Bacterialcharacterizationiscurrentlybasedon biochemi-caltests,antibioticsensitivity,microscopicobservationsand molecular analysis. Restriction fragment length polymor-phism (RFLP) analysisofthe ribosomalDNA region (rDNA) associatedwithpolymerasechainreaction(PCR)isan appro-priateandinexpensivemolecularmethod.1,2,18–20Thus,inthe

present work,wecharacterizedtheRizolyptus® production

fromninerhizobacterialstrainsbasedontheirmorphology, antibioticsensitivity,andPCR-RFLPprofiles.Thefindingsand methodspresentedinthisstudyrepresentimportanttoolsto ensurethepurity,qualityandauthenticationofstrainsinthe finalproductRizolyptus®forcommercialization.

Material

and

methods

Rhizobacteriumstrains

Ninestrains ofrhizobacteriaisolated from eucalyptusthat werepreviouslyselectedfortheircapacitytopromoterooting

andthegrowthofeucalyptuscuttings14werecharacterized.

Thestrainswereidentifiedandcodedasfollows:S1,S2and 3918(Bacillus subtilis Cobn); Ca(Pseudomonasfulva Lizuga & Komagata);CIIb(StenotrophomonasmaltophiliaHugh,Palleroni &Bradbury);R1(FrateuriaaurantiaSwingsetal.);MF2(P.putida

Migula);andFL2andMF4(Pseudomonassp.Migula).The molec-ular identification, based on homology (>98%) of the 16S rDNAwasperformedaspreviouslydescribed.21Thecultures

of rhizobacteriaare stored inthe Forest Pathology Labora-tory/Bioagro ofthe Universidade Federal de Vic¸osa, Minas Gerais,Brazil.

Morphologicalcharacterization

The strains were grown on 523 medium,22 yeast

extract-mannitolagar(YMA)23andglucose-nutritiveagar(ANG)24for

24hat28◦Candwerecharacterizedaccordingtotheircolony shape,elevation,edgetype(Fig.1),consistency(i.e.,mucosus, fluidormycelial),aspectofthecolonysurface(i.e.,smoothor rough),brightness(i.e.,bright,translucentoropaque),color, size(i.e.,<1mm,1–2mm,2–3mmor>3mm),andgrowthspeed (i.e., veryfast: visibletothe nakedeyeafterless than 24h ofincubation;fast:visiblewithin24–48h;intermediate: vis-iblewithin24–48h;slow:visiblewithin36–96h;orveryslow: visibleonlyafter96h).

Antibioticsensitivity

Strain sensitivity to 28 antibiotics was assessedusing the standard antibiogram method.25 An inoculum sample of

0.1mLwasevenlyspreadinaPetridish(9cmdiameter) con-taining523 medium,and fourWhatman® No.1filterpaper

disks(Ø=0.7cm)thatwerepreviouslysoakedintheantibiotics tobetestedweredistributedoverthemedium.Acompletely randomdesigncontainingthreereplicatesperantibioticwas used.Aftera48-hincubation,thepresenceorabsenceofan inhibitionhalowasobserved.

Molecularcharacterization

GenomicDNAfromtherhizobacterialstrains26wasamplified

byaPCRreactionconsistingof10–20ngDNA,2mMMgCl2,

50mMKCl,10mMTris–HCl(pH8.3),0.1mMofeach deoxynu-cleotide(dATP,dTTP,dCTPanddGTP)(Invitrogen),0.1␮Mof

Tala Rhizoid Irregular Convex-high Colonies Shape Elevation Edges

Central protusion Umbilical

Dented Filamentous Curly Flat Spreaded Convex

Filamentous Circular

Pointed

Waved

Complete Lobed

Fig.1–Patternsusedforthemorphologicalcharacterizationofrhizobacterialstrainsbasedontheircolonyshape,elevation andedgetype.

(3)

brazilian journal of microbiology47(2016)973–979

975

eacholigonucleotide, 1unitofTaqpolymerase(Phoneutria) enzymeandsterilewater(MilliQ)toreachthefinalvolumeof 50␮L.ThespecificoligonucleotidesP1(5-AGAGTTTGATCC TGGCTCAG-3)andP2(5-AAGGAGGTGATCCAGCCG CA-3)27wereusedtoamplifyafragmentofapproximately1.6kb fromthebacterial16SrDNA16Sregion.Theamplificationwas performedinaMastercycler®thermocycler(Eppendorf)under

thefollowingconditions:94◦Cfor3min,then35cycles com-prising1minat94◦C,30sat60◦Cand1minand30sat72◦C, andafinalextensionat72◦Cfor7min.Subsequently,15␮Lof theamplifiedproductwascleavedseparatelywiththeEcoRI, RsaI,Sau3AI,SphI,MspI,BamHI,DdeI,TaqIandHinfIrestriction enzymes.Avolumeof1␮Lofrestrictionenzymein3␮Lof 10×bufferwasaddedtotheamplifiedproductandincubated underthespecifictimeand temperatureconditions recom-mendedforeachenzymebythemanufacturer(Promega).The cleavedfragmentswereseparatedinanagarosegel(1.2%)and photodocumented.

Results

Morphologicalcharacterization

Themorphologicalcharacterizationvariedaccordingtothe culturemedium(523,YMA,or ANG)and therhizobacterial strainassessed.Thecolonycolorin523mediumallowedfor thedifferentiationofeightoftheninestrainstested,whereas thecolonyelevationinANGmediumallowedforthe differ-entiationofsixstrains (Table1).Allofthestrainscould be differentiatedon 523mediumwhenthesetwo characteris-ticswerecombined.Consistency,surface,andgrowthspeed provided minor contributions to the differentiation of the assessedrhizobacterialstrains(Table1).

TheR1strainwasdifferentiatedfromtheothersbyitsfast growth(within24h)followingincubationinallthreegrowth media(Table1).ColoniesoftheCIIbisolatedifferedfromthe othersbasedontheirpointedshapeandcolonysizeofless than1mminthethreemediatested.AlthoughtheS1,S2and 3918strainsbelongtoB.subtilis,theywereindividually differ-entiatedbytheircolorin523mediumandbytheiredgeshape inANGandYMAmedia(Table1).Thesestrainswereseparated fromtheothersbytheirbrightnessinANGandYMAmedia andbytheirsurfacecharacteristicsinYMAmedium.TheCa, FL2,MF2andMF4strainsweredifferentiated fromthe oth-ersbycolonycolor.Additionally,FL2wastheonlystrainthat showedatranslucentbrightnessinthethreeculturemedia evaluated(Table1).

Antibioticsensitivity

Pefloxacinwastheonlyantibiotictestedthatinhibitedallof therhizobacterialstrains(Table2).Alloftheremaining antibi-oticsinhibitedatleastonestrain.TheS2andR1strainswere themostsensitivetotheantibioticstestedandwereresistant toonlytwo(penicillinandcephalexin)andthree(oxacillin, rifampicin,andaztreonam)antibiotics,respectively.In con-trast,FL2 wasthe leastsensitive,withonlyfive antibiotics (pefloxacin,pipemidic acid,streptomycin, tetracycline, and sulfonamide)inhibitingitsgrowth.TheMF2andFL2strains

wereeasilyseparatedfromeachotherandtheotherstrains using a single antibiotic (e.g., sulfonamide and amikacin, respectively). A minimumof twoantibiotics were required to distinguish between the S1, CIIb, and MF4 strains (e.g., for the1st strain: ceftazidime and tetracycline; 2nd strain: streptomycinandneomycin;and3rdstrain:amoxycillinand rifampicin). Theother strains couldbedistinguished using atleastthreeantibioticssequentiallyintheculturemedium (e.g.,forS2:cephalexin,sulphazotrim,andstreptomycin;3918: ampicillin,sulfonamide,andneomycin;andCa:clindamycin, sulfonamide,andamikacin).

Molecularcharacterization

Theamplificationof16SrDNAgeneratedfragments approx-imately 1.6kb insizeforall strains.Thecleavageforthese fragmentswithrestrictionenzymesallowedusdifferentiate two groups ofstrains (Bacillus (3918,S1, and S2) and Pseu-domonas (MF2, MF4, and Ca)), from the remaining strains (Fig.2).However,itwasnotpossibletodistinguishstrainsfrom thesamegenus.Alloftheotherstrainscouldbe differenti-atedfromeachotherusingatleastonerestrictionenzyme. CIIbwasthemostuniqueamongthetestedstrains,withsix oftheninetestedenzymesresultinginrestrictionprofilesthat allowedforitsseparationfromtheotherstrains.AlthoughCa andFL2belongtothesamegenus,theywereeasily differenti-atedbycleavagewiththeSau3AI,MspI,DdeI,BamHI,andTaqI

enzymes.Theserhizobacteriabelongtodifferentspeciesof

Pseudomonas,whichmakestheiridentificationeasier;similar resultswere observedforStenotrophomonasmaltophilia(CIIb) and Frateuria aurantia(R1). TheMspIenzymeallowedusto discern morestrains, separatingBacillus (3918, S1,and S2),

Pseudomonas(MF2,MF4,andCa),FL2,R1,andCIIb.Incontrast, theuseofBamHIonlydifferentiatedFL2fromtheotherstrains. Theremainingenzymesallowedustoseparatethestrainsinto 3–5groups(Fig.2).

Discussion

The use of pre-selectedbacterial strains to induce rooting and growth of eucalyptus cutting requires authentication of the rhizobacteria employed in the formulated product (Rhizolyptus®) withoutmixture betweenthe strainsof

rhi-zobacteriaorcontamination.Inthisstudy,wecharacterized nine strains of rhizobacteria based on their morphology, antibioticsensitivity,andPCR-RFLPprofiles.

Allstrainsweredistinguishedbasedontheir morphologi-calcharacteristicsincultureandsensitivityto28antibiotics. Their morphologicalcharacteristics variedaccording tothe culturemediumandstrainused.Colorandcolonyelevation in523mediumwerethemostefficientmorphologicalfeatures for strain identification, allowing the differentiation of all rhizobacterialstrainsstudied.However,theuseofthese char-acteristicsdemandedexpertiseandskilltodistinguishsubtle differencesamongthestraincolonies.Specialcarewasalso requiredtorecognizeintermediateshapesthatmayhamper the accuracyoftheidentification.Therefore, adding antibi-oticstotheculturemediumcouldaidintheidentificationof bacterialstrains.Forexample,theantibioticsensitivityprofile

(4)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 973–979

Table1–Morphologicalcharacterizationofrhizobacterialstrainsassessedafter24hofincubationinsolidstateglucose-nutritiveagar(ANG),523mediumandyeast

extract-mannitolagar(YMA).

Medium Strain Morphologicalcharacteristics

Elevation Shape Edges Color Brightness Growth Size Consistency Surface

ANG S1 Spread Circular Complete LightBeige Opaque Veryfast 1–2mm Mucosus Smooth

S2 Spread Irregular Dented Beige Opaque Veryfast 1–2mm Mucosus Rough

3918 Flat Irregular Waved LightBeige Opaque Veryfast 2–3mm Dried Rough

Ca Convex–low Irregular Complete LightBeige Bright Veryfast 1–2mm Mucosus Smooth

CIIb Convex–high Pointed Complete LightBeige Bright Veryfast <1mm Mucosus Smooth

R1 Flat Pointed Complete LightBeige Bright Fast 1–2mm Mucosus Smooth

FL2 Flat Circular Complete Yellow-orange Translucent Veryfast >3mm Mucosus Smooth

MF2 Umbilical Circular Complete DarkBeige Bright Veryfast 1–2mm Mucosus Smooth

MF4 Centralprotrusion Circular Complete Beige-yellow Bright Veryfast 1–2mm Mucosus Smooth

523 S1 Convex–low Circular Complete Beige Bright Veryfast >3mm Mucosus Rough

S2 Convex–low Circular Complete LightBeige Bright Veryfast >3mm Fluid Smooth

3918 Umbilical Circular Complete White-ice Bright Veryfast >3mm Fluid Rough

Ca Umbilical Circular Waved Beige-green Bright Veryfast >3mm Mucosus Smooth

CIIb Convex–medium Pointed Complete White Bright Veryfast <1mm Mucosus Smooth

R1 Flat Circular Dented Beige Bright Fast 1–2mm Mucosus Smooth

FL2 Flat Circular Complete Green-fluorescent Translucent Veryfast >3mm Mucosus Smooth

MF2 Convex–low Circular Complete Yellow-green Bright Veryfast 1–2mm Mucosus Smooth

MF4 Umbilical Circular Complete Beige-yellow Bright Veryfast 2–3mm Mucosus Smooth

YMA S1 Flat Circular Lobed White Opaque Veryfast >3mm Dried Rough

S2 Flat Irregular Dented Beige Opaque Veryfast >3mm Dried Rough

3918 Flat Irregular Waved White Opaque Veryfast >3mm Dried Rough

Ca Flat Irregular Complete Beige-yellow Bright Veryfast >3mm Mucosus Smooth

CIIb Convex–high Pointed Complete White Bright Veryfast <1mm Mucosus Smooth

R1 Flat Pointed Complete LightBeige Bright Fast 1–2mm Mucosus Smooth

FL2 Flat Circular Complete Yellow-orange Translucent Veryfast 2–3mm Mucosus Smooth

MF2 Centralprotrusion Circular Complete Beige Bright Veryfast 1–2mm Mucosus Smooth

(5)

brazilian journal of microbiology47(2016)973–979

977

Table2–Rhizobacterialstrainsensitivityexpressedaccordingtotheformationofinhibitionhalosofbacterialgrowthin thepresenceofantibiotics.

Antibiotic Rhizobacterialstrains

Commercialname Concentration S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4

Pefloxacin 5mcg + + + + + + + + +

PenicillinG 10U − − − − − + − − −

Amikacin 30␮g + + + + + + − + +

Amoxycillin+clavulanicacid 30mcg + + + + + + − + +

Cefepime 30␮g + + + + + + − + + Cefotaxime 30mcg + + + + + + − + + Norfloxacin 10␮g + + + + + + − + + Sulphazotrim 25␮g + + + − + + − − − Clindamycin 2␮g + + + − + + − − − Vancomycin 30mcg + + + − + + − − − Oxacillin 1␮g + + + − − − − − − Rifampicin 5␮g − + − − + − − + + Tobramycin 10␮g − + − + − + − + + Aztreonam 30␮g − + + − − − − + + Cefalotin 30␮g − + + − − + − − − Ceftazidime 30␮g − + + + + + − + + Cephalexin 30mcg + − + + − + − − − Ampicillin 10␮g + + − + + + − − − Chloramphenicol 30␮g + + − + + + − − − Erythromycin 15␮g + + − − − + − − − Nitrofurantoin 300␮g + + − − − + − + − Amoxycillin 10␮g + + − + + + − + − Pipemidicacid 20mcg + + − + + + + − + Streptomycin 10mcg + + + + − + + − + Neomycin 30mcg + + + + − + − + − Tetracycline 30␮g − + − + + + + − +

Ticarcillin+clavulanicacid 85mcg + + + + + + − − +

Sulfonamide 300␮g + + + + + + + − +

Absenceofinhibitionhalo(−). Presenceofinhibitionhalo(+).

andtriagebyPCRofthetoxinshowedthatBacilluspumiluswas thepredominantspeciesintheseashoreareaaroundCochin, India.28 Inadditiontohelptherhizobacterialidentification,

the supplementation of the culture medium used to pro-ducetheinoculantswithantibioticsavoidedcontamination orstrainmisusebecauseitallowedonlyantibiotic-resistant straingrowth.Forexample,theP.putida(MF2)straincouldbe differentiatedbytheuseofsulfonamidetoensurestrainpurity becausethisantibioticinhibitedalloftheotherrhizobacterial strainstested.Similarly,amikacin,amoxycillinandclavulanic acid,cefepime,cefotaxime,andnorfloxacindidnotaffectthe growthoftheFL2isolate.

Recently, molecular techniques have been broadly employed in taxonomy and biodiversity studies of bacteria.1,19,20,29–32 The PCR-RFLP analysis results may

vary among genera and species along with the 16S rRNA and 23S rRNA sequences.1,32 Weused the 16S gene inthe

PCR-RFLP technique for the molecular characterization of rhizobacterialstrainsbecauseityieldsconsistentresultsand isaneasytouse,reliable,andsensitivemethod.Theresults from the molecular analysis in this study were similar to thefindingsofotherauthors.19,31–34 Thecleavageofpartial

sequencesofthe16S regionoftheribosomalDNA allowed fordifferentiationofthegenusBacillus(3918,S1,andS2)and

Pseudomonas(MF2,MF4,andCa)fromotherstrains(CIIb,R1,

and FL2).However,theobservedrestrictionprofilesdidnot differamongstrainsS1,S2,and3918(thespeciesofB.subtilis)

or amongMF2, MF4, and Ca (the species of Pseudomonas),

most likely because the 16S region of the ribosomal DNA ofthese specieswashighly conserved.Tassaand Duarte20

were also not successful in separating Pectobacterium caro-tovorumsubsp.brasiliensis,P.carotovorumsubsp.carotovorum,

and the other pectobacteria available in GenBank due to the lowspecificitypresentedbythe enzymaticdigestionof the amplified recA gene. However, cleavage with the HhaI

and TasI enzymes allowed for the separation of 13 differ-ent groups and the discrimination ofP.carotovorum subsp.

brasiliensis.

ThesamemolecularmethodcouldbeusedtoseparateB. subtilisfrom thePseudomonasstrains, butit requires ampli-ficationoftheITSrDNAregions.Becausemutationsinthis regionaremorefrequentthanintheribosomalgenes,which areveryusefulforintraspecificseparation.29,35Theintergenic

space(ITS)regionhasbeenusedtodifferentiateindividuals, includinggeneticallyrelatedspecies.29,30,35Forexample, Xan-thomonasaxonopodispv.citriTypeAcanbedifferentiatedfrom

X.axonopodispv.aurantifoliiTypesBandCandX.axonopodispv.

citrumelaTypeEbyamplifyingtheITSregionbetweenthe16S and23Sregions,followedbyposteriorcleavagewiththeDdeI, AluI,andSau3AIrestrictionenzymes.30

(6)

M S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 M S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 M S1 S2 3918 CaCIIb R1 FL2 MF2 MF4

M’ S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 M S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 M S1 S2 3918 Ca CIIbR1 FL2 MF2 MF4

M S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 M S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 M S1 S2 3918 Ca CIIb R1 FL2 MF2 MF4 12 000 5000 2000 1650 1000 850 650 500 400 300 200 100 12 000 5000 2000 1650 1000 850 650 500 400 300 200 12 216 3054 2036 1636 1018 506 396 bp

G

H

A

B

C

D

E

F

I

Fig.2–Restrictionprofileofamplifiedfragmentsofthe16SregionfromtherDNAofninerhizobacterialstrains.The fragmentswerecleavedwiththefollowingrestrictionenzymes:(A)EcoRI,(B)RsaI,(C)Sau3AI,(D)SphI,(E)MspI,(F)BamHI,(G)

DdeI,(H)HinfI,(I)TaqI,and(M)restrictionenzyme–1kbPlusDNALadder.

Conclusions

Morphologicalcharacterizationofthecolonies,assessmentof antibioticsensitivity,and PCR-RFLPanalysiscanbeusedto separatetheninestrainsofrhizobacteriatested.

Theconcomitant useofthe threemethodspresentedin thisworkreducesthelikelihoodofacontaminantbeing mul-tipliedwiththeselectedrhizobacteriastrain.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisresearchwassupportedbyCNPq,FAPEMIGandCAPES.

r

e

f

e

r

e

n

c

e

s

1.CarlottiA,FunkeG.RapiddistinctionofBrevibacterium

speciesbyrestrictionanalysisofrDNAgeneratedby

polymerasechainreaction.SystApplMicrobiol.

1994;17:380–386.

2.DavisonJ.Plantbeneficialbacteria.BioTechniques.

(7)

brazilian journal of microbiology47(2016)973–979

979

3.KloepperJW,LifshitzR,ZablotowiczRM.Free-livingbacterial

inoculaforenhancingcropproductivity.TrendsBiotechnol.

1989;7:39–43.

4.KloepperJW,SchrothMN.Plantgrowth-promoting

rhizobacteriaonradishesplantgrowthpromoting

rhizobacteriaonradishes.In:Proc.4thInt.Conf.PlantPath.

Bact.,Angers.1978:879–882.

5.GlickBR.Theenhancementofplantgrowthbyfree-living

bacteria.CanJMicrobiol.1995;41:109–117.

6.AshrafMA,AsifM,ZaheerA,MalikA,AliQ,RasoolM.Plant

growthpromotingrhizobacteriaandsustainableagriculture:

areview.AfrJMicrobiolRes.2013;7:704–709.

7.SallaTD,SilvaTR,AstaritaLV,SantarémER.Streptomyces

rhizobacteriamodulatethesecondarymetabolismof

Eucalyptusplants.PlantPhysiolBiochem.2014;85:14–20.

8.PelzerGQ,Halfeld-VieiraBA,NechetKL,SouzaGR,ZilliJE,

PerinL.Mecanismosdecontroledamurcha-de-esclerócioe

promoc¸ãodecrescimentoemtomateiromediadospor

rizobactérias.TropPlantPathol.2011;36:95–103.

9.LiuF,XingS,MaH,DuZ,MaB.Plantgrowth-promoting

rhizobacteriaaffectthegrowthandnutrientuptakeof

Fraxinusamericanacontainerseedlings.ApplMicrobiol Biotechnol.2013;97:4617–4625.

10.AdesemoyeAO,TorbertHA,KloepperJW.Plant

growth-promotingrhizobacteriaallowreducedapplication

ratesofchemicalfertilizers.MicrobEcol.2009;584:921–929.

11.PalKK,TilakKVB,SaxenaAK,DeyR,SinghS.Suppressionof

maizerootdiseasecausedbyMacrophominaphaseolina,

FusariummoniliformeandFusariumgraminearumbyplant

growth-promotingrhizobacteria.MicrobiolRes.

2001;156:209–223.

12.MafiaRG,AlfenasAC,MaffiaLA,FerreiraEM,SiqueiraL.

Efeitoderizobactériassobreoenraizamentoecrescimento

declonesdeeucaliptoemdiferentescondic¸õesde

propagac¸ãoclonal.RevÁrvore.2007;31:813–821.

13.MafiaRG,AlfenasAC,FerreiraEM,TeixeiraDA,ZauzaEÂV.

Induc¸ãodoenraizamentoecrescimentodoeucaliptopor

rizobactérias:efeitodaadic¸ãodefontealimentareda

composic¸ãodosubstratodeenraizamento.RevÁrvore.

2007;31:589–597.

14.MafiaRG,AlfenasAC,MaffiaLA,FerreiraEM,BinotiDHB,

MafiaGMV.Plantgrowthpromotingrhizobacteriaasagents

inthebiocontrolofeucalyptusmini-cuttingrot.TropPlant

Pathol.2009;34:10–17.

15.TeixeiraDA,AlfenasAC,MafiaRG,MaffiaLA,FerreiraEM.

Evidênciasdeinduc¸ãoderesistênciasistêmicaàferrugem

doeucaliptomediadaporrizobactériaspromotorasdo

crescimentodeplantas.FitopatolBras.2005;30:350–356.

16.SantiagoTR,GrabowskiC,RossatoM,RomeiroRS,Mizubuti

ESG.Biologicalcontrolofeucalyptusbacterialwiltwith

rhizobacteria.BiolControl.2015;80:14–22.

17.AlfenasAC,ZauzaEAV,MafiaRG,AssisTFD.Clonageme

doenc¸asdoeucalipto.2aEd.Vic¸osa,Brasil:EditoraUFV;2009.

18.RamezanpourMR,PopovY,KhavaziK,RahmaniAH.

Moleculargenosystematicandphysiologicalcharacteristics

offluorescentpseudomonadsisolatedfromtherice

rhizosphereofIranianpaddyfields.AfrJAgricRes.

2011;6:145–151.

19.ShahSA,RomickTL.SubspeciesdifferentiationofSalmonella

byPCR-RFLPoftheribosomaloperonusinguniversal

primers.LettApplMicrobiol.1997;25:4–57.

20.TassaSOM,DuarteV.Identificac¸ãodePectobacterium

carotovorumsubspbrasiliensisatravésdePCR-RFLPdoGene

recA.FitopatolBras.2006;31:23–28.

21.TeixeiraDA,AlfenasAC,MafiaRG,etal.Rhizobacterial

promotionofeucalyptrootingandgrowth.BrazJMicrobiol.

2007;38:1–6.

22.KadoEI,HeskettMG.Selectivemediaforisolationof

Agrobacterium,Corynebacterium,Erwinia,Pseudomonasand

Xanthomonas.Phytopathology.1970;60:969–976.

23.BrennerDJ,GarrityGM,KriegNR,StaleyT.Bergey’sManualof

SystematicBacteriology.2aEd.EastLansing,USA:Michigan

StateUniversity;2005.

24.MarianoRLR.Manualdepráticasemfitobacteriologia.

Pernambuco,Brasil:EditoraUniversitáriaUFPE;2000.

25.RomeiroRS.MétodosemBacteriologiadePlantas.Vic¸osa,MG,

Brasil:EditoraUFV;2001.

26.GravesLM,SwaminathanM.UniversalbacteriaDNA

isolationprocedure.In:PersingDH,SmithTF,TenoverFC,

WhiteBE,eds.DiagnosticMolecularMicrobiology:Principlesand

Application.Washington:AmericanSocietyforMicrobiology; 1993:325–328.

27.WhiteTJ,BrunsT,LeeS,TaylorJW.Amplificationanddirect

sequencingoffungalribosomalRNAgenesfor

phylogenetics.In:InnisMA,GelfandDH,SninskyJJ,WhiteTJ,

eds.PCRProtocols:AGuidetoMethodsandApplications.Vol119.

NewYork:AcademicPress;1990:315–322.

28.ParvathiA,KrishnaK,JoseJ,JosephN,NairS.Biochemical

andmolecularcharacterizationofBacilluspumilusisolated

fromcoastalenvironmentinCochin,India.BrazJMicrobiol.

2009;40:269–275.

29.BaudoinE,CouillerotO,SpaepenS,Moënne-LoccozY,

NazaretS.Applicabilityofthe16S–23SrDNAinternalspacer

forPCRdetectionofthephytostimulatoryPGPRinoculants

AzospirillumlipoferumCRT1infieldsoil.JApplMicrobiol.

2009:1–14.

30.DestéfanoSAL,RodriguesNetoJ.Rapiddifferentiationof

Xanthomonasstrainscausingdiseaseincitrusplantsby

PCR-RFLPofthe16S-23SrDNAspacerregion.Summa

Phytopathol.2002;8:167–172.

31.GibottiA,TanakaTL,OliveiraVR,TaddeiCR,MartinezMB.

MolecularcharacterizationofenteroinvasiveEscherichiacoli

ipagenesbyPCR-RFLPanalysis.BrazJMicrobiol.

2004;35:74–80.

32.SikoraS,RedzepovicS.Genotypiccharacterizationof

indigenoussoybeanrhizobiabyPCR-RFLPof16SrDNA,

rep-PCRandRAPDanalysis.FoodTechnolBiotechnol.

2003;41:61–67.

33.RuizA,PobletM,MasA,GuillamónJM.Identificationof

aceticacidbacteriabyRFLPofPCR-amplified16SrDNAand

16S-23SrDNAintergenicspacer.IntJSystEvolMicrobial.

2000;50:1981–1987.

34.UpadhyaySK,SinghDP,SaikiaR.Geneticdiversityofplant

growthpromotingrhizobacteriaisolatedfromrhizospheric

soilofwheatundersalinecondition.CurrMicrobiol.

2009;59:489–496.

35.BrookmanJL,MennimG,TrinciAPJ,TheodorouMK,

TuckwellDS.Identificationandcharacterizationofanaerobic

gutfungiusingmolecularmethodologiesbasedon

ribosomalITS1and18SrRNA.Microbiology.2000;146:

393–403.

36.CoonHJ,JennisonMW,WeekOB.Routinetestsforthe

identificationofbacteria.In:SocietyofAmerican

Bacteriologists,ed.ManualofMicrobiologicalMethods.New

Referências

Documentos relacionados

Os lotes de VEÍCULOS LEILOADOS NA CONDIÇÃO DE CONSERVADO (com direito a documentação), que poderão voltar a circular em vias públicas e terão todos os

Ela está em um futuro que acontecerá como diferente do passado (HARTOG, 1996, pp. Noutros termos, um período da história vista como processo, em que a humanidade

Os membros do Colegiado do Curso de Bacharelado em Letras e do Núcleo Docente Estruturante do Curso de Bacharelado em Letras – Redação e Revisão de Textos

Dessa forma, o candidato que se retirar do local de provas antes do decurso dos últimos 30 (trinta) minutos anteriores ao horário previsto para o seu término e que, conforme

Individual Os resultados sugerem que a diminuição do comer compulsivo, da purgação e da compulsão alimentar na semana 6 é preditor da resposta ao tratamento no follow-up tanto face

Doutor em Ciência do Direito pela Universidade de Bielefeld – Alemanha, em Filosofia pelo Instituto de Filosofia e Ciências Sociais da Universidade Federal do Rio de

Na Técnica de ordenaçã topológica tem-se como resultado uma ordenação linear dos Na Técnica de ordenaçã topológica tem-se como resultado uma ordenação linear

Satembro Outubro ITovembro Dezembro