• Nenhum resultado encontrado

Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose

N/A
N/A
Protected

Academic year: 2021

Share "Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose"

Copied!
6
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Efficient

production

of

pullulan

by

Aureobasidium

pullulans

grown

on

mixtures

of

potato

starch

hydrolysate

and

sucrose

Chao

An

1

,

Sai-jian

Ma

1

,

Fan

Chang,

Wen-jiao

Xue

MicrobiologyInstituteofShaanxi,Xi’an,PRChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1June2015 Accepted16August2016

Availableonline19November2016 AssociateEditor:GiseleMonteirode Souza

Keywords:

Mixedsugar

Aureobasidiumpullulans

Pullulan

Potatostarchhydrolysate Batchkinetics

a

b

s

t

r

a

c

t

Pullulanisanaturalexopolysaccharidewithmanyusefulcharacteristics.However, pullu-lanismorecostlythanotherexopolysaccharides,whichlimitsitseffectiveapplication.The purposeofthisstudywastoadoptanovelmixed-sugarstrategyformaximizingpullulan production,mainlyusingpotatostarchhydrolysateasalow-costsubstrateforliquid-state fermentationbyAureobasidiumpullulans.Basedonfermentationkineticsevaluationof pullu-lanproductionbyA.pullulans201253,thepullulanproductionrateofA.pullulanswith mix-turesofpotatostarchhydrolysateandsucrose(potatostarchhydrolysate:sucrose=80:20) was0.212h−1,whichwassignificantlyhigherthanthoseofpotatostarchhydrolysatealone (0.146h−1)andmixturesofpotatostarchhydrolysate,glucose,andfructose(potatostarch hydrolysate:glucose:fructose=80:10:10,0.166h−1)with 100gL−1 totalcarbon source.The

resultssuggest thatmixtures ofpotato starchhydrolysate and sucrosecould promote pullulansynthesisandpossiblythatasmallamountofsucrosestimulated theenzyme responsibleforpullulansynthesisandpromotedeffectivepotatostarchhydrolysate conver-sioneffectively.Thus,mixedsugarsinpotatostarchhydrolysateandsucrosefermentation mightbeapromisingalternativefortheeconomicalproductionofpullulan.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Pullulanisanextracellularwater-soluble homo-polysaccha-ridecomposedoflinearmaltotriose-unitsinterconnectedvia ␣-1,6-glycosidiclinkages.Theselinkagesendowpullulanwith structuralflexibilityandhighaqueoussolubility.1,2Pullulanis

Correspondingauthorat:ShaanxiInstituteofMicrobiology,No.76XiyingRd,Xi’an,ShaanxiProvince710043,PRChina.

E-mail:x-wenjiao@163.com(W.Xue).

1 ChaoAnandSai-jianMacontributedequallytothiswork.

usuallybiosynthesizedbystrainsoftheyeast-like polymor-phicfungusAureobasidiumpullulans.3–5Becauseofitsstrictly

linearstructure,pullulanhasbeenusedinapplicationssuch asbloodplasmasubstitutesandasanadditiveforfood, adhe-sives,andcosmetics.1,6Despitetheseapplications,pullulanis

morecostly($25kg−1)thanotherexopolysaccharides,which isamajorlimitingfactorforitseffectiveapplication.7

http://dx.doi.org/10.1016/j.bjm.2016.11.001

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Aprimarystrategytosolvetheproblemofhighproduction costsistosearchforcheapcarbonandnitrogensources,which arenutritionallyrichenoughtosupportgrowthofthe microor-ganismandtheproductionofpullulan.8Leathersconcluded

thatanagriculturalwasteproduct,maizeresidue,canbeused asacarbon sourceforpullulanproductionbyA.pullulans.1

Otherwaste productsfromthe agricultureandfood indus-tries, such as deproteinized whey, cassava starch residue, beetmolasses,sugarcanejuice,andsweetpotatoandpeat hydrolysates,havealsobeenconsideredaseconomical sub-stratesforpullulanproduction.8,9

Potato, acheap and availableagricultural product, con-tainsalargeamountofstarch,whichisasuitablefeedstock forindustrial fermentation. Potato isalso a major crop in ShaanxiProvinceofChina.However,lowproductivityof pul-lulan fermentationusing potatostarch as asubstrate is a drawback that has not yet been solved.10 Available data

showthatboththeamount ofexopolysaccharideproduced andtherateofcarbohydratesourceconsumptionareclearly influenced by the particular carbohydrate used, and Duan proposed thathigh pullulan yieldis relatedto high activi-tiesof␣-phosphoglucosemutase,UDPG-pyrophosphorylase, and glucosyltransferase in A. pullulans Y68 grown on dif-ferentsugars.11Basedontheseconsiderations,mixed-sugar

fermentation might be an efficient fermentation strategy thatleadstohigh productivitybyprovidingmorethan one substrate.

In our previous research, sucrose was demonstrated to besuperiortoothersugars,basedon pullulanyield,and a mixtureofsucroseandpotatostarchhydrolysate(PSH)was foundtosignificantlyenhancethepullulanformationrateof

A. pullulans201253 whenusing acarbon source inaflask.

Finally,basedonfermentationkineticsevaluationfor pullu-lanformationbyA.pullulans201253,themodelparameters associatedwithpolysaccharideformation(m,n,and(dP/dt)/X) andsubstrateconsumption˛,ˇand(dS/dt)/Xwereassayedto elaboratethefermentationkineticprocessesusingamixture ofpotatostarchhydrolysateandsucrose.

Material

and

methods

Microorganismandculture

A.pullulans201253wasobtainedfromtheAmericanType

Cul-tureCollection(Rockville,MD,USA)andwasmaintainedat 4◦Con potatodextroseagar (PDA)slants andsub-cultured every 2weeks. For long-term storage,cultures were main-tained at −80◦C in a 20% glycerol solution. For inoculum

preparation, A. pullulans was grown at 28◦C for 48h in a medium containing 50g glucose, 2.5g yeast extract, 0.6g (NH4)2SO4,1gNaCl,5gK2HPO4,and0.2gMgSO4·7H2Operliter

ofdeionized water,ataninitialpHof6.5withagitation at 230rpm.

Basic fermentation medium consisted of 50g of car-bon source, 2.5g yeast extract, 0.6g (NH4)2SO4, 1g NaCl,

5gK2HPO4, and 0.2g MgSO4·7H2O per liter of deionized

water,12ataninitialpHof6.5withagitationat230rpm.To

evaluatetheeffectsofmixedcarbonsourcesonpullulan pro-duction,thecarbonsourcewasvariedinthisstudy.

Preparationofpotatostarchhydrolysate

Potatostarch waspurchased from alocalagricultural mar-ket.ThepHofaslurryofpotatostarchataconcentrationof 40%(w/v)wasadjustedtopH6.5andinstantlyheatedto70◦C within3mininthepresenceof0.1%␣-amylase.After lique-faction,thetemperaturewasquicklyreducedto55◦Cwithin 1min,andthepHwasadjustedto5.0.Amyloglucosidasewas thenaddedataconcentrationof0.3%(w/w)andincubatedfor prolongedhydrolysis.Afterhydrolysis,thehydrolysateswere filtered.8

Analyticalmethods

Theculturewascentrifugedat10000×gfor10mintoremove themicroorganism.Thebiomass(myceliaandyeast-likecells) dryweight(BDW)wasdeterminedbywashingthesediment with distilledwaterand dryingat105◦Covernight.Fifteen millilitersofthesupernatantwastransferredintoatesttube, andthen30mLofcoldethanolwasaddedtothetesttubeand mixedthoroughly.Thesolutionwasthenheldat4◦Cfor12h toprecipitatetheexopolysaccharide,whichwasseparatedby centrifugationat8000×gfor10min.Theprecipitated mate-rial wasdriedat80◦C,and the finalweightdetermined as thatofexopolysaccharide.Thetotalconcentrationof reduc-ing sugarwasdeterminedbythedinitrosalicylicacid (DNS) method.13FTIRFouriertransforminfraredspectroscopy(FTIR)

spectra ofpullulan samples forcomposition analysiswere directlyacquiredusingtheSmart-iTRsetupwithoutfurther preparation.14

Batchfermentationofpullulanina10-Lbioreactor

Batch fermentation was carried out in a 10-L bioreactor (YanggeBioengineeringEquipmentCo.,Ltd,Shanghai,China) containing7.0Lfermentationmediumat28◦Cwithagitation of 500rpm. The inoculum volumewas 5.0%(v/v). Samples weretakenperiodicallytodeterminetheconcentrationof pul-lulan,biomass,andreducingsugar.

Determinationofparametersduringthefermentation process

Biomassformation

Thelogisticequation wasusedtofitthebiomasscurves.A commonautonomousrateequationisthedifferentialformof thelogisticequation:

dX dt =maxX



1− X Xmax



, (1)

wheremaxandXmaxaretheinitialspecificgrowthrateand

themaximumbiomassconcentration,respectively.The inte-gratedformusingX0=X(t=o)givesasigmoidalvariationX(t)

thatmayempiricallyrepresentbothanexponentialanda sta-tionaryphase:

X(t)= X0emaxt

1−(X0/Xmax)(1−emaxt).

(3)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Sp ecific growt h rate, µ (h -1) ,

Specific production rate,dP/dt/X,(h)

-1

Specific substrate consumption rate,dS/dt/X,(h)

-1

Specific growth rate Specific production rate

Specific substrate consumption rate

A B C D

Fig.1–Effectofcarbonsourceongrowthrate.(A)Sucrose; (B)PSH;(C)PSH:sucrose=80:20;(D)

PSH:glucose:fructose=80:10:10.

Productformation

Productformationisdescribed byLuedeking–Piretkinetics. Theproductformationratehasbeenshowntodependupon boththe instantaneous biomassconcentration, X, and the growthrate,dX/dt,inalinearmanner:

dP

dt =nX+m dX

dt, (3)

wheremandnareempiricalconstants(forgrowthand non-growth associated polysaccharide formation, respectively) thatmay varywith formationconditions.Integrationof(3)

using(2)givesanequationwithtwoinitialconcentrations(X0,

P0),afinalcondition(Xmax),andthreeparameters(,n,and

m): P(t)=P0+mX0



emaxt 1−(X0/Xmax)(1−emaxt)− 1



+nXmax max ln[1−(X0/Xmax)(1−emaxt)]. (4) Substrateconsumption

Thesubstratebalanceforpolysaccharideformationmaybe writtenasfollows(modificationofLuedekingandPiret):

dS dt =− 1 Yx/s dX dt − 1 YP/s dP dt −keX (5)

whereYx/sandYp/saretheyieldcoefficientsforthebiomass

andproduct,respectively,andkeisthespecificmaintenance rate(i.e.,thesubstrateusedtosupportcellactivityeveninthe absenceofgrowth).From(3)and(5):

dS dt =−˛

dX

dt −ˇX (6)

where˛ and ˇare constants forsubstrate consumptionat growthandnon-growthphases,respectively.Substituting(2) into(6)andintegrating,

S(t)=S0−˛



X0Xmaxemaxt Xmax−X0(1−emaxt)−X0



−ˇXmax max ln



1− X0 Xmax (1−emaxt)



. (7)

The 1stOpt (First Optimization, 7D-Soft High Technol-ogyInc.)softwarewasappliedtosolvingthe parametersof biomass formation,pullulan formation, and substrate con-sumption.OriginPro8softwarewasappliedtobuildthekinetic curves.

Results

and

discussion

Kineticsofbiomassformation

WecultivatedA.pullulansina10-Lstirred-tankbioreactoron sucrose, PSH, PSH:sucrose=80:20, and PSH:glucose:fructose =80:10:10.Samplesweretakenatdifferenttimeintervalsand analyzed.

Thelogistic equation wasused todescribethe biomass formation,and thecalculatedmodelparametersassociated withbiomass(Xmax,,andX0)aresummarizedinTable1and

representedinFig.1.

Table1–Kineticparametersforthefermentation.

Parameter Carbonsource

A B C D

Specificgrowthratem(h−1) 0.046 0.043 0.042 0.044

MaximumattainablebiomassXmax(gL−1) 13.12 15.72 14.5 14.73

CalculatedinitialbiomassX0(gL−1) 1.38 1.72 1.64 1.29

Growthassociatedconstantm(gproductg−1biomass) 6.37 3.405 5.054 3.779

Non-growthassociatedconstantn(gproductg−1biomassh) −0.154 −0.478 −0.291 −0.232

CalculatedinitialproductP0(gL−1) 0.809 1.473 0.857 1.816

Growthassociatedconstantforsubstrateconsumption˛(gsubstrateg−1biomass) 6.539 4.359 6.308 5.152 Non-growthassociatedconstantforsubstrateconsumptionˇ(gsubstrateg−1biomassh) 0.474 0.263 0.294 0.206

CalculatedinitialsubstrateS0(gL−1) 95.06 91.09 97.77 98.6

(4)

14

A

a

b

c

B

C

D

A

B

C

D

A

B

C

D

12 10 8 6 4 2 0 14 12 10 8 6 4 2 0 0 20 40 60 80 100 Time (h) Biomass (g.L –1) Pullulan (g.L –1) Residual sugar (g.L –1) 120 0 20 40 60 80 100 120 0 0 100 80 60 40 20 0 100 80 60 40 20 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 20 40 60 80 100 Time (h) 120 0 20 40 60 80 100 120 0 20 40 60 80 100 Time (h) 120 0 20 40 60 80 100 120

Fig.2–GrowthofA.pullulans201253withdifferentcarbon sources.(a)Comparisonofexperimentaldata()with simulationsusingthelogisticequation().(b)Comparison ofthesimulationusingtheLuedeking–Piretmodel()with theexperimentalpolysaccharideclonal().(c)Comparison

The value of Xmax showed a peak of 15.72gL−1 with

100gL−1PSH,whilethespecificgrowthrate,,showedapeak of0.046h−1with100gL−1sucrose.ThevalueofXmaxvaried

from 13.12gL−1 to15.72gL−1, andthe specificgrowth rate, , variedfrom 0.042h−1 to 0.046h−1 with different carbon sources(allataconcentrationof100gL−1)inthisstudy.Thus, weconcludedthatthetypeofcarbon sourcedoesnotlead toasignificantdifferenceinthebiomass.Theresultsmight beattributedtothepresenceofthesameamountsof nitro-gen sourceavailableforassimilationinthemediumduring differentcultivations.15 Accordingtotheresultsofprevious

studies,nitrogensourcelevelscouldshiftthepatternof car-boneffluxduringthefermentationofpullulanbyA.pullulans,

andpullulanproductiondecreasedbutbiomassaccumulation increasedasthelevelofnitrogensourceincreased.16,17

Kineticsofpullulanformation

Product formation is described byLuedeking–Piret kinetics andthecalculatedmodelparametersassociatedwith polysac-charideformation(m, n, P0, and(dP/dt)/X) arepresentedin

Table1andFig.2(a).

Variationsinthespecificproductionrate(dP/dt)/Xshowed a peak of 0.243h−1 with 100gL−1 sucrose as the carbon source.Theresultsalsoindicated thatthe specific produc-tion rate (dP/dt/X, h−1) on mixtures of PSH and sucrose (PSH:sucrose=80:20) was 0.212h−1, which was significantly higherthanthoseofPSH(0.146h−1)andmixturesofPSH, glu-cose,andfructose(PSH:glucose:fructose=80:10:10,0.166h−1) with100gL−1totalcarbonsource.

Thevaluesofmandn(Table1)indicatethatpolysaccharide formationbyanon-growth associatedmechanism ismuch lessimportantcomparedtothatbyagrowth-associated mech-anism,regardlessoftheinitialcarbonsource.Similarresults werereportedbyKlimek,Boa,andMulchandani.18–20

Fig. 2(b) also indicates that a mixed substrate of PSH andsucrosecanincreasetherateofpullulanformationand shortenthefermentationperiod.Thehighestyieldofpullulan was110hwhenPSHwasusedasasolecarbonsource; how-ever,toachievethesameyield,sucrose,PSH:sucrose=80:20, andPSH:glucose:frutcose=80:10:10required50,60,and80h, respectively.

Accordingtopreviousstudies,co-feedingfermentationis anefficientfermentationstrategythatenableshigh produc-tivity with lowcostby providingmorethan onesubstrate. Xu et al. adopted aco-feeding strategy toproduce l-lactic acidbasedoncanemolasses/glucosecarbonsources,withthe aimofremovingsubstancesfromcanemolassesthatinhibit fermentation.21 Li et al.appliedamixed-sugar strategyfor

highlyefficientandeconomicproductionofdocosahexaenoic

acid byAurantiochytrium limacinum SR21.22 Our resultsalso

indicated thata mixtureofPSH (alowcost substrate) and sucrose,whichwasdemonstratedtobesuperiortoother sug-arswithrespecttothetiterofpullulanproducedinourstudy

oftheexperimentaldata()oftheconsumptionbyA.

pullulans201253andthesimulationusingthemodified

Luedeking–Piretmodel().(A)Sucrose;(B)PSH;(C) PSH:sucrose=80:2;(D)PSH:glucose:fructose=80:10:10.

(5)

4000 3500 3000 2500 2000 1500 1000 500 10 20 30 40 50 60 70 80 90 100 Wavenumber (cm-1 ) Tr a n smitta n ce, %

Fig.3–FITRforpullulanproducedfromthemixtureofsucroseandPSHasacarbonsource.

andpreviousreports,15,23,24cansignificantlyenhancethe

pul-lulanformationrateofA.pullulans201253atalowcost.

Kineticsofsubstrateconsumption

Substrate consumption is described by modification of LuedekingandPiretkinetics,andthecalculatedmodel param-eters associated with substrate consumption are given in

Table1.

Variations in the specific substrate consumption rate (dS/dt)/Xshowedapeak of0.675h−1 with100gL−1 sucrose asthecarbonsource.Thespecificsubstrateconsumptionrate (dS/dt)/XonmixturesofPSHandsucrose(PSH:sucrose=80:20) was 0.559h−1, which was significantly higher than those of PSH (0.45h−1) and mixtures of PSH, glucose, and fruc-tose(PSH:glucose:fructose=80:10:10,0.52h−1)with 100gL−1 oftotalcarbonsources.AsFig.2(c)shows,after96hof fermen-tation,thecarbonsourceinthefermentationbrothwasalmost entirelyconsumedwhensucroseonlywasusedasthe sub-strate,andonly1.15gL−1sugarwasnotconverted.Residual sugar(17.40gL−1,6.32gL−1,and12.24gL−1)remainedwhen PSH,PSH:sucrose=80:20,andPSH:glucose:fructose=80:10:10, respectively.

These resultsshow that sucrosewas the most efficient carbonsourceforsubstrateconsumption,whichwasin agree-ment with a previous study.15 Additionally, these results

indicatethatmixturesofPSHandsucrosecansignificantly enhance the utilization rate ofA. pullulans for the carbon source. The reason may be that A. pullulans could simul-taneously consumedifferent carbonsources andeliminate the carbon source repression effect. Similar results have been widely reported for the fermentation of a variety of products.25,26

IRcharacteristics

Fig.3showstheFT-IRspectraforpullulanobtainedfroma mix-tureofsucroseandPSH.Thepeaksappearingat3400cm−1and 2930cm−1wereattributedtoOHstretchingandCHstretching, respectively.Furthercharacteristicsignalsobtainedat1368, 1155,and1080cm−1wereattributedtoC–OHbending,C–O–C stretching,andC–Ostretching,respectively.27Otherfeatures

ofthebiopolymerwerealsofoundfromthespectra, includ-ingO–C–Ostretch(1656cm−1),andC–O–Cstretch(1155cm−1), as reported previously.28 The absorption that appeared at

755cm−1and931cm−1wasattributedto␣(1,4)and␣(1,6) link-ages between glucose units withinpullulan, respectively.29

These resultssuggest thatthe exopolysaccharideproduced fromthemixtureofPSHandsucroseispullulan.

Conclusions

Inourresearch,sucrosewasthebestcarbonsourcefor pul-lulan productionbyA.pullulans201253,whilethepotatois arelativelycheaprawmaterialandamajorcropinShaanxi Province.Hence,anovelmixed-sugarstrategywasdeveloped foreconomicalpullulanproductionbyA.pullulans. Eventu-ally, theyieldofpullulanincreasedto54.57gL−1 whenthe ratioofPSHtosucrosewas20:80,whichisslightlybelowthe yieldofpullulanusedbysucrose,buthigherthanthatwith PSHandasugarmixture(PSH:glucose:fructose=80:10:10).The results suggest that sucrose canpromote pullulan synthe-sis,becauseasmallamountofsucrosemightstimulatethe enzymeresponsibleforpullulansynthesisandpromote effec-tivePSH conversioneffectively.Overall, thisstudy provides anefficientandeconomicaloptionfortheutilizationofraw materialsinmicrobialproduction.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This project was funded bythe Scientificand Technologic Research Program of Shaanxi Academy ofSciences, China (No.2013k-06,2014k-01),theWesternChineseAcademyof Sci-ences (2013DF01), the Natural ScienceBasic Research Plan in Shaanxi Province ofChina (Program No. 2014JM2-2015), Shaanxi Science& Technology Co-ordination & Innovation

(6)

Project(2014SZS07-K03),andtheScienceandTechnology Pro-gramofXi’an(NC1505(3)).

r

e

f

e

r

e

n

c

e

s

1.LeathersTD.Biotechnologicalproductionandapplications

ofpullulan.ApplMicrobiolBiotechnol.2003;62:468–473.

2.LeeJW,YeomansWG,AllenAL,DengF,GrossRA,KaplanDL.

BiosynthesisofnovelexopolymersbyAureobasidium

pullulans.ApplEnvironMicrobiol.1999;65(12):5265–5271.

3.SinghRS,SainiGK,PullulanKennedyJF.Microbialsources,

productionandapplications.CarbohydrPolym.

2008;73:515–531.

4.YadavKL,RahiDK,SoniSK.Anindigenoushyperproductive

speciesofAureobasidiumpullulansRYLF-10:influenceof

fermentationconditionsonexopolysaccharide(EPS)

production.ApplBiochemBiotechnol.2014;172(4):1898–1908.

5.MaZC,FuWJ,LiuGL,WangZP,ChiZM.High-levelpullulan

productionbyAureobasidiumpullulansvar.melanogeniumP16

isolatedfrommangrovesystem.ApplMicrobiolBiotechnol.

2014;98(11):4865–4873.

6.RekhaMR,SharmaCP.Pullulanasapromisingbiomaterial

forbiomedicalapplications:aperspective.TrendsBiomater

ArtifOrgans.2007;20(2):111–116.

7.LinY,ZhangZ,ThibaultJ.Aureobasidiumpullulansbatch

cultivationsbasedonafactorialdesignforimprovingthe

productionandmolecularweightofexopolysaccharides.

ProcessBiochem.2007;42:820–827.

8.WuSJ,JinZY,TongQY,ChengHQ.Sweetpotato:anovel

substrateforpullulanproductionbyAureobasidiumpullulans.

CarbohydrPolym.2009;76(4):645–649.

9.RayRC,MoorthySN.Exopolysaccaride(pullulan)production

fromcassavastarchresiduebyAureobasidiumpullulansstrain

MTTC1991.JSciIndResIndia.2007;66:252–255.

10.BarnettC,SmithA,ScanlonB,IsrailidesCJ.Pullulan

productionbyAureobasidiumpullulansgrowingonhydrolysed

potatostarchwaste.CarbohydrPolym.1999;38(3):203–209.

11.DuanXH,ChiZM,WangL,WangXH.Influenceofdifferent

sugarsonpullulanproductionandactivitiesof

␣-phosphoglucosemutase,UDPG-pyrophosphorylaseand

glucosyltransferaseinvolvedinpullulansynthesisin

AureobasidiumpullulansY68.CarbohydrPolym.

2008;73(4):587–593.

12.OnoK,YasudaN,UedaS.Studiesonpullulanelaborationby

AureobasidiumpullulansS-1.I.EffectofpHonpullulan

elaborationbyAureobasidiumpullulansS-1.BiosciBiotechnol

Biochem.1997;41:2113–2118.

13.MillerGL.Useofdinitrosalicylicacidreagentfor

determinationofreducingsugar.AnalChem.

1959;31(3):426–428.

14.ZouJ,ZhangF,ChenY,etal.Responsiveorganogelsformed

bysupramolecularselfassemblyof

PEG-block-allyl-functionalizedracemicpolypeptidesinto

␤-sheet-drivenpolymericribbons.SoftMatter.

2013;9(25):5951–5958.

15.ChengKC,DemirciA,CatchmarkJM.Evaluationofmedium

compositionandfermentationparametersonpullulan

productionbyAureobasidiumpullulans.FoodSciTechnolInt.

2011;17(2):99–109.

16.JiangL,WuS,KimJM.Effectofdifferentnitrogensourceson

activitiesofUDPG-pyrophosphorylaseinvolvedinpullulan

synthesisandpullulanproductionbyAureobasidium

pullulans.CarbohydrPolym.2011;86(2):1085–1088.

17.OrrD,ZhengW,CampbellBS,McDougallBM,SeviourRJ.

Cultureconditionsaffectthechemicalcompositionofthe

exopolysaccharidesynthesizedbythefungusAureobasidium

pullulans.JApplMicrobiol.2009;7(2):691–698.

18.KlimekJ,OllisDF.Extracellularmicrobialpolysaccharides:

kineticsofPseudomonassp.,Azotobactervinelandii,and

Aureobasidiumpullulansbatchfermentations.Biotechnol Bioeng.1980;22(11):2321–2342.

19.BoaJM,LeduyA.Pullulanfrompeathydrolyzate

fermentationkinetics.BiotechnolBioeng.1987;30(4):463–470.

20.MulchandaniA,LuongJH,LeduyA.Batchkineticsof

microbialpolysaccharidebiosynthesis.BiotechnolBioeng.

1988;32(5):639–646.

21.XuK,XuP.Efficientproductionofl-lacticacidusing

co-feedingstrategybasedoncanemolasses/glucosecarbon

sources.BioresourTechnol.2014;153(2):23–29.

22.LiJ,LiuR,ChangG,etal.Astrategyforthehighlyefficient

productionofdocosahexaenoicacidbyAurantiochytrium

limacinumSR21usingglucoseandglycerolasthemixed

carbonsources.BioresourTechnol.2015;177:51–57.

23.ShinYC,KimYH,LeeHS,KimYN,ByunSM.Productionof

pullulanbyafed-batchfermentation.BiotechnolLett.

1987;9:621–624.

24.GibsonLH,CoughlinRW.Optimizationofhighmolecular

weightpullulanproductionbyAureobasidiumpullulansin

batchfermentations.BiotechnolProgr.2002;18:

675–678.

25.YoshidaS,OkanoK,TanakaT,OginoC,KondoA.

Homo-d-lacticacidproductionfrommixedsugarsusing

xylose-assimilatingoperon-integratedLactobacillus

plantarum.ApplMicrobiolBiotechnol.2011;92(1):67–76.

26.NoguchiT,TashiroY,YoshidaT,ZhengJ,SakaiK,Sonomoto

K.Efficientbutanolproductionwithoutcarboncatabolite

repressionfrommixedsugarswithClostridium

saccharoperbutylacetonicumN1-4.JBiosciBioeng.

2013;116(6):716–721.

27.SugumaranKR,GowthamiE,SwathiB,etal.Productionof

pullulanbyAureobasidiumpullulansfromAsianpalmkernel:

anovelsubstrate.CarbohydrPolym.2013;92(1):697–703.

28.SinghRS,SainiGK.Pullulan-hyperproducingcolorvariant

strainofAureobasidiumpullulansFB-1newlyisolatedfrom

phylloplaneofFicussp.BioresourTechnol.2008;99:

3896–3899.

29.MadiNS,HarveyLM,MehlertA,McNeilB.Synthesisoftwo

distinctexopolysaccharidefractionsbyculturesofthe

polymorphicfungusAureobasidiumpullulans.Carbohydr

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

FIGURA 5 - FLUTUAÇÃO POPULACIONAL DE Hypothenemus eruditus, Sampsonius dampfi e Xyleborus affinis (SCOLYTINAE, CURCULIONIDAE) COLETADOS COM ARMADILHAS ETANÓLICAS (25%)

Em sua pesquisa sobre a história da imprensa social no Brasil, por exemplo, apesar de deixar claro que “sua investigação está distante de ser um trabalho completo”, ele

Os indícios encontrados na documentação – pistas que sugerem uma diversidade de práticas sociais, envolvendo não somente os cativos e seus companheiros da mesma condição

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Em Rafael Pérez Arroyo encontramos tabelas com todas as mastabas de Sakara e Guiza do Império Antigo com cenas de música, bem como os dados biográficos de mais de 30 músicos

Afinal, se o marido, por qualquer circunstância, não puder assum ir a direção da Família, a lei reconhece à mulher aptidão para ficar com os poderes de chefia, substituição que