• Nenhum resultado encontrado

J. Braz. Chem. Soc. vol.8 número3

N/A
N/A
Protected

Academic year: 2018

Share "J. Braz. Chem. Soc. vol.8 número3"

Copied!
4
0
0

Texto

(1)

Ionic Conductivity of LiHf2(PO4)3 with NASICON-type Structure and its Possible Application as Electrolyte in Lithium Batteries

A. Martínez-Juárez, J.M. Amarilla, J.E. Iglesias, and J.M. Rojo*

Instituto Ciencia de Materiales de Ma drid, CSIC, Cantoblanco, 28049 Ma drid, Spain

Re ceived: Au gust 10, 1996; Oc to ber 10, 1996

Este trabalho reporta medidas de condutividade iônica realizadas para o LiHf2(PO4)3 calcinado a 1100 °C. As respostas devidas aos grãos - in te rior e junção - puderam ser identificadas tanto nas curvas de impedância, como na parte real das curvas de condutividade vs. freqüência. A energia de ativação, associada ao movi men to dos íons Li+ no in te rior dos grãos, é 0,33 eV, enquanto que aquela associada à condutividade to tal cc, está na faixa de 0,36-0,47 eV. os resultados desta última dependem da contribuição relativa devida ao in te rior e à junção de grão. A possível aplicação do LiHf2(PO4)3 como eletrólito foi testada para a pilha Li/LiHf2(PO4)3/LiMn2O4. Observou-se que o potencial de equilíbrio aumenta de 0,076 V a 2,217 V, quando a temperatura varia de 28 a 148 °C.

The ionic con duc tiv ity of LiHf2(PO4)3 cal cined at 1100 °C has been mea sured. Grain in te rior and grain bound ary re sponses can be dis tin guished in the im ped ance plots as well as in the real part of con duc tiv ity vs fre quency plots. The ac ti va tion en ergy as so ci ated with the mo tion of Li+ ions in side the grains is 0.33 eV while the ac ti va tion en ergy cor re spond -ing to the to tal dc con duc tiv ity changes from 0.36 to 0.47 eV, de pend -ing on the rel a tive con tri bu tion of grain in te rior and grain bound ary. The pos si ble ap pli ca tion of LiHf2(PO4)3 as an elec tro lyte has been tested in the Li/LiHf2(PO4)3/LiMn2O4 cell. The equi lib rium po -ten tial in creases from 0.076 V to 2.217 V when the tem per a ture is raised from 28 to 148 ºC.

Key words:NASICON, ionic con duc tiv ity, lith ium haf nium phos phate, solid state lith -ium bat ter ies

In tro duc tion

The world wide in crease in con sumer elec tron ics and the chal lenge of the elec tri cal car ac count for the sig nif i cant ef fort to de velop high en ergy re charge able bat ter ies. Among the bat ter ies those based on lith ium show the best per for mance. The solid elec tro lytes have sev eral ad van -tages as com pared with liq uid elec tro lytes. In par tic u lar, they do not pro duce ei ther cor ro sion or passivation of the elec trodes, and the safety of the bat tery is im proved.

LiHf2(PO4)3 is a NASICON-type com pound which shows a rel a tively high Li+ con duc tion as com pared with other com pounds of the LiM2(PO4)3, MIV = Ge,Ti fam -ily1-10. The de tailed crys tal struc ture of this com pound is not avail able yet, but the pow der X-ray dif frac tion pat tern has been in dexed11-16 on the ba sis of a rhombohedral lat tice in space group R3c, which is the usual one found for the

NASICON-type struc ture1,17-22. How ever, it has been also re ported that LiHf2(PO4)3 can ex hibit a lower sym me try as

other NASICON-type com pounds do23-27. Thus, a

monoclinic P21/n group was found28 for a sam ple sintered be low 1100 ºC, while the sym me try was rhombohedral R3c when the sam ple was sintered above that tem per a ture.

The ionic con duc tiv ity re ported for this com pound by sev eral au thors is rather vari able. Some of them15,29 have as cribed the con duc tiv ity to mo tion of Li+ ions in side the grains, while oth ers12-14,16 have re ported the to tal con duc -tiv ity, i.e. that as so ci ated with grain in te rior and grain bound ary, or else they do not iden tify which of these con tri -bu tions is dom i nant. In any case the con duc tiv ity val ues seem to be af fected by the lack of res o lu tion be tween grain in te rior and grain bound ary re sponse, and sig nif i cant dif -Ar ti cle

J. Braz. Chem. Soc., Vol. 8, No. 3, 261-264, 1997. © 1997 Soc. Bras. Química

(2)

fer ences in the ac ti va tion en ergy (0.32-0.44 eV) have been also re ported12-16,28,29.

The aim of this pa per is to study the ionic con duc tiv ity of LiHf2(PO4)3 as well as the pos si ble ap pli ca tion of this ma te rial as an elec tro lyte in solid state bat ter ies.

Ex per i men tal

LiHf2(PO4)3 was pre pared by cal ci na tion of a stoichiometric mix ture of Li2CO3 (Fluka, >99%), HfO2 (Aldrich, 99.9%), and (NH4)2HPO4 (Fluka, >99%). The re -agents were pre vi ously dried at 100 ºC for 12 h, then stoichiometric amounts of these com pounds were thor oughly mixed and cal cined in a plat i num cru ci ble at the fol -low ing tem per a tures: 300, 600, 700, 800, 900, and 1000 ºC. Ther mal treat ments were ac cu mu la tive up to 1000 ºC. At each de fined tem per a ture the time spent was 10 h ex cept at 300 ºC where the time was 6 h. The mix ture was ground be -fore each ther mal treat ment.

X-ray pow der dif frac tion pat terns were taken at room tem per a ture in a PW-1710 Philips diffractometer with Cu Kα ra di a tion. The scan was car ried out in steps of 0.02º, count ing for 0.5 s at each step. The peaks were fit ted with Kα1-Kα2 dou blets, and the po si tion of each peak was taken to be that of the Kα1 com po nent, λ =1.5405981 Å.

Elec tri cal con duc tiv ity mea sure ments were car ried out by the com plex im ped ance method us ing a 1174 Solartron fre quency re sponse an a lyzer. The pel lets (ca. 6 mm di am e ter and 1 mm thick ness) ob tained in the last ther mal treat -ment of the prep a ra tion pro ce dure were ad di tion ally cal cined at 1100 ºC for 10 h. Gold elec trodes were de pos -ited on the two faces of the pel lets by vac uum evap o ra tion. The fre quency range used was 10-1-105 Hz. The mea sure -ments were car ried out on the pel lets heated at in creas ing tem per a ture in the range 40-300 ºC.

The use ful ness of LiHf2(PO4)3 as a solid elec tro lyte in lith ium bat ter ies has been tested by us ing the Li/LiHf2(PO4)3/LiMn2O4 cell. The com pos ite cath ode is formed by LiMn2O4 as ac tive ma te rial (50% by mass), car -bon black as elec tronic con duc tor (25% by mass), eth yl ene pro pyl ene diene mono mer, EPDM, as binder (10% by mass) and LiHf2(PO4)3 (15% by mass). This com pos ite elec trode was made by mix ing the pow ders in cyc lo hex ane, evap o rat ing the sol vent, and press ing the mix ture at 1 Ton cm-2 to ob tain a disk of 0.28 cm2. As elec tro lyte, a sintered pel let of the NASICON com pound was used. A lith ium foil was used as an ode. The dif fer ent com po nents were placed in a sealed Swagelock cell un der a dried at mo -sphere con tain ing <2ppm H2O. The cell equi lib rium po ten -tial was mea sured in the range 25-150 ºC. To that end the sealed cell was im mersed in a sil i cone bath and the mea -sure ments were car ried out at each tem per a ture af ter half an hour of sta bi li za tion.

Re sults and dis cus sion

The LiHf2(PO4)3 sam ple pre pared in this work showed a pow der X-ray dif frac tion pat tern which was in dexed on the ba sis of a rhombohedral cell with hex ag o nal pa ram e ters aH = 8.8285(5), cH = 22.019(1) Å. These pa ram e ters agree well with other re ported for the rhombohedral R3c phase11-16. Our pa ram e ters were ob tained from a least squares re fine ment pro ce dure in which the 2Θ val ues of 41 un am big u ously in dexed re flec tions were used as ob serv -able data.

The im ped ance plots (imag i nary -Z" vs. real Z’) re -corded at dif fer ent tem per a tures are shown in Fig. 1. At low tem per a tures (40 ºC) two arcs and one spike are ob served. The arcs found at high and low fre quency are as cribed to grain in te rior and grain bound ary re sponse, re spec tively, in agree ment with the assignement re ported for other ce -ramic ma te ri als30 . The ca pac i tance as so ci ated with these arcs is 30 pF for the high-frequency arc and 64 nF for the low-frequency one. The spike is as cribed to the block ing ef fect of Li+ ions at the elec trode sur face. The ca pac i tance of the spikes is in the range 1-10 µF. When the sam ple is heated at higher tem per a tures the arcs dis ap pear from the plots, first the high-frequency arc and then the

262 Martínez-Juárez et al. J. Braz. Chem. Soc.

(3)

low-frequency one. Above 200 ºC only the spike are clearly ob served.

The real part of the con duc tiv ity (σ) vs an gu lar fre -quency (ω=2πf) is plot ted in Fig. 2. A dispersive re gime (I) due to the elec trode re sponse is ob served at low fre quency. At in ter me di ate and high fre quency two pla teaus (II and III) are de tected. The pla teau II is af fected by the grain bound ary dc re sponse, while the other (III) is as cribed to the dc re sponse of the grain in te rior, in agree ment with the in for ma tion de duced from the im ped ance plots. The ex per i men tal data have been fit ted by us ing the power ex pres -sions: i) σ = Eωe for the elec trode re sponse, ii) σ = σ‘dc+ BωP for the grain bound ary re sponse, and iii) σ = σdc + Aωn for the grain in te rior re sponse. σdc and σ‘dc are the dc con -duc tiv i ties cor re spond ing to each pla teau. Eωe, BωP, and Aωn are the ac con duc tiv i ties of the three re sponses. A and E are tem per a ture-dependent pa ram e ters , and e, p, and n are the slopes of the three dispersive re gimes. The solid curve in Fig. 2 shows a good fit of the ex per i men tal data. Then, by this pro ce dure, the dc con duc tiv ity cor re spond ing to mo tion of Li+ ions in side the grains, through the bor der of the grains, as well as the to tal dc value of the pel let, have been de ter mined.

Vari a tion of dc con duc tiv ity (log10 σdc) vs in verse tem -per a ture (1000/T) is shown in Fig. 3. In this fig ure we have in cluded the val ues of the grain in te rior (open cir cles) and to tal (open tri an gles) con duc tiv ity. All the ex per i men tal data are well fit ted by Arrhenius equa tions, σa = σ0 exp(-E/KT), where σ0 is a preexponential fac tor, E the ac -ti va -tion en ergy, and K the Boltzmann con stant. The to tal dc con duc tiv ity (solid line) is close to that of the grain in te rior (dot ted line) for tem per a tures above 160 ºC, in di cat ing that the to tal con duc tiv ity is dom i nated by the grain in te rior re sponse. How ever, be low that tem per a ture the to tal con duc -tiv ity dif fers from the grain in te rior one be cause of the grain bound ary con tri bu tion. The ac ti va tion en ergy as so ci ated with the to tal con duc tiv ity is also a pa ram e ter whose value de pends on the rel a tive grain in te rior and grain bound ary con tri bu tions. Thus, a value (0.36 eV) close to that cor re spond ing to the grain in te rior re sponse (0.33 eV) is ob -tained when the to tal con duc tiv ity is dom i nated by the grain in te rior con tri bu tion (above 160 ºC); the ac ti va tion en ergy is higher (0.47 eV) when the to tal con duc tiv ity is clearly af fected by the grain bound ary re sponse (be low 160 ºC).

Finally, we have tested the pos si ble ap pli ca tion of LiHf2(PO4)3 as an elec tro lyte in solid state lith ium bat ter -ies. Fig. 4 shows the vari a tion of the equi lib rium po ten tial (Eeq.) of the Li/LiHf2(PO4)3/LiMn2O4 cell vs. tem per a ture. At 28 ºC the Eeq. value is quite small (0.076 V). When the cell tem per a ture in creases Eeq. in creases monotonically. The slope is larger in the range 60-110 ºC. Above 110 ºC the slope trends to level, and at 150 ºC Eeq. reaches 2.217 V.

Al though this value is lower than that nor mally found (ca.

3.2 V) when a liq uid elec tro lyte, such as 1M LiClO4 dis -solved in pro pyl ene car bon ate, is used31,32, the ob served in -crease in Eeq. shows that the re sponse of the LiHf2(PO4)3 elec tro lyte is im proved with the cell tem per a ture, and hence it is po ten tially use able in solid state lith ium bat ter -ies. The in crease with tem per a ture of Eeq. is con sis tent with the in crease in Li+ con duc tiv ity, as de duced from im ped -ance data.

Vol. 8, No. 3, 1997 Ionic Con duc tiv ity of LiHf2(PO4)3 with NASICON-type Struc ture 263

Fig ure 3. Tem per a ture de pend ence of dc con duc tiv ity in an Arrhenius plot. The grain in te rior and to tal con duc tiv i ties are rep re -sented by cir cles and tri an gles, re spec tively.

(4)

Con clu sions

Grain in te rior and grain bound ary re sponse are dis tin -guished in a LiHf2(PO4)3 pel let pre vi ously cal cined at 1100 ºC. The to tal dc con duc tiv ity and its as so ci ated ac ti va -tion en ergy are very sen si tive to the rel a tive con tri bu -tion of grain in te rior and grain bound ary. For Li+ mo tion in side the grains the dc con duc tiv ity at rt and the ac ti va tion en ergy are 1.3 x 10-5 ohm-1 cm-1 and 0.33 eV, re spec tively. These data to gether with the ob served in crease in the equi lib rium po -ten tial with the cell tem per a ture show that LiHf2(PO4)3 can be used as an elec tro lyte in solid state Li-batteries.

Ac knowl edge ment

Fi nan cial sup port by CICYT (Pro ject MAT 95-0899) is grate fully ac knowl edged.

Ref er ences

1. Pe tit, D.; Colomban, Ph.; Collin, G.; Boilot, J.P. Mat. Res. Bull. 1986, 21, 365.

2. Li, S.; Cai, J.; Lin, Z. Solid State Ionics1988, 28-30, 1265.

3. Sudreau, F.; Pe tit, D.; Boilot, J.P. J. Solid State Chem. 1989, 83, 78.

4. Casciola, M.; Costantino, U.; Krogh Andersen, I.G.; Krogh Andersen, E. Solid State Ionics 1990, 37, 281. 5. Colomban, Ph.; Mouchon, E.; Belhadj-Tahar, N.;

Badot, J.C. Solid State Ionics 1992, 53-56, 813. 6. Nomura, K.; Ikeda, S; Ito, K.; Einaga, H. Solid State

Ionics 1993, 61, 293.

7. Ando, Y.; Hirose, N.; Kuwano, J.; Kato, M., Otsuka, H. In Ce ramic To day - To mor row’s Ce ramics, Proc. 7th Internat. Meet ing Mod ern Ce ramics Tech nol

-ogies, Montecatini Term; Vincenzini, P. Ed.; Elsevier, 1991, It aly, p. 2245.

8. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Solid State Ionics 1991, 47, 257.9. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. J. Electrochem. Soc. 1993, 140, 1827. 10. Paris, M.A.; Mar ti nez-Juarez, A.; Rojo, J.M.; Sanz, J.

J. Phys.: Condens. Mat ter 1996, 8, 1.

11. Sljukic, M.; Matkovic, B.; Prodic, B.; Scavnicar, S.

Croat. Chem Acta 1967, 39, 145.

12. Tay lor, B.E.; Eng lish, A.D.; Berzins, T. Mat. Res. Bull. 1977, 12, 171.

13. Shanon, R.D.; Tay lor, B.E.; Eng lish, A.D.; Berzins, T. Electrochim. Acta1977, 22, 783.

14. Subramanian, M.A.; Subramanian, R.; Clearfield, A.

Solid State Ionics 1986, 18/19, 562.

15. Chowdari, B.V.R.; Radhakrishnan, K.; Thomas, K.A.; Subba Rao, G.V. Mat. Res. Bull. 1989, 24, 221. 16. Winand, J.M.; Rulmont, A.; Tarte, P. J. Solid State

Chem. 1991, 93, 341.

17. Hagman, L.; Kierkegaard, P. Acta Chem. Scand. 1968, 22, 1822.

18. Hong, H.,Y-P. Mat. Res. Bull. 1976, 11, 173. 19. Goodenough, J.B.; Hong, H.Y-P.; Kafalas, J.A. Mat.

Res. Bull. 1976, 11, 203.

20. Al amo, J.; Roy, R. J. Ma ter. Sci. 1986, 21, 444. 21. Tran Qui, D.; Hamdoune, S.; Soubeyroux, J.L.;

Prince, E. J. Solid State Chem. 1988, 72, 309. 22. Alami, M.; Brochu, R.; Soubeyroux, J.L.; Gravereau,

P.; Le Flem, G.; Hagenmuller, P. J. Solid State Chem. 1991, 90, 185.

23. Rudolf, P.R.; Clearfield, A.; Jorgensen, J.D. Solid State Ionics 1986, 21, 213.

24. Rodrigo, J.L.; Al amo, J. Mat. Res. Bull. 1991, 26, 475. 25. Angenault, J.; Cou tu rier, J.C.; Souron, J.P.; Siliqi, D.;

Quarton, M. J. Ma ter. Sci. Lett. 1992, 11, 1705. 26. Sanz, J.; Rojo, J.M.; Jimenez, R.; Iglesias, J.E.; Al

-amo, J. Solid State Ionics 1993, 62, 287.

27. Mar ti nez-Juarez, A.; Rojo, J.M.; Iglesias, J.E.; Sanz, J. Chem. Ma ter. 1995, 7, 1857.

28. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, M.N.; Adachi, G. Solid State Ionics 1993, 62, 309.

29. Kuwano, J.; Sato, N.; Kato, M.; Takano, K. Solid State Ionics 1994, 70/71, 332.

30. Mac don ald, J.R. In Im ped ance Spec tros copy; John Wiley and Sons; USA, 1987.

31. Gummow, R.J.; de Kock, A.; Thackeray, M.M. Solid State Ionics 1994, 69, 59.

32. Koksbang, R.; Barker, J.; Shi, H.; Saidi, M.Y. Solid State Ionics 1996, 84, 1.

264 Martínez-Juárez et al. J. Braz. Chem. Soc.

Imagem

Fig ure 1. Im ped ance plots ob tained at two tem per a tures for the LiHf 2 (PO 4 ) 3  pel let pre vi ously sintered at 1100 ºC
Fig ure 2. Fre quency de pend ence of the real part of the con duc tiv ity at  dif fer ent tem per a tures
Fig ure 4. Vari a tion of the equi lib rium po ten tial as a func tion of tem - -per a ture for the Li/LiHf 2 (PO 4 ) 3 /LiMn 2 O 4  cell.

Referências

Documentos relacionados

É importante destacar que as práticas de Gestão do Conhecimento (GC) precisam ser vistas pelos gestores como mecanismos para auxiliá-los a alcançar suas metas

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

In an earlier work 关16兴, restricted to the zero surface tension limit, and which completely ignored the effects of viscous and magnetic stresses, we have found theoretical

according to their MS 2 fragmentation as different isomers of p-coumaroyl quinic acid. Identities were assigned based on the patterns reported for the caffeoylquinic acid

As diferenças específicas do Conselho Europeu em relação ao Conselho da União Europeia previsto pelos artigos 202.º e seguintes do TCE são consideráveis: (a)

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-