• Nenhum resultado encontrado

Open Existence results for some elliptic equations involving the fractional Laplacian operator and critical growth

N/A
N/A
Protected

Academic year: 2018

Share "Open Existence results for some elliptic equations involving the fractional Laplacian operator and critical growth"

Copied!
112
0
0

Texto

(1)

❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❛ P❛r❛í❜❛

❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❈❛♠♣✐♥❛ ●r❛♥❞❡

Pr♦❣r❛♠❛ ❆ss♦❝✐❛❞♦ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛

❉♦✉t♦r❛❞♦ ❡♠ ▼❛t❡♠át✐❝❛

❊①✐st❡♥❝❡ r❡s✉❧ts ❢♦r s♦♠❡ ❡❧❧✐♣t✐❝

❡q✉❛t✐♦♥s ✐♥✈♦❧✈✐♥❣ t❤❡ ❢r❛❝t✐♦♥❛❧

▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r ❛♥❞ ❝r✐t✐❝❛❧ ❣r♦✇t❤

♣♦r

❨❛♥❡ ▲ís❧❡② ❘❛♠♦s ❆r❛ú❥♦

(2)

❊①✐st❡♥❝❡ r❡s✉❧ts ❢♦r s♦♠❡ ❡❧❧✐♣t✐❝

❡q✉❛t✐♦♥s ✐♥✈♦❧✈✐♥❣ t❤❡ ❢r❛❝t✐♦♥❛❧

▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r ❛♥❞ ❝r✐t✐❝❛❧ ❣r♦✇t❤

♣♦r

❨❛♥❡ ▲ís❧❡② ❘❛♠♦s ❆r❛ú❥♦

s♦❜ ♦r✐❡♥t❛çã♦ ❞♦

Pr♦❢✳ ❉r✳ ▼❛♥❛ssés ❳❛✈✐❡r ❞❡ ❙♦✉③❛

❚❡s❡ ❛♣r❡s❡♥t❛❞❛ ❛♦ ❈♦r♣♦ ❉♦❝❡♥t❡ ❞♦ Pr♦❣r❛♠❛ ❆ss♦❝✐❛❞♦ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛ ✲ ❯❋P❇✴❯❋❈●✱ ❝♦♠♦ r❡q✉✐s✐t♦ ♣❛r❝✐❛❧ ♣❛r❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ❉♦✉t♦r ❡♠ ▼❛t❡♠át✐❝❛✳

❏♦ã♦ P❡ss♦❛ ✲ P❇ ❉❡③❡♠❜r♦✴✷✵✶✺

❊st❡ tr❛❜❛❧❤♦ ❝♦♥t♦✉ ❝♦♠ ❛♣♦✐♦ ✜♥❛♥❝❡✐r♦ ❞❛ ❈❛♣❡s✳

(3)

A663e Araújo, Yane Lísley Ramos.

Existence results for some elliptic equations involving the fractional Laplacian operator and critical growth / Yane Lísley Ramos Araújo.- João Pessoa, 2015.

111f.

Orientador: Manassés Xavier de Souza Tese (Doutorado) - UFPB-UFCG

1. Matemática. 2. Laplaciano fracionário. 3. Métodos variacionais. 4. Desigualdade de Trudinger-Moser. 5. Expoente crítico de Sobolev.

(4)
(5)

❘❡s✉♠♦

◆❡st❡ tr❛❜❛❧❤♦ ♣r♦✈❛♠♦s ❛❧❣✉♥s r❡s✉❧t❛❞♦s ❞❡ ❡①✐stê♥❝✐❛ ❡ ♠✉❧t✐♣❧✐❝✐❞❛❞❡ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ❡q✉❛çõ❡s ❞♦ t✐♣♦

(−∆)αu+V(x)u=f(x, u) ❡♠ RN,

♦♥❞❡ 0< α <1✱ N ≥2α✱ (−∆)α ❞❡♥♦t❛ ♦ ▲❛♣❧❛❝✐❛♥♦ ❢r❛❝✐♦♥ár✐♦✱V :RN R é ✉♠❛

❢✉♥çã♦ ❝♦♥tí♥✉❛ q✉❡ s❛t✐s❢❛③ ❛❞❡q✉❛❞❛s ❝♦♥❞✐çõ❡s ❡f :RN×RRé ✉♠❛ ❢✉♥çã♦ ❝♦♥✲

tí♥✉❛ q✉❡ ♣♦❞❡ t❡r ❝r❡s❝✐♠❡♥t♦ ❝rít✐❝♦ ♥♦ s❡♥t✐❞♦ ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❚r✉❞✐♥❣❡r✲▼♦s❡r ♦✉ ♥♦ s❡♥t✐❞♦ ❞♦ ❡①♣♦❡♥t❡ ❝rít✐❝♦ ❞❡ ❙♦❜♦❧❡✈✳ ❆ ✜♠ ❞❡ ♦❜t❡r ♥♦ss♦s r❡s✉❧t❛❞♦s ✉s❛✲ ♠♦s ♠ét♦❞♦s ✈❛r✐❛❝✐♦♥❛✐s ❝♦♠❜✐♥❛❞♦s ❝♦♠ ✉♠❛ ✈❡rsã♦ ❞♦ Pr✐♥❝í♣✐♦ ❞❡ ❈♦♥❝❡♥tr❛çã♦✲ ❈♦♠♣❛❝✐❞❛❞❡ ❞❡✈✐❞♦ à ▲✐♦♥s✳

P❛❧❛✈r❛s✲❝❤❛✈❡✿ ▲❛♣❧❛❝✐❛♥♦ ❢r❛❝✐♦♥ár✐♦❀ ♠ét♦❞♦s ✈❛r✐❛❝✐♦♥❛✐s❀ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❚r✉❞✐♥❣❡r✲ ▼♦s❡r❀ ❡①♣♦❡♥t❡ ❝rít✐❝♦ ❞❡ ❙♦❜♦❧❡✈✳

(6)

❆❜str❛❝t

■♥ t❤✐s ✇♦r❦ ✇❡ ♣r♦✈❡ s♦♠❡ r❡s✉❧ts ♦❢ ❡①✐st❡♥❝❡ ❛♥❞ ♠✉❧t✐♣❧✐❝✐t② ♦❢ s♦❧✉t✐♦♥s ❢♦r ❡q✉❛✲ t✐♦♥s ♦❢ t❤❡ t②♣❡

(−∆)αu+V(x)u=f(x, u) ✐♥ RN,

✇❤❡r❡ 0< α <1✱ N ≥2α✱ (−∆)α ❞❡♥♦t❡s t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥✱V : RN R ✐s ❛

❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ t❤❛t s❛t✐s❢② s✉✐t❛❜❧❡ ❝♦♥❞✐t✐♦♥s ❛♥❞f :RN×RR✐s ❛ ❝♦♥t✐♥✉♦✉s

❢✉♥❝t✐♦♥ t❤❛t ♠❛② ❤❛✈❡ ❝r✐t✐❝❛❧ ❣r♦✇t❤ ✐♥ t❤❡ s❡♥s❡ ♦❢ t❤❡ ❚r✉❞✐♥❣❡r✲▼♦s❡r ✐♥❡q✉❛❧✐t② ♦r ✐♥ t❤❡ s❡♥s❡ ♦❢ t❤❡ ❝r✐t✐❝❛❧ ❙♦❜♦❧❡✈ ❡①♣♦♥❡♥t✳ ■♥ ♦r❞❡r t♦ ♦❜t❛✐♥ ♦✉r r❡s✉❧ts ✇❡ ✉s❡ ✈❛r✐❛t✐♦♥❛❧ ♠❡t❤♦❞s ❝♦♠❜✐♥❡❞ ✇✐t❤ ❛ ✈❡rs✐♦♥ ♦❢ t❤❡ ❈♦♥❝❡♥tr❛t✐♦♥✲❈♦♠♣❛❝t♥❡ss Pr✐♥❝✐♣❧❡ ❞✉❡ t♦ ▲✐♦♥s✳

❑❡②✇♦r❞s✿ ❋r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥❀ ✈❛r✐❛t✐♦♥❛❧ ♠❡t❤♦❞s❀ ❚r✉❞✐♥❣❡r✲▼♦s❡r✬s ✐♥❡q✉❛❧✐t②❀ ❝r✐t✐❝❛❧ ❙♦❜♦❧❡✈ ❡①♣♦♥❡♥t✳

(7)

❆❣r❛❞❡❝✐♠❡♥t♦s

❆ ❉❡✉s ♣♦✐s só ❊❧❡ é ❝❛♣❛③ ❞❡ ♥♦s ❞❛r ❢♦rç❛ ♣❛r❛ ❛❧❝❛♥ç❛r♠♦s ♥♦ss♦s ♦❜❥❡t✐✈♦s✳ ❆♦s ♠❡✉s ♣❛✐s ❆♥❛ ❘✐t❛ ❡ ●✐❧❞❡✈❛❧ ♣♦r t♦❞♦ ❛♠♦r✱ ❞❡❞✐❝❛çã♦ ❡ ❛♣♦✐♦ ✐♥❝♦♥❞✐❝✐♦♥❛❧✳ ❆♦ ♠❡✉ ✐r♠ã♦ ❚❛r❧❡s ❲❛❧❦❡r ❡ ❛ ♠✐♥❤❛ ♠❛❞r✐♥❤❛ ❆♥❛ ♣♦r s❡♠♣r❡ ❛❝r❡❞✐t❛r❡♠ ❡♠ ♠✐♠✳ ❆♦ ♠❡✉ ❡s♣♦s♦ ❘❡❣✐♥❛❧❞♦ ❏✉♥✐♦r ♣❡❧♦ ❛♠♦r✱ ❝♦♠♣❛♥❤❡✐r✐s♠♦✱ ❝♦♠♣r❡❡♥sã♦ ❡ t♦❞❛ ❛❥✉❞❛ ✐♥❞✐s♣❡♥sá✈❡❧ à r❡❛❧✐③❛çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳

❆♦ Pr♦❢✳ ▼❛♥❛ssés ❳❛✈✐❡r ❞❡ ❙♦✉③❛ ♣♦r t❡r ♠❡ ❝♦♥❝❡❞✐❞♦ ❛ ♦♣♦rt✉♥✐❞❛❞❡ ❞❡ ❡st✉❞❛r ❝♦♠ ♦ ♠❡s♠♦✱ ♣♦r t♦❞❛ ♦r✐❡♥t❛çã♦✱ ❞❡❞✐❝❛çã♦ ❡ ❡♠♣❡♥❤♦ ♥❛ r❡❛❧✐③❛çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳ ❆♦ ♠❡✉ ❛♠✐❣♦✲✐r♠ã♦ ●✐❧s♦♥ ♣♦r s❡r ✉♠ ♣♦rt♦ s❡❣✉r♦ ♣❛r❛ ♠✐♠ ❛♦ ❧♦♥❣♦ ❞❡ t♦❞❛ ❛ ❥♦r♥❛❞❛✳

❆♦ ❛♠✐❣♦ ◆❛❝✐❜ ❡ ❛ ♠✐♥❤❛ ♣r✐♠❛ ❙❛r❛ ♣❡❧❛ ❞✐s♣♦♥✐❜✐❧✐❞❛❞❡ ❡ ❝✉✐❞❛❞♦ ❡♠ ♠❡ ❛❥✉❞❛r ♥❛s ❝♦rr❡çõ❡s ❝♦♠ ♦ ✐♥❣❧ês✳

❆♦s ♠❡✉s ♣r♦❢❡ss♦r❡s ➱❞❡r ▼❛t❡✉s ❞❡ ❙♦✉③❛✱ ❏♦ã♦ ❞❡ ❆③❡✈❡❞♦ ❈❛r❞❡❛❧ ❡ ❋❛❜í♦❧❛ ❞❡ ❖❧✐✈❡✐r❛ P❡❞r❡✐r❛ ▲✐♠❛ ♣♦r s❡r❡♠ ✐♥s♣✐r❛çõ❡s ♣❛r❛ ♠✐♠ ❞❡s❞❡ ♦ ❡♥s✐♥♦ ♠é❞✐♦ ❡ ❛ ❣r❛✲ ❞✉❛çã♦✳ ❆♦s ♣r♦❢❡ss♦r❡s ❞❡ Pós✲●r❛❞✉❛çã♦ ❞♦ ❉▼ ♣♦r t♦❞♦s ♦s ❡♥s✐♥❛♠❡♥t♦s tr❛♥s✲ ♠✐t✐❞♦s✱ ❡♠ ❡s♣❡❝✐❛❧ ❛♦s ♣r♦❢❡ss♦r❡s ❊✈❡r❛❧❞♦ ❙♦✉t♦ ❞❡ ▼❡❞❡✐r♦s ❡ ❯❜❡r❧❛♥❞✐♦ ❇❛t✐st❛ ❙❡✈❡r♦✳

❆ ♠✐♥❤❛ ✐r♠ã ❞❡ ❝♦r❛çã♦ P❛♠♠❡❧❧❛ ❡ ❛♦s ❞❡♠❛✐s ❝♦❧❡❣❛s ❞♦ ❉▼✴❯❋P❇ q✉❡ ♣♦r ♠✉✐t❛s ✈❡③❡s ❢♦r❛♠ ♠✐♥❤❛ ❢❛♠í❧✐❛ ❞❛♥❞♦ ❛♣♦✐♦ ❡ ❞✐♠✐♥✉✐♥❞♦ ♦ ❢❛r❞♦ q✉❡ é ❡stá ❧♦♥❣❡ ❞❡ ❝❛s❛✱ ❡♠ ❡s♣❡❝✐❛❧ ❛ ❉✐❡❣♦✱ ❘♦❞r✐❣♦✱ ❘✐❝❛r❞♦ ❇✉r✐t②✱ ●✉st❛✈♦✱ ❱❛❧❞❡❝✐r✱ ❉✐❛♥❛✱ ❉❛♥✐❡❧✳ ❆♦s ♠❡♠❜r♦s ❞❛ ❜❛♥❝❛ ♣❡❧❛s ✈❛❧✐♦s❛s ❝♦♥tr✐❜✉✐çõ❡s ♣❛r❛ ❛ ✈❡rsã♦ ✜♥❛❧ ❞❡st❡ tr❛❜❛❧❤♦✳ ❆ t♦❞♦s q✉❡ ❞✐r❡t❛ ♦✉ ✐♥❞✐r❡t❛♠❡♥t❡ ❝♦♥tr✐❜✉ír❛♠ ♣❛r❛ ❛ ❝♦♥❧✉sã♦ ❞❡st❡ tr❛❜❛❧❤♦✳ ➚ ❈❛♣❡s ♣❡❧♦ ❛♣♦✐♦ ✜♥❛♥❝❡✐r♦✳

(8)

❉❡❞✐❝❛tór✐❛

➚ ♠✐♥❤❛ ❢❛♠í❧✐❛✳

(9)

❈♦♥t❡♥ts

■♥tr♦❞✉❝t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ◆♦t❛t✐♦♥ ❛♥❞ t❡r♠✐♥♦❧♦❣② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶ ❙❡♠✐❧✐♥❡❛r ❡❧❧✐♣t✐❝ ❡q✉❛t✐♦♥s ❢♦r t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r ✐♥✲

✈♦❧✈✐♥❣ ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✶✸

▼♦t✐✈❛t✐♦♥ ❛♥❞ ♠❛✐♥ r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ❙♦♠❡ ♣r❡❧✐♠✐♥❛r② r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ❚❤❡ ✈❛r✐❛t✐♦♥❛❧ ❢r❛♠❡✇♦r❦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ P❛❧❛✐s✲❙♠❛❧❡ ❝♦♠♣❛❝t♥❡ss ❝♦♥❞✐t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ❊st✐♠❛t❡ ♦❢ t❤❡ ♠✐♥✐♠❛① ❧❡✈❡❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ Pr♦♦❢s ♦❢ ❚❤❡♦r❡♠ ✶✳✶ ❛♥❞ ✶✳✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✸ ✷ ❖♥ ♥♦♥❧✐♥❡❛r ♣❡rt✉r❜❛t✐♦♥s ♦❢ ❛ ♣❡r✐♦❞✐❝ ❢r❛❝t✐♦♥❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛✲

t✐♦♥ ✇✐t❤ ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✸✹

▼♦t✐✈❛t✐♦♥ ❛♥❞ ♠❛✐♥ r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹ ❆ ♣❡r✐♦❞✐❝ ♣r♦❜❧❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✺ ❆♥ ❛s②♠♣t♦t✐❝❛❧❧② ♣❡r✐♦❞✐❝ ♣r♦❜❧❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✼ ❙♦♠❡ ♣r❡❧✐♠✐♥❛r② r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✾ ❚❤❡ ❢✉♥❝t✐♦♥❛❧ s❡tt✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✾ ❚r✉❞✐♥❣❡r✲▼♦s❡r t②♣❡ ✐♥❡q✉❛❧✐t✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✶ ❆ ❈♦♥❝❡♥tr❛t✐♦♥✲❈♦♠♣❛❝t♥❡ss Pr✐♥❝✐♣❧❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✸ ❊①✐st❡♥❝❡ ♦❢ ❛ s♦❧✉t✐♦♥ ❢♦r t❤❡ ♣❡r✐♦❞✐❝ ♣r♦❜❧❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✺ ▼✐♥✐♠❛① ❧❡✈❡❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ❖♥ P❛❧❛✐s✲❙♠❛❧❡ s❡q✉❡♥❝❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼

(10)

Pr♦♦❢ ♦❢ ❚❤❡♦r❡♠ ✷✳✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✾ ❊①✐st❡♥❝❡ ♦❢ ❛ s♦❧✉t✐♦♥ ❢♦r t❤❡ ❛s②♠♣t♦t✐❝❛❧❧② ♣❡r✐♦❞✐❝ ♣r♦❜❧❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✵ Pr♦♦❢ ♦❢ ❚❤❡♦r❡♠ ✷✳✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✶ ✸ ❆ ❝❧❛ss ♦❢ ❛s②♠♣t♦t✐❝❛❧❧② ♣❡r✐♦❞✐❝ ❢r❛❝t✐♦♥❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛t✐♦♥s

✇✐t❤ ❙♦❜♦❧❡✈ ❝r✐t✐❝❛❧ ❣r♦✇t❤ ✺✹

▼♦t✐✈❛t✐♦♥ ❛♥❞ ♠❛✐♥ r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✹ ◆♦t❛t✐♦♥s✱ ❞❡✜♥✐t✐♦♥s ❛♥❞ ✈❛r✐❛t✐♦♥❛❧ s❡tt✐♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✽ Pr❡❧✐♠✐♥❛r② r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✶ ❱❡rs✐♦♥s ♦❢ t❤❡ ▼♦✉♥t❛✐♥ P❛ss ❚❤❡♦r❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✶ ▼♦✉♥t❛✐♥ ♣❛ss ❣❡♦♠❡tr② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✷ ❇❡❤❛✈✐♦✉r ♦❢ t❤❡ ❈❡r❛♠✐ s❡q✉❡♥❝❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✸ ❊st✐♠❛t❡ ♦❢ t❤❡ ♠✐♥✐♠❛① ❧❡✈❡❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✽ ❚❡st ❢✉♥❝t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✽ ❈♦♥✈❡r❣❡♥❝❡ r❡s✉❧ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✸ Pr♦♦❢ ♦❢ ❚❤❡♦r❡♠ ✸✳✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✼ Pr♦♦❢ ♦❢ ❚❤❡♦r❡♠ ✸✳✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✸

❆♣♣❡♥❞✐①

❆ ❆✉①✐❧✐❛r② r❡s✉❧ts ✽✺

❋r❛❝t✐♦♥❛❧ ❙♦❜♦❧❡✈ s♣❛❝❡s ❛♥❞ t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✺ ❱❛r✐❛t✐♦♥❛❧ ❢♦r♠✉❧❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✼ ❉✐✛❡r❡♥t✐❛❜✐❧✐t② ♦❢ t❤❡ ❢✉♥❝t✐♦♥❛❧ I ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✾

❆ ❡①❛♠♣❧❡ ✇✐t❤♦✉t t❤❡ ✭❆❘✮ ❝♦♥❞✐t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✹

❘❡❢❡r❡♥❝❡s ✾✾

(11)

■♥tr♦❞✉❝t✐♦♥

■♥ t❤✐s ✇♦r❦✱ ✇❡ st✉❞② t❤❡ ❡①✐st❡♥❝❡ ❛♥❞ ♠✉❧t✐♣❧✐❝✐t② ♦❢ s♦❧✉t✐♦♥s ❢♦r ❡❧❧✐♣t✐❝ ❡q✉❛t✐♦♥s ♦❢ t❤❡ t②♣❡

(−∆)αu+V(x)u=f(x, u) ✐♥ RN, ✭✵✳✶✮

✇❤❡r❡0< α <1✱ N ≥2α✱V :RN R ❛♥❞f :RN×RR❛r❡ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s

t❤❛t s❛t✐s❢② s✉✐t❛❜❧❡ ❝♦♥❞✐t✐♦♥s ❛♥❞(−∆)α ❞❡♥♦t❡s t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ✇❤✐❝❤ ❝❛♥

❜❡ ❞❡✜♥❡❞ ❢♦r ❛ s✉✣❝✐❡♥t❧② r❡❣✉❧❛r ❢✉♥❝t✐♦♥u:RR ❜②

(−∆)αu(x) =−1

2C(N, α) Z

RN

u(x+y) +u(x−y)−2u(x)

|y|N+2α dy, ∀x∈R N.

❋♦r ❞❡t❛✐❧s ❛❜♦✉t t❤✐s ♦♣❡r❛t♦r s❡❡ ❆♣♣❡♥❞✐① ❆✳

P❛rt ♦❢ t❤❡ ✐♥t❡r❡st ♦♥ t❤♦s❡ ❡q✉❛t✐♦♥s ❛r✐s❡s ✐♥ t❤❡ s❡❛r❝❤ ♦❢ st❛♥❞✐♥❣ ✇❛✈❡s s♦❧✉t✐♦♥s ❢♦r t❤❡ ❢r❛❝t✐♦♥❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛t✐♦♥

i∂ψ

∂t = (−∆)

αψ + (V(x) +ω)ψf(x, ψ), (x, t)RN ×R, ✭✵✳✷✮

✇❤❡r❡ ω ∈ R✱ V : RN R ✐s ❛♥ ❡①t❡r♥❛❧ ♣♦t❡♥t✐❛❧ ❢✉♥❝t✐♦♥✱ f : RN ×R R ✐s ❛

❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ ❛♥❞ 0< α < 1 ✐s ❛ ✜①❡❞ ♣❛r❛♠❡t❡r✳ ❙t❛♥❞✐♥❣ ✇❛✈❡s s♦❧✉t✐♦♥s t♦

❊q✉❛t✐♦♥ ✭✵✳✷✮ ❛r❡ s♦❧✉t✐♦♥s ♦❢ t❤❡ ❢♦r♠

ψ(x, t) = u(x) exp(−iωt),

✇❤❡r❡u s♦❧✈❡s ❡❧❧✐♣t✐❝ ❊q✉❛t✐♦♥ ✭✵✳✶✮✳

❊q✉❛t✐♦♥ ✭✵✳✷✮ ❝♦♠❡s ❢r♦♠ ❛♥ ❡①♣❛♥s✐♦♥ ♦❢ t❤❡ ❋❡②♥♠❛♥ ♣❛t❤ ✐♥t❡❣r❛❧ ❢r♦♠ ❇r♦✇♥✐❛♥✲❧✐❦❡ t♦ ▲é✈②✲❧✐❦❡ q✉❛♥t✉♠ ♠❡❝❤❛♥✐❝❛❧ ♣❛t❤s ✭s❡❡ ❬✸✶❪ ❛♥❞ ❬✸✷❪✮✳ ■t ✐s ❦♥♦✇♥✱ ❜✉t ♥♦t ❝♦♠♣❧❡t❡❧② tr✐✈✐❛❧✱ t❤❛t(−∆)α r❡❞✉❝❡s t♦ t❤❡ st❛♥❞❛r❞ ▲❛♣❧❛❝✐❛♥✐❢α1

(12)

✭s❡❡ ❬✶✼❪✮✳ ❚❤✉s✱ ✇❤❡♥ α = 1✱ t❤❡ ▲é✈② ❞②♥❛♠✐❝s ❜❡❝♦♠❡s t❤❡ ❇r♦✇♥✐❛♥ ❞②♥❛♠✐❝s✱

❛♥❞ ❊q✉❛t✐♦♥ ✭✵✳✷✮ r❡❞✉❝❡s t♦ t❤❡ ❝❧❛ss✐❝❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛t✐♦♥

i∂ψ

∂t =−∆ψ+ (V(x) +ω)ψ−f(x, ψ), (x, t)∈R

N ×R.

▼♦t✐✈❛t❡❞ ❜② ❊q✉❛t✐♦♥ ✭✵✳✷✮✱ s❡✈❡r❛❧ st✉❞✐❡s ❤❛✈❡ ❜❡❡♥ ♣❡r❢♦r♠❡❞ ❢♦r ❡❧❧✐♣t✐❝ ❡q✉❛t✐♦♥s ✐♥✈♦❧✈✐♥❣ t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r✳ ■♥ t❤❡ s❡q✉❡❧✱ ✇❡ ✇✐❧❧ ❧✐st s♦♠❡ ♣❛♣❡rs r❡❧❛t❡❞ ✇✐t❤ t❤❡ ❡①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s t♦ ❊q✉❛t✐♦♥ ✭✵✳✶✮ t❤❛t ♠❛② ❜❡ ❢♦✉♥❞ ✐♥ t❤❡ ❧✐t❡r❛t✉r❡✳

▲❡t ✉s ❜❡❣✐♥ ✇✐t❤ t❤❡ ♣r♦❣r❡ss ✐♥✈♦❧✈✐♥❣ s✉❜❝r✐t✐❝❛❧ ♥♦♥❧✐♥❡❛r✐t✐❡s✳ ❯s✐♥❣ t❤❡ ◆❡❤❛r✐ ✈❛r✐❛t✐♦♥❛❧ ♣r✐♥❝✐♣❧❡✱ ✐♥ ❬✶✶❪✱ ❈❤❡♥❣ ♣r♦✈❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ♥♦♥tr✐✈✐❛❧ s♦❧✉t✐♦♥ ♦❢ t❤❡ ❢r❛❝t✐♦♥❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛t✐♦♥

(−∆)αu+V(x)u=|u|q−2u, x∈RN, ✭✵✳✸✮

✇✐t❤ 2 < q < 2∗

α ✐❢ N > 2α ♦r 2 < q < ∞ ✐❢ N ≤ 2α✱ ✇❤❡r❡ 2∗α := 2N/(N −2α)

✐s t❤❡ ❝r✐t✐❝❛❧ ❙♦❜♦❧❡✈ ❡①♣♦♥❡♥t✳ ●r♦✉♥❞ st❛t❡s ❛r❡ ❢♦✉♥❞ ❜② ✐♠♣♦s✐♥❣ ❛ ❝♦❡r❝✐✈✐t② ❛ss✉♠♣t✐♦♥ ♦♥ V(x)✱

lim

|x|→+∞V(x) = +∞. ✭✵✳✹✮

■♥ ❬✹✶❪✱ ❙❡❝❝❤✐ ♣r♦✈❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ♥♦♥tr✐✈✐❛❧ s♦❧✉t✐♦♥ ✉♥❞❡r ❧❡ss r❡str✐❝t✐✈❡ ❛ss✉♠♣t✐♦♥s ♦♥ f(x, u)✳ ❍❡ ♦❜t❛✐♥❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ❣r♦✉♥❞ st❛t❡ ❜② t❤❡ ♠❡t❤♦❞

✉s❡❞ ✐♥ ❬✷✹❪✳ ■t ✐s ✇♦rt❤✇❤✐❧❡ t♦ ♥♦t✐❝❡ t❤❛t ✐♥ ❬✶✶❪ ❛♥❞ ❬✹✶❪ t❤❡ ❤②♣♦t❤❡s✐s ✭✵✳✹✮ ✐s ❛ss✉♠❡❞ ♦♥ V(x) ✐♥ ♦r❞❡r t♦ ♦✈❡r❝♦♠❡ t❤❡ ♣r♦❜❧❡♠ ♦❢ ❧❛❝❦ ♦❢ ❝♦♠♣❛❝t♥❡ss✱ t②♣✐❝❛❧ ♦❢

❡❧❧✐♣t✐❝ ♣r♦❜❧❡♠s ❞❡✜♥❡❞ ✐♥ ✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥s✳ ■♥ ❬✶✽❪✱ ❉✐♣✐❡rr♦ ❡t ❛❧✳ ❝♦♥s✐❞❡r❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ r❛❞✐❛❧❧② s②♠♠❡tr✐❝ s♦❧✉t✐♦♥s ♦❢ ✭✵✳✸✮ ✐♥ t❤❡ s✐t✉❛t✐♦♥ ✇❤❡r❡V(x)❞♦❡s ♥♦t

❞❡♣❡♥❞ ❡①♣❧✐❝✐t❧② ♦♥ t❤❡ s♣❛❝❡ ✈❛r✐❛❜❧❡x✳ ❋♦r t❤❡ ✜rst t✐♠❡✱ ✉s✐♥❣ r❡❛rr❛♥❣❡♠❡♥t t♦♦❧s

❛♥❞ ❢♦❧❧♦✇✐♥❣ t❤❡ ✐❞❡❛s ♦❢ ❇❡r❡st②❝❦✐ ❛♥❞ ▲✐♦♥s ❬✺❪✱ t❤❡ ❛✉t❤♦rs ♣r♦✈❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ♥♦♥tr✐✈✐❛❧✱ r❛❞✐❛❧❧② s②♠♠❡tr✐❝ s♦❧✉t✐♦♥ t♦

(−∆)αu+u=|u|q−2u, x∈RN,

✇❤❡r❡2< q <2∗

α ✐❢ N >2α ♦r2< q <∞ ✐❢ N ≤2α✳

❆❢t❡r t❤❡ ♣✐♦♥❡❡r✐♥❣ ✇♦r❦s ❜② ❇r❡③✐s ❛♥❞ ◆✐r❡♥❜❡r❣ ✐♥ ❬✽❪✱ ❡❧❧✐♣t✐❝ ♣r♦❜❧❡♠s ✇✐t❤ ❝r✐t✐❝❛❧ ❣r♦✇t❤ ❤❛✈❡ ❤❛❞ ♠❛♥② ♣r♦❣r❡ss❡s ✐♥ s❡✈❡r❛❧ ❞✐r❡❝t✐♦♥s✳ ❋♦r t❤❡ ❢r❛❝t✐♦♥❛❧

(13)

▲❛♣❧❛❝✐❛♥✱ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ♠❡♥t✐♦♥ ❬✷✶✱ ✷✽✱ ✹✸❪ ❛♥❞ t❤❡ r❡❢❡r❡♥❝❡s t❤❡r❡✐♥✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ ❙❤❛♥❣ ❡t ❛❧✳ ✐♥ ❬✹✸❪ ❝♦♥s✐❞❡r❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s ❢♦r t❤❡ ♣r♦❜❧❡♠

(−∆)αu+V(x)u=|u|2∗α−2u+λ|u|q−2u, xRN,

✇❤❡r❡ λ > 0 ✐s ❛ ♣❛r❛♠❡t❡r✱ 2 < q < 2∗

α ❛♥❞ N > 2α✳ ❚❤❡ ♣♦t❡♥t✐❛❧ V : RN → R ✐s

❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ s❛t✐s❢②✐♥❣ 0 < infx∈RNV(x) = V0 < lim inf|x|→+∞V(x) = V∞✱

✇❤❡r❡V∞<∞✳ ❚❤✐s ❦✐♥❞ ♦❢ ❤②♣♦t❤❡s✐s ✇❛s ✜rst ✐♥tr♦❞✉❝❡❞ ❜② ❘❛❜✐♥♦✇✐t③ ✐♥ ❬✹✵❪✳

❏✳ ▼✳ ❞♦ Ó ❡t ❛❧✳ ✐♥ ❬✷✶❪ ♣r♦✈❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ s♦❧✉t✐♦♥ ♦❢ t❤❡ ❢r❛❝t✐♦♥❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛t✐♦♥

(−∆)αu+V(x)u=|u|2α∗−2u+K(x)f(u), xRN,

✇❤❡r❡V✱ K ❛r❡ ❝♦♥t✐♥✉♦✉s✱ V, K >0✐♥ RN ✇✐t❤ V(x)0, K(x)0✱ ❛s |x| →+

❛♥❞ f(u) ❜❡❤❛✈❡s ❧✐❦❡ |u|q−2u ❛t ✐♥✜♥✐t②✱ ❢♦r s♦♠❡2< q <2

α ❛♥❞ N >2α✳ ▼♦r❡♦✈❡r✱

f(u) s❛t✐s✜❡s t❤❡ s♦✲❝❛❧❧❡❞ ❆♠❜r♦s❡tt✐✕❘❛❜✐♥♦✇✐t③ ❝♦♥❞✐t✐♦♥✱ ♥❛♠❡❧②✱

✭❆❘✮ t❤❡r❡ ❡①✐stsµ∈(2,2∗α) ✇✐t❤0< µF(s)≤sf(s) ❢♦r ❛❧❧s6= 0, F(s) =

s

Z

0

f(t)dt.

❲✐t❤ r❡s♣❡❝t t♦ t❤❡ ❣r♦✇t❤ ♦❢ t❤❡ ♥♦♥❧✐♥❡❛r✐t② ✐♥ ♣r♦❜❧❡♠s ♦❢ t❤❡ t②♣❡ ✭✵✳✶✮ ✐♥ t❤❡ ❧✐♠✐t✐♥❣ ❝❛s❡ N = 2α✱ ❢♦r N = 1 ❛♥❞ α = 1/2✱ t❤❡r❡ ❡①✐sts ❛ s♣❡❝✐❛❧ s✐t✉❛t✐♦♥

♠♦t✐✈❛t❡❞ ❜② t❤❡ ❚r✉❞✐♥❣❡r✲▼♦s❡r ✐♥❡q✉❛❧✐t②✳ Pr❡❝✐s❡❧②✱ ✐t ✐s ❦♥♦✇♥ t❤❛t t❤❡ ❡♠❜❡❞✲ ❞✐♥❣ H1/2(R) ֒ Lq(R) ✐s ❝♦♥t✐♥✉♦✉s ❢♦r ❛♥② q [2,+)✱ ❜✉t H1/2(R) ✐s ♥♦t ❝♦♥t✐✲

♥✉♦✉s❧② ❡♠❜❡❞❞❡❞ ✐♥L∞(R)✳ ❍♦✇❡✈❡r✱ ❚✳ ❖③❛✇❛ ❬✸✾❪ ❛♥❞ ❍✳ ❑♦③♦♥♦✱ ❚✳ ❙❛t♦ ❛♥❞ ❍✳

❲❛❞❛❞❡ ❬✷✾❪ ♣r♦✈❡❞ ❛ ✈❡rs✐♦♥ ♦❢ t❤❡ ❚r✉❞✐♥❣❡r✲▼♦s❡r ✐♥❡q✉❛❧✐t②✳ ▼♦r❡ ♣r❡❝✐s❡❧②✱ t❤❡② ♣r♦✈❡❞ t❤❛t t❤❡r❡ ❡①✐st ♣♦s✐t✐✈❡ ❝♦♥st❛♥tsω ❛♥❞ C s✉❝❤ t❤❛t✱ ❢♦r ❛❧❧ u∈H1/2(R)✇✐t❤

k(−∆)1/4uk 2 ≤1✱

Z

R

(eβu2 −1) dx≤Ckuk22, ❢♦r ❛❧❧ β ∈(0, ω]. ✭✵✳✺✮

❈♦♥s❡q✉❡♥t❧②✱ t❤❡ ♠❛①✐♠❛❧ ❣r♦✇t❤ ✇❤✐❝❤ ❛❧❧♦✇s ✉s t♦ tr❡❛t ✭✵✳✶✮ ✈❛r✐❛t✐♦♥❛❧❧② ✐♥

H1/2(R) ✐s ♦❢ t❤❡ t②♣❡ ❡①♣♦♥❡♥t✐❛❧✳

■♥❡q✉❛❧✐t② ✭✵✳✺✮ ♣❧❛②s ❛ ❝r✉❝✐❛❧ r♦❧❡ ✐♥ t❤❡ st✉❞② ♦❢ ♣r♦❜❧❡♠s t❤❛t ✐♥✈♦❧✈❡❞ ♥♦♥✲ ❧✐♥❡❛r✐t✐❡s ✇✐t❤ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤✳ ❋♦r ✇♦r❦s ✐♥✈♦❧✈✐♥❣ t❤✐s t②♣❡ ♦❢ ♥♦♥❧✐♥❡❛r✐t✐❡s✱ ✇❡

(14)

✇♦✉❧❞ ❧✐❦❡ t♦ ♠❡♥t✐♦♥ t✇♦ ♣❛♣❡rs✱ ❬✷✸❪ ❛♥❞ ❬✷✺❪✳ ❏✳ ▼✳ ❞♦ Ó ❡t ❛❧✳ ✐♥ ❬✷✸❪ ♣r♦✈❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ s♦❧✉t✐♦♥ ❢♦r t❤❡ ❢r❛❝t✐♦♥❛❧ ❙❝❤rö❞✐♥❣❡r ❡q✉❛t✐♦♥

(−∆)1/2u+u=K(x)g(u),

✇❤❡r❡ K ✐s ❛ ♣♦s✐t✐✈❡ ❢✉♥❝t✐♦♥ ✇❤✐❝❤ ❝❛♥ ✈❛♥✐s❤ ❛t ✐♥✜♥✐t② ❛♥❞ g ❤❛s ❡①♣♦♥❡♥t✐❛❧

❣r♦✇t❤✳ ■❛♥♥✐③③♦tt♦ ❛♥❞ ❙q✉❛ss✐♥❛✱ ✐♥ ❬✷✺❪✱ ❝♦♥s✐❞❡r❡❞ t❤❡ ❡①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s ❢♦r

t❤❡ ♣r♦❜❧❡♠

 

(−∆)1/2u=f(u) ✐♥ (0,1),

u= 0 ✐♥ R\(0,1),

✇❤❡r❡ t❤❡ ♥♦♥❧✐♥❡❛r✐t② ❤❛s ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤✳

▼♦t✐✈❛t❡❞ ❜② t❤❡s❡ st✉❞✐❡s ❛♥❞ t❛❦✐♥❣ ✐♥t♦ ❝♦♥s✐❞❡r❛t✐♦♥ t❤❡ ❜❡❤❛✈✐♦r ♦❢ t❤❡ ♣♦t❡♥t✐❛❧ V(x) ❛♥❞ t❤❡ t②♣❡s ♦❢ ♥♦♥❧✐♥❡❛r✐t② f(x, s)✱ ✐♥ t❤✐s ✇♦r❦ ✇❡ ♦❜t❛✐♥ s♦♠❡

r❡s✉❧ts ♦❢ ❡①✐st❡♥❝❡ ❛♥❞ ♠✉❧t✐♣❧✐❝✐t② ♦❢ s♦❧✉t✐♦♥s t♦ ❊q✉❛t✐♦♥ ✭✵✳✶✮✳ Pr❡❝✐s❡❧②✿

■♥ ❈❤❛♣t❡r ✶✱ ✇❡ tr❡❛t t❤❡ ❧✐♠✐t✐♥❣ ❝❛s❡ N = 1✱ α = 1/2✱ ♠♦r❡ s♣❡❝✐✜❝❛❧❧②✱ ✇❡

st✉❞② t❤❡ ❡q✉❛t✐♦♥

(−∆)1/2u+V(x)u=f(x, u) +h ✐♥ R, ✭✵✳✻✮

✇❤❡r❡ (−∆)1/2 ✐s ❞❡✜♥❡❞ ✐♥ t❤❡ ❙❡❝t✐♦♥ ✶✱ V : R R ✐s ❛ ❝♦♥t✐♥✉♦✉s ♣♦t❡♥t✐❛❧✱ h

❜❡❧♦♥❣s t♦ t❤❡ ❞✉❛❧ ♦❢ ❛♥ ❛♣♣r♦♣r✐❛t❡ ❢✉♥❝t✐♦♥❛❧ s♣❛❝❡✱ s❡❡ ❙❡❝t✐♦♥ ✶✱ ❛♥❞f :R×RR

✐s ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ t❤❛t ❤❛s ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤✱ t❤❛t ✐s✱ t❤❡r❡ ❡①✐stsβ0 >0

s✉❝❤ t❤❛t

lim

|s|→+∞f(x, s)e −β|s|2

=     

0, ❢♦r ❛❧❧ β > β0, +∞, ❢♦r ❛❧❧ β < β0,

✉♥✐❢♦r♠❧② ✐♥x∈R✳

❲❡ ❝♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ❤②♣♦t❤❡s❡s ✉♥❞❡r V(x)✿

(V1) t❤❡r❡ ❡①✐sts ❛ ♣♦s✐t✐✈❡ ❝♦♥st❛♥t B s✉❝❤ t❤❛t V(x)≥ −B✱ ❢♦r ❛❧❧ x∈R❀ (V2) t❤❡ ✐♥✜♠✉♠

λ1 := infuX

kuk2=1

 1

Z

R2

(u(x)−u(y))2

|x−y|2 dxdy+ Z

R

V(x)u2dx  

✐s ♣♦s✐t✐✈❡❀

(15)

(V3) lim R→∞ν(

R\BR) = +✱ ✇❤❡r❡

ν(G) =       

inf

u∈X0(G) kuk2=1

1 2π

Z

R2

(u(x)−u(y))2

|x−y|2 dxdy+ Z

G

V(x)u2dx ✐❢ G6=∅;

∞ ✐❢ G=∅.

❍❡r❡ G✐s ❛♥ ♦♣❡♥ s❡t ✐♥R ❛♥❞ X0(G) ={uX : u= 0 ✐♥ R\G}✱ ✇❤❡r❡ X

✐s ❞❡✜♥❡❞ ✐♥ ✭✶✳✸✮✳

■t ✐s ✐♠♣♦rt❛♥t t♦ ♦❜s❡r✈❡ t❤❛t t❤❡ ❛ss✉♠♣t✐♦♥s(V1)−(V3) ❛❧❧♦✇ t❤❛t t❤❡ ♣♦t❡♥t✐❛❧s

♠❛② ❝❤❛♥❣❡ s✐❣♥✳

■♥ ♦r❞❡r t♦ ✉s❡ ❛ ✈❛r✐❛t✐♦♥❛❧ ❛♣♣r♦❛❝❤✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ❛ss✉♠♣t✐♦♥s ❛❜♦✉t f(x, s)✿

(f1) 0≤lim s→0

f(x, s)

s < λ1✱ ✉♥✐❢♦r♠❧② ✐♥ x❀

(f2) f ✐s ❧♦❝❛❧❧② ❜♦✉♥❞❡❞ ✐♥ s✱ t❤❛t ✐s✱ ❢♦r ❛♥② ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧ J ⊂ R✱ t❤❡r❡ ❡①✐sts

C > 0 s✉❝❤ t❤❛t|f(x, s)| ≤C✱ ❢♦r ❡✈❡r② (x, s)∈R×J

(f3) t❤❡r❡ ❡①✐sts θ >2 s✉❝❤ t❤❛t

0< θF(x, s) :=θ

s

Z

0

f(x, t) dt≤sf(x, s), ❢♦r ❛❧❧ (x, s)∈R×R\ {0};

(f4) t❤❡r❡ ❡①✐st ❝♦♥st❛♥ts s0, M0 >0s✉❝❤ t❤❛t

0< F(x, s)≤M0|f(x, s)|, ❢♦r ❛❧❧ |s| ≥s0 ❛♥❞ x∈R;

(f5) t❤❡r❡ ❡①✐st ❝♦♥st❛♥ts p >2 ❛♥❞ Cp s✉❝❤ t❤❛t✱ ❢♦r ❛❧❧ s≥0 ❛♥❞ x∈R✱

f(x, s)≥Cpsp−1,

✇✐t❤ Cp >

α0(p−2) 2πκωp

(p−2)/2

Sp

p✱ ✇❤❡r❡

Sp := inf

u∈X kukp=1

 1

Z

R2

(u(x)−u(y))2

|x−y|2 dxdy+ Z

R

V(x)u2dx

 

1/2

,

❛♥❞ κ ✐s ❣✐✈❡♥ ✐♥ ✭✶✳✼✮✳

(16)

❚❤❡♦r❡♠ ✵✳✶✳ ❙✉♣♣♦s❡ t❤❛t (V1)−(V3)❛♥❞ (f1)−(f5) ❤♦❧❞✳ ❚❤❡♥ t❤❡r❡ ❡①✐stsδ1 >0

s✉❝❤ t❤❛t ❢♦r ❡❛❝❤ 0< khk∗ < δ1✱ ♣r♦❜❧❡♠ ✭✵✳✻✮ ❤❛s ❛t ❧❡❛st t✇♦ ✇❡❛❦ s♦❧✉t✐♦♥s✳ ❖♥❡

♦❢ t❤❡♠ ✇✐t❤ ♣♦s✐t✐✈❡ ❡♥❡r❣②✱ ❛♥❞ t❤❡ ♦t❤❡r ♦♥❡ ✇✐t❤ ♥❡❣❛t✐✈❡ ❡♥❡r❣②✳

❚❤❡♦r❡♠ ✵✳✷✳ ❙✉♣♣♦s❡ t❤❛t (V1)−(V3) ❛♥❞ (f1)−(f5) ❤♦❧❞✳ ■❢ h ≡ 0 ✭✐✳❡✳✱ t❤❡r❡ ✐s

♥♦ ♣❡rt✉r❜❛t✐♦♥ ✐♥ ✭✵✳✻✮✮ t❤❡♥ ♣r♦❜❧❡♠ ✭✵✳✻✮ ❤❛s ❛ ✇❡❛❦ s♦❧✉t✐♦♥ ✇✐t❤ ♣♦s✐t✐✈❡ ❡♥❡r❣②✳ ■♥ ♦r❞❡r t♦ ♣r♦✈❡ ❚❤❡♦r❡♠s ✵✳✶ ❛♥❞ ✵✳✷✱ ✇❡ ♥❡❡❞ t♦ ❝❤❡❝❦ s♦♠❡ ❝♦♥❞✐t✐♦♥s ❝♦♥✲ ❝❡r♥✐♥❣ t❤❡ ♠♦✉♥t❛✐♥ ♣❛ss ❣❡♦♠❡tr② ❛♥❞ t❤❡ ❝♦♠♣❛❝t♥❡ss ♦❢ t❤❡ ❛ss♦❝✐❛t❡❞ ❢✉♥❝t✐♦♥❛❧✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ ✇❡ s❤♦✇ t❤❛t t❤❡ ❢✉♥❝t✐♦♥❛❧ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ♣r♦❜❧❡♠ s❛t✐s✜❡s t❤❡ P❛❧❛✐s✲❙♠❛❧❡ ❝♦♥❞✐t✐♦♥✳ ❚❤❡♥ ✇❡ ✉s❡ ♠✐♥✐♠✐③❛t✐♦♥ t♦ ✜♥❞ t❤❡ ✜rst s♦❧✉t✐♦♥ ✇✐t❤ ♥❡❣❛t✐✈❡ ❡♥❡r❣② ❛♥❞ t❤❡ ▼♦✉♥t❛✐♥ P❛ss ❚❤❡♦r❡♠ t♦ ♦❜t❛✐♥ t❤❡ ❡①✐st❡♥❝❡ ♦❢ t❤❡ s❡❝♦♥❞ s♦❧✉t✐♦♥ ✇✐t❤ ♣♦s✐t✐✈❡ ❡♥❡r❣②✳ ❚❤❡ ♠❛✐♥ ❞✐✣❝✉❧t✐❡s ❧✐❡ ✐♥ t❤❡ ♥♦♥❧♦❝❛❧ ♦♣❡r❛t♦r ✐♥✈♦❧✈❡❞ ❛♥❞ ✐♥ t❤❡ ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ♦❢ t❤❡ ♥♦♥❧✐♥❡❛r✐t②✳

❖✉r r❡s✉❧ts ❝♦♠♣❧❡♠❡♥t t❤❡ ✇♦r❦ ✐♥ ❬✷✺❪ s✐♥❝❡ ✇❡ ❝♦♥s✐❞❡r❡❞ t❤❛t t❤❡ ❞♦♠❛✐♥ ✐s ❛❧❧ R✳ ■t ❛❧s♦ ❝♦♠♣❧❡♠❡♥t ❬✶✶✱ ✷✸✱ ✹✶✱ ✹✷❪✱ ♦♥❝❡ ✇❡ ✇♦r❦ ✇✐t❤ ♥♦♥❧✐♥❡❛r✐t✐❡s ♠♦r❡

❣❡♥❡r❛❧ t❤❛♥ t❤♦s❡ tr❡❛t❡❞ ❜② t❤❡♠ ❛♥❞ ♣♦t❡♥t✐❛❧s t❤❛t ♠❛② ❝❤❛♥❣❡ s✐❣♥✱ ✈❛♥✐s❤ ❛♥❞ ❜❡ ✉♥❜♦✉♥❞❡❞✳

■♥ ❈❤❛♣t❡r ✷✱ ✇❡ ❞❡❛❧ ✇✐t❤ t❤❡ ♣r♦❜❧❡♠ ♦❢ ❡①✐st❡♥❝❡ ♦❢ ✇❡❛❦ s♦❧✉t✐♦♥s t♦ ❛ ❝❧❛ss ♦❢ ❡q✉❛t✐♦♥s s✐♠✐❧❛r t♦ t❤♦s❡ t❤❛t ✇❡ st✉❞✐❡❞ ✐♥ ❈❤❛♣t❡r ✶✱ ✇❤❡r❡ V ✐s ❛ ❜♦✉♥❞❡❞

♣♦t❡♥t✐❛❧ t❤❛t ❜❡❧♦♥❣s t♦ ❛ ❞✐✛❡r❡♥t ❝❧❛ss ♦❢ t❤♦s❡ tr❡❛t❡❞ t❤❡r❡✐♥✳ ❲❡ st✉❞② t✇♦ ❝❧❛ss ♦❢ ♣r♦❜❧❡♠s✿

❚❤❡ ✜rst ♦♥❡ ✭❛ ♣❡r✐♦❞✐❝ ♣r♦❜❧❡♠✮ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✱

  

(−∆)1/2u+V

0(x)u=f0(x, u) ✐♥ R,

u∈H1/2(R) ❛♥❞ u0. ✭P0✮

❲❡ ❝♦♥s✐❞❡r t❤❛t t❤❡ ❢✉♥❝t✐♦♥ V0 : R → (0,+∞) ✐s ❛ ❝♦♥t✐♥✉♦✉s 1−♣❡r✐♦❞✐❝

❢✉♥❝t✐♦♥ ❛♥❞ f0 : R×R → R ✐s ❛ ❝♦♥t✐♥✉♦✉s 1−♣❡r✐♦❞✐❝ ❢✉♥❝t✐♦♥ ✐♥ x✱ ✇❤✐❝❤ ❤❛s

❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✐♥u✳ ❙✐♥❝❡ ✇❡ ❛r❡ ✐♥t❡r❡st❡❞ ✐♥ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ♥♦♥♥❡❣❛t✐✈❡

s♦❧✉t✐♦♥s✱ ✇❡ s❡t f0(x, s) = 0 ❢♦r ❛❧❧ (x, s) ∈ R×(−∞,0]✳ ❲❡ ❛❧s♦ ❛ss✉♠❡ t❤❛t t❤❡

♥♦♥❧✐♥❡❛r✐t②f0(x, u)s❛t✐s✜❡s t❤❡ ❝♦♥❞✐t✐♦♥s

(f0,1) lim s→0

f0(x, s)

s = 0 ✉♥✐❢♦r♠❧② ✐♥x∈R❀

(17)

(f0,2) t❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥t θ > 2s✉❝❤ t❤❛t

0< θF0(x, s) := θ s

Z

0

f0(x, t) dt≤sf0(x, s), ❢♦r ❛❧❧ (x, s)∈R×(0,+∞);

(f0,3) ❢♦r ❡❛❝❤ ✜①❡❞ x∈R✱ t❤❡ ❢✉♥❝t✐♦♥ f0(x, s)/s ✐s ✐♥❝r❡❛s✐♥❣ ✇✐t❤ r❡s♣❡❝t t♦ s ∈R❀ (f0,4) t❤❡r❡ ❛r❡ ❝♦♥st❛♥ts p > 2❛♥❞ Cp >0s✉❝❤ t❤❛t

f0(x, s)≥Cpsp−1, ❢♦r ❛❧❧ (x, s)∈R×[0,+∞),

✇❤❡r❡

Cp >

(p−2)θα0 (θ−2)pω

(p−2)/2

Spp

❛♥❞

Sp := inf

u∈H1/2(R) kukp=1

 1

Z

R2

|u(x)−u(y)|2

|x−y|2 dxdy+kVk∞ Z

R

u2dx

 

1/2

.

❯♥❞❡r t❤❡s❡ ❛ss✉♠♣t✐♦♥s ✇❡ ❤❛✈❡ t❤❡ ✜rst r❡s✉❧t ♦❢ ❈❤❛♣t❡r ✷✿

❚❤❡♦r❡♠ ✵✳✸✳ ❆ss✉♠❡ t❤❛t(f0,1)−(f0,4)❤♦❧❞✳ ❚❤❡♥ ✭P0✮ ❤❛s ❛ ♥♦♥♥❡❣❛t✐✈❡ ♥♦♥tr✐✈✐❛❧

✇❡❛❦ s♦❧✉t✐♦♥✳

❚❤❡ s❡❝♦♥❞ ♣r♦❜❧❡♠ ✭❛s②♠♣t♦t✐❝❛❧❧② ♣❡r✐♦❞✐❝✮ t❤❛t ✇❡ st✉❞② ✐♥ t❤✐s ❝❤❛♣t❡r ✐s

  

(−∆)1/2u+V(x)u=f(x, u) ✐♥ R,

u∈H1/2(R) ❛♥❞ u0, ✭P✮

♦♥ ✇❤✐❝❤ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥s ♦♥ t❤❡ ❢✉♥❝t✐♦♥ V(x)✿

(V1) V :R→[0,+∞)✐s ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ s❛t✐s❢②✐♥❣ t❤❡ ❝♦♥❞✐t✐♦♥s✿ V(x)≤V0(x)

❢♦r ❛♥② x∈R ❛♥❞ V0(x)V(x)0❛s |x| → ∞

❲❡ ❛ss✉♠❡ t❤❛t t❤❡ ♥♦♥❧✐♥❡❛r✐t② f : R×R R ✐s ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ t❤❛t

❤❛s ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✐♥ s✱ f(x, s) = 0 ❢♦r ❛❧❧ (x, s)∈ R×(−∞,0] ❛♥❞ ❛❧s♦

s❛t✐s✜❡s✿

(f1) f(x, s)≥f0(x, s)❢♦r ❛❧❧(x, s)∈R×[0,+∞)✱ ❛♥❞ ❢♦r ❛❧❧ε >0✱ t❤❡r❡ ❡①✐stsη >0

s✉❝❤ t❤❛t ❢♦r s≥0 ❛♥❞ |x| ≥η✱

|f(x, s)−f0(x, s)| ≤εeα0s

2

;

(18)

(f2) lim s→0

f(x, s)

s = 0 ✉♥✐❢♦r♠❧② ✐♥x∈R❀

(f3) t❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥t µ >2 s✉❝❤ t❤❛t

0< µF(x, s) :=µ

s

Z

0

f(x, t) dt≤sf0(x, s), ❢♦r ❛❧❧ (x, s)∈R×(0,+∞);

(f4) ❢♦r ❡❛❝❤ ✜①❡❞ x∈R✱ t❤❡ ❢✉♥❝t✐♦♥ f(x, s)/s ✐s ✐♥❝r❡❛s✐♥❣ ✇✐t❤ r❡s♣❡❝t t♦ s∈R❀ (f5) ❛t ❧❡❛st ♦♥❡ ♦❢ t❤❡ ♥♦♥♥❡❣❛t✐✈❡ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s V0(x)−V(x) ❛♥❞ f(x, s)−

f0(x, s) ✐s ♣♦s✐t✐✈❡ ♦♥ ❛ s❡t ♦❢ ♣♦s✐t✐✈❡ ♠❡❛s✉r❡✳

❚❤❡ s❡❝♦♥❞ r❡s✉❧t ♦❢ ❈❤❛♣t❡r ✷ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿

❚❤❡♦r❡♠ ✵✳✹✳ ❆ss✉♠❡ t❤❛t (V1) ❛♥❞ (f1)−(f5) ❤♦❧❞✳ ❚❤❡♥ ✭P✮ ❤❛s ❛ ♥♦♥♥❡❣❛t✐✈❡

♥♦♥tr✐✈✐❛❧ ✇❡❛❦ s♦❧✉t✐♦♥✳

■♥ ♦r❞❡r t♦ ♣r♦✈❡ ♦✉r r❡s✉❧ts✱ ✇❡ s❤♦✇ t❤❛t t❤❡ ✇❡❛❦ ❧✐♠✐t ♦❢ ❛♥ ❛♣♣r♦♣r✐❛t❡ s❡q✉❡♥❝❡ ♦❢ P❛❧❛✐s ❙♠❛❧❡ ✐s ❛ ✇❡❛❦ s♦❧✉t✐♦♥ ♦❢ t❤❡ ♣r♦❜❧❡♠ ❛♥❞ ✇❡ ✉s❡ ❛ ✈❡rs✐♦♥ ♦❢ t❤❡ ❈♦♥❝❡♥tr❛t✐♦♥✲❈♦♠♣❛❝t♥❡ss Pr✐♥✐♣❧❡ ❞✉❡ t♦ ▲✐♦♥s t♦ s❤♦✇ t❤❛t t❤✐s ❧✐♠✐t ✐s ♥♦♥tr✐✈✐❛❧✳ ❲❡ ♣♦✐♥t ♦✉t t❤❛t ♦✉r r❡s✉❧ts ❝♦♠♣❧❡t❡ t❤❡ st✉❞② ♣r❡s❡♥t❡❞ ✐♥ ❬✷✷✱ ✷✸❪✱ s✐♥❝❡ ✇❡ ✇♦r❦ ✇✐t❤ ❛ ❣❡♥❡r❛❧ ❝❧❛ss ♦❢ ❢✉♥❝t✐♦♥s ✇❤✐❝❤ ❛r❡ ❛s②♠♣t♦t✐❝ t♦ ❛ ♥♦♥❛✉t♦♥♦♠♦✉s ♣❡r✐♦❞✐❝ ❢✉♥❝t✐♦♥ ❛t ✐♥✜♥✐t②✳ ■t ❛❧s♦ ❝♦♠♣❧❡♠❡♥ts ❬✶✵✱ ✶✶✱ ✶✽✱ ✹✶❪✱ ♦♥❝❡ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❧✐♠✐t✐♥❣ ❝❛s❡ ❢♦rN = 1 ❛♥❞ α= 1/2✇❤❡♥ t❤❡ ♥♦♥❧✐♥❡❛r✐t② ❤❛s ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✐♥

t❤❡ s❡♥s❡ ♦❢ t❤❡ ❚r✉❞✐♥❣❡r✲▼♦s❡r ✐♥❡q✉❛❧✐t②✳ ▼♦r❡♦✈❡r✱ ✐t ❛❧s♦ ❝♦♠♣❧❡♠❡♥ts ❬✶✹❪✱ t❤❡ st✉❞② ♦❢ ❈❤❛♣t❡r ✶✱ ♦♥❝❡ ✇❡ ❝♦♥s✐❞❡r t❤❛t t❤❡ ♣♦t❡♥t✐❛❧ V(x) ❜❡❧♦♥❣s t♦ ❛ ❞✐✛❡r❡♥t

❝❧❛ss ❢r♦♠ t❤♦s❡ tr❡❛t❡❞ t❤❡r❡✳

■♥ ❈❤❛♣t❡r ✸✱ ♦✉r ♠❛✐♥ ❣♦❛❧ ✐s t♦ ❡st❛❜❧✐s❤✱ ✉♥❞❡r ❛♥ ❛s②♠♣t♦t✐❝ ♣❡r✐♦❞✐❝✐t② ❝♦♥❞✐t✐♦♥ ❛t ✐♥✜♥✐t②✱ t❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ✇❡❛❦ s♦❧✉t✐♦♥ ❢♦r t❤❡ ❝r✐t✐❝❛❧ ♣r♦❜❧❡♠

(−∆)αu+V(x)u=|u|2∗α−2u+g(x, u), xRN, ✭✵✳✼✮ ✇❤❡r❡0< α <1✱N >2α✱V :RN R❛♥❞ g :RN×RR❛r❡ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s✳

❈♦♥s✐❞❡r✐♥❣ F t❤❡ ❝❧❛ss ♦❢ ❢✉♥❝t✐♦♥s h ∈C(RN)L(RN) s✉❝❤ t❤❛t✱ ❢♦r ❡✈❡r②

ε >0✱ t❤❡ s❡t {x ∈ RN : |h(x)| ≥ ε} ❤❛s ✜♥✐t❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✱ ✇❡ ❛ss✉♠❡ t❤❛t V

s❛t✐s✜❡s✿

(19)

(V) t❤❡r❡ ❡①✐st ❛ ❝♦♥st❛♥t a0 > 0 ❛♥❞ ❛ ❢✉♥❝t✐♦♥ V0 ∈ C(RN)✱ 1−♣❡r✐♦❞✐❝ ✐♥ xi✱

1≤i≤N✱ s✉❝❤ t❤❛tV0−V ∈ F ❛♥❞

V0(x)≥V(x)≥a0 >0, ❢♦r ❛❧❧ x∈RN.

❈♦♥s✐❞❡r✐♥❣ G(x, s) =

s

R

0

g(x, t) dt✱ t❤❡ ♣r✐♠✐t✐✈❡ ♦❢g✱ ✇❡ ❛❧s♦ s✉♣♣♦s❡ t❤❡ ❢♦❧❧♦✇✲

✐♥❣ ❤②♣♦t❤❡s❡s✿

(g1) g(x, s) = o(|s|)✱ ❛s s→0+✱ ✉♥✐❢♦r♠❧② ✐♥ RN❀

(g2) t❤❡r❡ ❡①✐st ❝♦♥st❛♥ts a1, a2 >0❛♥❞ 2< q1 <2∗α s✉❝❤ t❤❛t

|g(x, s)| ≤a1+a2|s|q1−1, ❢♦r ❛❧❧ (x, s)∈RN ×[0,+∞);

(g3) t❤❡r❡ ❡①✐st ❛ ❝♦♥st❛♥t 2≤q2 <2∗α ❛♥❞ ❢✉♥❝t✐♦♥s h1 ∈L1(RN)✱h2 ∈ F s✉❝❤ t❤❛t 1

2g(x, s)s−G(x, s)≥ −h1(x)−h2(x)s

q2, ❢♦r ❛❧❧ (x, s)RN ×[0,+).

❚❤❡ ❛s②♠♣t♦t✐❝ ♣❡r✐♦❞✐❝✐t② ♦❢ g ❛t ✐♥✜♥✐t② ✐s ❣✐✈❡♥ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥✿

(g4) t❤❡r❡ ❡①✐st ❛ ❝♦♥st❛♥t 2 ≤ q3 ≤ 2∗α −1 ❛♥❞ ❢✉♥❝t✐♦♥s h3 ∈ F✱ g0 ∈ C(RN ×

R,(0,+))1✲♣❡r✐♦❞✐❝ ✐♥xi1iN✱ s✉❝❤ t❤❛t✿

(i) G(x, s)≥G0(x, s) = s

R

0

g0(x, t) dt✱ ❢♦r ❛❧❧ (x, s)∈RN ×[0,+∞); (ii) |g(x, s)−g0(x, s)| ≤h3(x)|s|q3−1✱ ❢♦r ❛❧❧ (x, s)∈RN ×[0,+∞);

(iii) t❤❡ ❢✉♥❝t✐♦♥ g0(x, s)/s ✐s ♥♦♥❞❡❝r❡❛s✐♥❣ ✐♥ t❤❡ ✈❛r✐❛❜❧❡ s > 0✱ ❢♦r ❡❛❝❤

x∈RN

❋✐♥❛❧❧②✱ ✇❡ ❛❧s♦ s✉♣♣♦s❡ t❤❛tg s❛t✐s✜❡s✿

(g5) t❤❡r❡ ❡①✐st ❛♥ ♦♣❡♥ ❜♦✉♥❞❡❞ s❡t Ω⊂RN✱ 2< p <2∗α ❛♥❞ C0 >0 s✉❝❤ t❤❛t (i) G(x, s)

sp →+∞✱ ❛s s→+∞✱ ✉♥✐❢♦r♠❧② ✐♥ Ω✱ ✐❢ N ≥4α❀

(ii) G(x, s)

sp →+∞✱ ❛s s →+∞✱ ✉♥✐❢♦r♠❧② ✐♥ Ω✱ ✐❢ 2α < N <4α ❛♥❞ 4α N−2α <

p < 2∗ α❀

(iii) G(x, s)≥C0sp❛❧♠♦st ❡✈❡r②✇❤❡r❡ ✐♥RN✱ ✐❢2α < N <4α❛♥❞2< p < N4α2α

(20)

❚❤❡♦r❡♠ ✵✳✺✳ ❆ss✉♠❡(V)✱ (g1)−(g5) ❛♥❞ t❤❛t ♦♥❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥ts ❤♦❧❞s✿

✭✶✮ N ≥4α

✭✷✮ 2α < N <4α ❛♥❞ 4α

N−2α < p <2 ∗ α

✭✸✮ 2α < N <4α ❛♥❞ 2< p < N4α2α✱ ✇✐t❤ C0 ❧❛r❣❡ ❡♥♦✉❣❤ ✐♥ (g5)✳

❚❤❡♥✱ ♣r♦❜❧❡♠ ✭✵✳✼✮ ❤❛s ❛ ♥♦♥♥❡❣❛t✐✈❡ ♥♦♥tr✐✈✐❛❧ ✇❡❛❦ s♦❧✉t✐♦♥✳

▼♦r❡♦✈❡r✱ ✐♥ t❤❡ ♣❛rt✐❝✉❧❛r ❝❛s❡✿ V =V0✱g =g0✱ ❝♦♥s✐❞❡r✐♥❣ t❤❡ ♣r♦❜❧❡♠

(−∆)αu+V0(x)u=|u|2

α−2u+g

0(x, u), x∈RN, ✭✵✳✽✮

✉♥❞❡r t❤❡ ❤②♣♦t❤❡s✐s✿

(V0) t❤❡ ❢✉♥❝t✐♦♥ V0 ∈ C(RN) ✐s 1✲♣❡r✐♦❞✐❝ ✐♥ xi✱ 1 ≤ i ≤ N✱ ❛♥❞ t❤❡r❡ ❡①✐sts ❛

❝♦♥st❛♥t a0 >0 s✉❝❤ t❤❛t

V0(x)≥a0 >0, ❢♦r ❛❧❧ ∈RN;

❛♥❞ t❤❡ ❢✉♥❝t✐♦♥ g0 s❛t✐s✜❡s (g1)−(g3) ❛♥❞ (g5)✱ ✇❡ st❛t❡✿

❚❤❡♦r❡♠ ✵✳✻✳ ❆ss✉♠❡ (V0)✱ (g1)−(g3)✱ (g5) ❛♥❞ t❤❛t ♦♥❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥ts

❤♦❧❞s✿ ✭✶✮ N ≥4α

✭✷✮ 2α < N <4α ❛♥❞ 4α

N−2α < p <2 ∗ α

✭✸✮ 2α < N <4α ❛♥❞ 2< p < N4α2α✱ ✇✐t❤ C0 ❧❛r❣❡ ❡♥♦✉❣❤ ✐♥ (g5)✳

❚❤❡♥✱ ♣r♦❜❧❡♠ ✭✵✳✽✮ ❤❛s ❛ ♥♦♥♥❡❣❛t✐✈❡ ♥♦♥tr✐✈✐❛❧ ✇❡❛❦ s♦❧✉t✐♦♥✳

❉✉❡ t♦ t❤❡ ❧♦ss ♦❢ ❝♦♠♣❛❝t♥❡ss✱ t❤❡ st✉❞② ♦❢ ❝r✐t✐❝❛❧ ♣r♦❜❧❡♠s ❤❛✈❡ s♦♠❡ ❛❞❞✐✲ t✐♦♥❛❧ ❞✐✣❝✉❧t✐❡s✳ ■♥ ♦r❞❡r t♦ ♦✈❡r❝♦♠❡ s✉❝❤ ❞✐✣❝✉❧t✐❡s✱ ✇❡ ❢♦❧❧♦✇ t❤❡ ✐❞❡❛s ♦❢ ❇r❡③✐s✲ ◆✐r❡♥❜❡r❣ ✭s❡❡ ❬✽❪✮✳ ❆♠♦♥❣ t❤❡ ❞✐✣❝✉❧t✐❡s ❢♦✉♥❞✱ ✇❡ ❝❛♥ ♠❡♥t✐♦♥ t❤❡ ❡st✐♠❛t✐♥❣ ♦❢ t❤❡ ♠✐♥✐♠❛① ❧❡✈❡❧ ❛♥❞ t❤❡ ❢❛❝t t❤❛t t❤❡ ❛ss♦❝✐❛t❡❞ ❢✉♥❝t✐♦♥❛❧ ✇✐t❤ ♣r♦❜❧❡♠ ✭✵✳✼✮ ❞♦❡s ♥♦t s❛t✐s❢② t❤❡ ❝♦♠♣❛❝t♥❡ss ❝♦♥❞✐t✐♦♥ ♦❢ P❛❧❛✐s✲❙♠❛❧❡ t②♣❡✳ ▼♦r❡♦✈❡r✱ ✇❡ ❛ss✉♠❡ t❤❛t t❤❡ s✉❜❝r✐t✐❝❛❧ ♣❡rt✉❜❛t✐♦♥g(x, u)❞♦❡s ♥♦t s❛t✐s❢② t❤❡ ✭❆❘✮ ❝♦♥❞✐t✐♦♥✱ t❤✐s ❝r❡❛t❡s ❛♥

❡①tr❛ ❞✐✣❝✉❧t② ✐♥ t❤❡ ♣r♦♦❢ ♦❢ t❤❡ ❧✐♠✐t❛t✐♦♥ ♦❢ ❈❡r❛♠✐ s❡q✉❡♥❝❡✳ ▲❛st❧②✱ ✇❡ ♣r♦✈❡ ❚❤❡♦r❡♠s ✵✳✺ ❛♥❞ ✵✳✻ ❜② ❝♦♠❜✐♥✐♥❣ t✇♦ ✈❡rs✐♦♥s ♦❢ t❤❡ ▼♦✉♥t❛✐♥ P❛ss ❚❤❡♦r❡♠ ❛♥❞ ❛ ✈❡rs✐♦♥ ♦❢ t❤❡ ❈♦♥❝❡♥tr❛t✐♦♥✲❈♦♠♣❛❝t♥❡ss Pr✐♥❝✐♣❧❡ ❞✉❡ t♦ ▲✐♦♥s✳

(21)

❖✉r r❡s✉❧ts ❝♦♠♣❧❡♠❡♥t t❤❡ st✉❞② ♠❛❞❡ ✐♥ ❬✶✵✱✷✶✱✹✸❪ ✐♥ t❤❡ s❡♥s❡ t❤❛t t❤❡ ♥♦♥✲ ❧✐♥❡❛r✐t② ❜❡❤❛✈❡s ❧✐❦❡ u2∗

α−1 +g(x, u)✱ ✇❤❡r❡ t❤❡ s✉❜❝r✐t✐❝❛❧ ♣❡rt✉r❜❛t✐♦♥ g(x, u) ❞♦❡s ♥♦t s❛t✐s❢② ✭❆❘✮ ❝♦♥❞✐t✐♦♥✳ ▼♦r❡♦✈❡r✱ ✇❡ ❛❧s♦ ❝♦♠♣❧❡♠❡♥t ❬✶✵✱ ✶✶✱ ✶✽✱ ✹✶❪ ✐♥ t❤❡ s❡♥s❡ t❤❛t t❤❡ ♣♦t❡♥t✐❛❧V(x) ❜❡❧♦♥❣s t♦ ❛ ❞✐✛❡r❡♥t ❝❧❛ss ❢r♦♠ t❤♦s❡ tr❡❛t❡❞ ❜② t❤❡♠✳

■♥ ♦r❞❡r t♦ ❞♦ ♥♦t ❣❡t r❡s♦rt✐♥❣ t♦ ■♥tr♦❞✉❝t✐♦♥✱ ❛♥❞✱ ❢♦r t❤❡ s❛❦❡ ♦❢ ✐♥❞❡♣❡♥✲ ❞❡♥❝❡ ♦❢ t❤❡ ❝❤❛♣t❡rs✱ ✇❡ ✇✐❧❧ ♣r❡s❡♥t ❛❣❛✐♥✱ ✐♥ ❡❛❝❤ ❝❤❛♣t❡r✱ t❤❡ ♠❛✐♥ r❡s✉❧ts ❛♥❞ t❤❡ ❤②♣♦t❤❡s❡s ❛❜♦✉t t❤❡ ❢✉♥❝t✐♦♥sV(x) ❛♥❞ f(x, u)✳

(22)

◆♦t❛t✐♦♥ ❛♥❞ t❡r♠✐♥♦❧♦❣②

■♥ t❤✐s ✇♦r❦ ✇❡ ✇✐❧❧ ✉s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ s②♠❜♦❧♦❣②✿

• C✱ C0✱C1✱ C2✱ ✳✳✳ ❞❡♥♦t❡ ♣♦s✐t✐✈❡ ❝♦♥st❛♥ts ✭♣♦ss✐❜❧② ❞✐✛❡r❡♥t✮❀

• supp(f) ❞❡♥♦t❡s t❤❡ s✉♣♣♦rt ♦❢ t❤❡ ❢✉♥❝t✐♦♥f❀

• BR(x) ❞❡♥♦t❡s ❛♥ ♦♣❡♥ ❜❛❧❧ ♦❢ r❛❞✐✉s R ❛♥❞ ❝❡♥t❡r x❀ BR ❞❡♥♦t❡s ❛♥ ♦♣❡♥ ❜❛❧❧

♦❢ r❛❞✐✉s R ❛♥❞ ❝❡♥t❡r ❛t ♦r✐❣✐♥ ❛♥❞ BR ✐s t❤❡ ❝❧♦s❡❞ ❜❛❧❧ ✇✐t❤ ❝❡♥t❡r ❛t ♦r✐❣✐♥

❛♥❞ r❛❞✐✉s R❀

• Bc

R ❞❡♥♦t❡s t❤❡ ❝♦♠♣❧❡♠❡♥t ♦❢ BR❀

• ⇀,→ ❞❡♥♦t❡ ✇❡❛❦ ❛♥❞ str♦♥❣ ❝♦♥✈❡r❣❡♥❝❡✱ r❡s♣❡❝t✐✈❡❧②✱ ✐♥ ❛ ♥♦r♠❡❞ s♣❛❝❡❀ • u+ = max{u,0} ❛♥❞ u= max{−u,0}

• XΩ ❞❡♥♦t❡s t❤❡ ❝❤❛r❛❝t❡r✐st✐❝ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ s❡t Ω❀

• k · k1/2 ❞❡♥♦t❡s t❤❡ ♥♦r♠ ✐♥ t❤❡ s♣❛❝❡ H1/2(R)❀

• k · k∗ ❞❡♥♦t❡s t❤❡ ♥♦r♠ ✐♥ t❤❡ t♦♣♦❧♦❣✐❝ ❞✉❛❧ s♣❛❝❡ X∗❀

• k · kp ❞❡♥♦t❡s t❤❡ st❛♥❞❛r❞ Lp(RN)✲♥♦r♠❀

• k · k∞ ❞❡♥♦t❡s t❤❡ st❛♥❞❛r❞ L∞(RN)✲♥♦r♠❀

(23)

❈❤❛♣t❡r ✶

❙❡♠✐❧✐♥❡❛r ❡❧❧✐♣t✐❝ ❡q✉❛t✐♦♥s ❢♦r t❤❡

❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r

✐♥✈♦❧✈✐♥❣ ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤

❚❤✐s ❝❤❛♣t❡r ✐s ❞❡✈♦t❡❞ t♦ t❤❡ ♣❛♣❡r ❬✶✹❪✱ ❤❡r❡ ✇❡ ❡st❛❜❧✐s❤ t❤❡ ❡①✐st❡♥❝❡ ❛♥❞ ♠✉❧t✐♣❧✐❝✐t② ♦❢ ✇❡❛❦ s♦❧✉t✐♦♥s ❢♦r ❛ ❝❧❛ss ♦❢ ❡q✉❛t✐♦♥s ✐♥✈♦❧✈✐♥❣ t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r✱ ♣♦t❡♥t✐❛❧s t❤❛t ♠❛② ❝❤❛♥❣❡ s✐❣♥ ❛♥❞ ♥♦♥❧✐♥❡❛r✐t✐❡s ✇✐t❤ ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤✳ ❚❤❡ ♣r♦♦❢s ♦❢ ♦✉r ❡①✐st❡♥❝❡ r❡s✉❧ts r❡❧② ♦♥ ♠✐♥✐♠✐③❛t✐♦♥ ♠❡t❤♦❞s ❛♥❞ t❤❡ ▼♦✉♥t❛✐♥ P❛ss ❚❤❡♦r❡♠✳

▼♦t✐✈❛t✐♦♥ ❛♥❞ ♠❛✐♥ r❡s✉❧ts

❚❤❡ st❛rt✐♥❣ ♣♦✐♥t ♦❢ t❤✐s ❝❤❛♣t❡r ✐s t♦ ✐♥✈❡st✐❣❛t❡ t❤❡ ❡①✐st❡♥❝❡ ❛♥❞ ♠✉❧t✐♣❧✐❝✐t② ♦❢ ✇❡❛❦ s♦❧✉t✐♦♥s ❢♦r t❤❡ ❢♦❧❧♦✇✐♥❣ ❝❧❛ss ♦❢ ❡q✉❛t✐♦♥s

(−∆)1/2u+V(x)u=f(x, u) +h ✐♥ R, ✭✶✳✶✮

✇❤❡r❡ V : R R ✐s ❛ ❝♦♥t✐♥✉♦✉s ♣♦t❡♥t✐❛❧ ✇❤✐❝❤ ♠❛② ❝❤❛♥❣❡ s✐❣♥✱ t❤❡ ♥♦♥❧✐♥❡❛r✐t② f(x, s) ❜❡❤❛✈❡s ❧✐❦❡exp(α0s2)✇❤❡♥ |s| →+∞ ❢♦r s♦♠❡α0 >0✱ h ❜❡❧♦♥❣s t♦ t❤❡ ❞✉❛❧

♦❢ ❛♥ ❛♣♣r♦♣r✐❛t❡ ❢✉♥❝t✐♦♥❛❧ s♣❛❝❡ ❛♥❞ (−∆)1/2 ✐s t❤❡ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥ ♦♣❡r❛t♦r

✇❤✐❝❤✱ ❢♦r ❛ s✉✣❝✐❡♥t❧② r❡❣✉❧❛r ❢✉♥❝t✐♦♥u:RR✱ ✐s ❞❡✜♥❡❞ ❜②

(−∆)1/2u(x) = − 1

Z

R

u(x+y) +u(x−y)−2u(x)

|y|2 dy. ✭✶✳✷✮

(24)

■♥ ♦r❞❡r t♦ st✉❞② ✈❛r✐❛t✐♦♥❛❧❧② ✭✶✳✶✮✱ ✇❡ ❝♦♥s✐❞❡r ❛ s✉✐t❛❜❧❡ s✉❜s♣❛❝❡ ♦❢ t❤❡ ❢r❛❝✲ t✐♦♥❛❧ ❙♦❜♦❧❡✈ s♣❛❝❡ H1/2(R)✳ ❘❡❝❛❧❧ t❤❛t H1/2(R) ✐s ❞❡✜♥❡❞ ❛s t❤❡ s♣❛❝❡

H1/2(R) :=

u∈L2(R) : |u(x)−u(y)|

|x−y| ∈L

2(R×R)

;

❡♥❞♦✇❡❞ ✇✐t❤ t❤❡ ♥♦r♠

kuk1/2 := 

[u]21/2+ Z

R

|u|2dx

 

1/2

,

✇❤❡r❡

[u]1/2 :=  Z

R2

|u(x)−u(y)|2

|x−y|2 dxdy  

1/2

✐s t❤❡ s♦✲❝❛❧❧❡❞ ●❛❣❧✐❛r❞♦ s❡♠✐✲♥♦r♠ ♦❢ u✳ ❋♦r ♠♦r❡ ❞❡t❛✐❧s s❡❡ ❆♣♣❡♥❞✐① ✭❆✮✳

❙♦♠❡ s✉✐t❛❜❧❡ ❝♦♥❞✐t✐♦♥s ♦♥ t❤❡ ♣♦t❡♥t✐❛❧ V ❛r❡ ❛ss✉♠❡❞ ✐♥ ♦r❞❡r t♦ ❛♣♣❧② ❛

✈❛r✐❛t✐♦♥❛❧ ❢r❛♠❡✇♦r❦ ❝♦♥s✐❞❡r✐♥❣ t❤❡ s✉❜s♣❛❝❡ ♦❢H1/2(R) ❣✐✈❡♥ ❜②

X =  

u∈H

1/2(R) : Z

R

V(x)u2dx <∞

 

. ✭✶✳✸✮

▼♦r❡ ♣r❡❝✐s❡❧②✱ ✇❡ s✉♣♣♦s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❛ss✉♠♣t✐♦♥s ♦♥V(x)✿

(V1) t❤❡r❡ ❡①✐sts ❛ ♣♦s✐t✐✈❡ ❝♦♥st❛♥t B s✉❝❤ t❤❛t V(x)≥ −B✱ ❢♦r ❛❧❧ x∈R❀ (V2) t❤❡ ✐♥✜♠✉♠

λ1 := inf

u∈X kuk2=1

 1

Z

R2

(u(x)−u(y))2

|x−y|2 dxdy+ Z

R

V(x)u2dx

 

✐s ♣♦s✐t✐✈❡❀

(V3) lim R→∞ν(

R\BR) = +✱ ✇❤❡r❡

ν(G) =        inf

u∈X0(G) kuk2=1

1 2π

Z

R2

(u(x)−u(y))2

|x−y|2 dxdy+ Z

G

V(x)u2dx ✐❢ G6=∅;

∞ ✐❢ G=∅.

❍❡r❡ G ✐s ❛♥ ♦♣❡♥ s❡t ✐♥R✱ X0(G) ={uX : u= 0 ✐♥ R\G}

(25)

❚❤❡ ❤②♣♦t❤❡s❡s (V1) ❛♥❞ (V2) ❡♥s✉r❡ t❤❛t X ✐s ❛ ❍✐❧❜❡rt s♣❛❝❡ ✇❤❡♥ ❡♥❞♦✇❡❞

✇✐t❤ t❤❡ ✐♥♥❡r ♣r♦❞✉❝t

hu, vi= 1 2π

Z

R2

(u(x)−u(y))(v(x)−v(y))

|x−y|2 dxdy+ Z

R

V(x)uvdx, u, v ∈X,

✇❤✐❝❤ ✐♥❞✉❝❡s t❤❡ ♥♦r♠kuk:=hu, ui1/2 ✭s❡❡ ❙❡❝t✐♦♥ ✶✮✳

■♥ t❤✐s ❝♦♥t❡①t✱ ✇❡ ❛ss✉♠❡ t❤❛th∈X∗ ✭❞✉❛❧ s♣❛❝❡ ♦❢X✮ ❛♥❞ ✇❡ s❛② t❤❛t uX

✐s ❛ ✇❡❛❦ s♦❧✉t✐♦♥ ❢♦r ✭✶✳✶✮ ✐❢ ❢♦r ❛❧❧v ∈X✱

1 2π

Z

R2

(u(x)−u(y))(v(x)−v(y))

|x−y|2 dxdy+ Z

R

V(x)uvdx= Z

R

f(x, u)vdx+(h, v), ✭✶✳✹✮

✇❤❡r❡(·,·) ❞❡♥♦t❡s t❤❡ ❞✉❛❧✐t② ♣❛✐r✐♥❣ ❜❡t✇❡❡♥X ❛♥❞ X∗

❲❡ ❛r❡ ✐♥t❡r❡st❡❞ ✐♥ t❤❡ ❝❛s❡ t❤❛t t❤❡ ♥♦♥❧✐♥❡❛r✐t②f(x, s)❤❛s t❤❡ ♠❛①✐♠❛❧ ❣r♦✇t❤

✇❤✐❝❤ ❛❧❧♦✇s ✉s t♦ st✉❞② ✭✶✳✶✮ ❜② ✉s✐♥❣ ❛ ✈❛r✐❛t✐♦♥❛❧ ❢r❛♠❡✇♦r❦ ❝♦♥s✐❞❡r✐♥❣ t❤❡ s♣❛❝❡

X✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ ✇❡ ❛ss✉♠❡ s✉✣❝✐❡♥t ❝♦♥❞✐t✐♦♥s s✉❝❤ t❤❛t t❤❡ ✇❡❛❦ s♦❧✉t✐♦♥s ♦❢

✭✶✳✶✮ ❜❡❝♦♠❡ ❝r✐t✐❝❛❧ ♣♦✐♥ts ♦❢ t❤❡ ❊✉❧❡r ❢✉♥❝t✐♦♥❛❧I :X →R ❞❡✜♥❡❞ ❜②

I(u) = 1 2kuk

2 Z

R

F(x, u) dx−(h, u),

✇❤❡r❡F(x, s) =

s

Z

0

f(x, t)dt✳

■♥ ♦r❞❡r t♦ ✐♠♣r♦✈❡ t❤❡ ♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❤②♣♦t❤❡s❡s ♦♥f(x, s)✱ ✇❡ r❡❝❛❧❧ s♦♠❡

✇❡❧❧ ❦♥♦✇♥ ❢❛❝ts ✐♥✈♦❧✈✐♥❣ t❤❡ ❧✐♠✐t✐♥❣ ❙♦❜♦❧❡✈ ❡♠❜❡❞❞✐♥❣ ❚❤❡♦r❡♠ ✐♥ 1✲❞✐♠❡♥s✐♦♥✳

❚❤❡ ❙♦❜♦❧❡✈ ❡♠❜❡❞❞✐♥❣ ❛ss✉r❡s t❤❛t H1/2(R) ֒ Lq(R) ❢♦r ❛♥② q [2,+)❀ ❜✉t

H1/2(R) ✐s ♥♦t ❝♦♥t✐♥✉♦✉s❧② ❡♠❜❡❞❞❡❞ ✐♥ L(R) ✭❢♦r ♠♦r❡ ❞❡t❛✐❧s✱ s❡❡ ❬✶✼❪✱ ❬✸✾❪✮✳ ■♥

t❤✐s ❝❛s❡ t❤❡ ♠❛①✐♠❛❧ ❣r♦✇t❤ ♦❢ f(x, s)✱ ✇❤✐❝❤ ❛❧❧♦✇s ✉s t♦ st✉❞② ✭✶✳✶✮ ❜② ❛♣♣❧②✐♥❣

❛ ✈❛r✐❛t✐♦♥❛❧ ❢r❛♠❡✇♦r❦ ✐♥✈♦❧✈✐♥❣ t❤❡ s♣❛❝❡ H1/2(R)✱ ✐s ♠♦t✐✈❛t❡❞ ❜② t❤❡ ❚r✉❞✐♥❣❡r✲

▼♦s❡r ✐♥❡q✉❛❧✐t② t❤❛t ✇❛s ♣r♦✈❡❞ ❜② ❍✳ ❑♦③♦♥♦✱ ❚✳ ❙❛t♦ ❛♥❞ ❍✳ ❲❛❞❛❞❡ ❬✷✾❪ ❛♥❞ ❚✳ ❖③❛✇❛ ❬✸✾❪✳ ▼♦r❡ ♣r❡❝✐s❡❧②✱ t❤❡② ♣r♦✈❡❞ t❤❛t t❤❡r❡ ❡①✐st ♣♦s✐t✐✈❡ ❝♦♥st❛♥ts ω ❛♥❞ C

s✉❝❤ t❤❛t ❢♦r ❛❧❧u∈H1/2(R)✇✐t❤ k(∆)1/4uk 2 ≤1✱ Z

R

(eαu2 −1) dx≤Ckuk22, ❢♦r ❛❧❧ α ∈(0, ω]. ✭✶✳✺✮

✭❙❡❡ ❛❧s♦ s♦♠❡ ♣✐♦♥❡❡r✐♥❣ ✇♦r❦s s✉❝❤ ❛s ❬✸✽❪✱ ❬✹✺❪✮✳

(26)

▼♦t✐✈❛t❡❞ ❜② ✭✶✳✺✮ ✇❡ s❛② t❤❛t f(x, s) ❤❛s ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✐❢ t❤❡r❡

❡①✐stsα0 >0 s✉❝❤ t❤❛t

lim

|s|→+∞f(x, s)e −α|s|2

=     

0, ❢♦r ❛❧❧ α > α0, +∞, ❢♦r ❛❧❧ α < α0,

✉♥✐❢♦r♠❧② ✐♥x∈R✳

◆♦✇✱ ✇❡ ❛r❡ ❛❜❧❡ t♦ ❡st❛❜❧✐s❤ ♦✉r ♠❛✐♥ ❛ss✉♠♣t✐♦♥s ♦♥ t❤❡ ♥♦♥❧✐♥❡❛r✐t② f(x, s)✳

■♥ ♦r❞❡r t♦ ✜♥❞ ✇❡❛❦ s♦❧✉t✐♦♥s t♦ ✭✶✳✶✮✱ ❜② ✉s✐♥❣ ✈❛r✐❛t✐♦♥❛❧ ♠❡t❤♦❞s✱ ✇❡ ❛ss✉♠❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥s✿

(f1) 0≤lim s→0

f(x, s)

s < λ1✱ ✉♥✐❢♦r♠❧② ✐♥ x❀

(f2) f : R×R→ R ✐s ❝♦♥t✐♥✉♦✉s✱ ✐t ❤❛s ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ❛♥❞ ✐t ✐s ❧♦❝❛❧❧②

❜♦✉♥❞❡❞ ✐♥ s✱ t❤❛t ✐s✱ ❢♦r ❛♥② ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧ J ⊂ R✱ t❤❡r❡ ❡①✐sts C > 0 s✉❝❤

t❤❛t |f(x, s)| ≤C✱ ❢♦r ❡✈❡r②(x, s)∈R×J

(f3) t❤❡r❡ ❡①✐sts θ >2 s✉❝❤ t❤❛t

0< θF(x, s) :=θ

s

Z

0

f(x, t) dt≤sf(x, s), ❢♦r ❛❧❧ (x, s)∈R×R\ {0};

(f4) t❤❡r❡ ❡①✐st ❝♦♥st❛♥ts s0, M0 >0s✉❝❤ t❤❛t

0< F(x, s)≤M0|f(x, s)|, ❢♦r ❛❧❧ |s| ≥s0 ❛♥❞ x∈R;

(f5) t❤❡r❡ ❡①✐st ❝♦♥st❛♥ts p >2 ❛♥❞ Cp s✉❝❤ t❤❛t✱ ❢♦r ❛❧❧ s≥0 ❛♥❞ x∈R✱

f(x, s)≥Cpsp−1,

✇✐t❤ Cp >

α0(p−2) 2πκpω

(p−2)/2

Sp

p✱ ✇❤❡r❡

Sp := inf

u∈X kukp=1

 1

Z

R2

(u(x)−u(y))2

|x−y|2 dxdy+ Z

R

V(x)u2dx

 

1/2

,

❛♥❞ κ ✐s ❣✐✈❡♥ ✐♥ ✭✶✳✼✮✳

(27)

❲❡ ❤✐❣❤❧✐❣❤t t❤❛t t❤❡ ❤②♣♦t❤❡s❡s (f1)−(f5) ❤❛✈❡ ❜❡❡♥ ✉s❡❞ ✐♥ ♠❛♥② ♣❛♣❡rs t♦

✜♥❞ ❛ s♦❧✉t✐♦♥ ✉s✐♥❣ ✈❛r✐❛t✐♦♥❛❧ ❢r❛♠❡✇♦r❦ ✭s❡❡ ❢♦r ✐♥st❛♥❝❡ ❬✷❪✱ ❬✶✾❪✱ ❬✷✵❪✱ ❬✷✸❪✱ ❬✷✺❪✮✳ ❆ s✐♠♣❧❡ ❡①❛♠♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ t❤❛t ✈❡r✐✜❡s ♦✉r ❛ss✉♠♣t✐♦♥s ✐s f(x, s) = Cp|s|p−2s+

2s(es2

−1) ❢♦r (x, s)∈R×R✳

❯♥❞❡r t❤❡s❡ ❛ss✉♠♣t✐♦♥s ✇❡ ♣r❡s❡♥ts t❤❡ ♠❛✐♥ r❡s✉❧ts ♦❢ t❤✐s ❝❤❛♣t❡r✳

❚❤❡♦r❡♠ ✶✳✶✳ ❙✉♣♣♦s❡ t❤❛t (V1)−(V3)❛♥❞ (f1)−(f5) ❤♦❧❞✳ ❚❤❡♥ t❤❡r❡ ❡①✐stsδ1 >0

s✉❝❤ t❤❛t ❢♦r ❡❛❝❤ 0< khk∗ < δ1✱ ♣r♦❜❧❡♠ ✭✶✳✶✮ ❤❛s ❛t ❧❡❛st t✇♦ ✇❡❛❦ s♦❧✉t✐♦♥s✳ ❖♥❡

♦❢ t❤❡♠ ✇✐t❤ ♣♦s✐t✐✈❡ ❡♥❡r❣②✱ ❛♥❞ t❤❡ ♦t❤❡r ♦♥❡ ✇✐t❤ ♥❡❣❛t✐✈❡ ❡♥❡r❣②✳

❚❤❡♦r❡♠ ✶✳✷✳ ❙✉♣♣♦s❡ t❤❛t (V1)−(V3) ❛♥❞ (f1)−(f5) ❤♦❧❞✳ ■❢ h ≡ 0 ✭✐✳❡✳✱ t❤❡r❡ ✐s

♥♦ ♣❡rt✉r❜❛t✐♦♥ ✐♥ ✭✶✳✶✮✮ t❤❡♥ ♣r♦❜❧❡♠ ✭✶✳✶✮ ❤❛s ❛ ✇❡❛❦ s♦❧✉t✐♦♥ ✇✐t❤ ♣♦s✐t✐✈❡ ❡♥❡r❣②✳

❘❡♠❛r❦ ✶✳✸✳ ❖✉r ✇♦r❦ ✇❛s ♠❛✐♥❧② ♠♦t✐✈❛t❡❞ ❜② ■❛♥♥✐③③♦tt♦ ❛♥❞ ❙q✉❛ss✐♥❛ ❬✷✺❪✱ ❛♥❞ ❛❧s♦ ❜② s♦♠❡ r❡❝❡♥t❧② ♣✉❜❧✐s❤❡❞ ♣❛♣❡rs t❤❛t ❞✐s❝✉ss ✭✶✳✶✮ ❜② ✉s✐♥❣ ❛ ♣✉r❡❧② ✈❛r✐❛t✐♦♥❛❧ ❛♣♣r♦❛❝❤ ✭s❡❡✱ ❢♦r ✐♥st❛♥❝❡✱ ❬✶✶✱✷✸✱✹✶✱✹✷❪ ❛♥❞ r❡❢❡r❡♥❝❡s t❤❡r❡✐♥✮✳ ❚❤❡ ❣♦❛❧ ✐s t♦ ❡①t❡♥❞ ❛♥❞ t♦ ✐♠♣r♦✈❡ t❤❡ r❡s✉❧ts ♦❜t❛✐♥❡❞ ✐♥ ❬✶✶✱✷✺✱✹✶✱✹✷❪ s✐♥❝❡ ✇❡ ✇♦r❦ ✇✐t❤ ♥♦♥❧✐♥❡❛r✐t✐❡s ✇✐t❤ ❝r✐t✐❝❛❧ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ❛♥❞ ♣♦t❡♥t✐❛❧s t❤❛t ♠❛② ❝❤❛♥❣❡ s✐❣♥✱ ✈❛♥✐s❤ ❛♥❞ ❜❡ ✉♥❜♦✉♥❞❡❞✳

❘❡♠❛r❦ ✶✳✹✳ ■t ✐s ✐♠♣♦rt❛♥t t♦ ♥♦t✐❝❡ t❤❛t ♠❛♥② ❛✉t❤♦rs✱ ✐♥ ❞✐✛❡r❡♥t ✇❛②s✱ ❤❛✈❡ st✉❞✐❡❞ ♣r♦❜❧❡♠s ✐♥✈♦❧✈✐♥❣ t❤❡ st❛♥❞❛r❞ ▲❛♣❧❛❝✐❛♥ ✐♥st❡❛❞ ♦❢ ❢r❛❝t✐♦♥❛❧ ▲❛♣❧❛❝✐❛♥✳ ❖♥❡ ♦❢ t❤❡s❡ ♣r♦❜❧❡♠s ✐s t♦ ✐♥✈❡st✐❣❛t❡ t❤❡ ❡①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s ❢♦r t❤❡ ❢♦❧❧♦✇✐♥❣ ❝❧❛ss ♦❢ ❡q✉❛t✐♦♥s✿

−∆u+V(x)u=g(x, u), x∈RN, ✭✶✳✻✮

s❡❡ ❡✳❣✳ ❬✷❪✱ ❬✹❪ ❢♦r t❤❡ ❝❛s❡ ✇❤❡r❡ g(x, s) ❤❛s s✉❜❝r✐t✐❝❛❧ ❣r♦✇t❤ ✐♥ t❤❡ ❙♦❜♦❧❡✈ s❡♥s❡✱

❛♥❞ ❬✶✾✱ ✷✵✱ ✸✵✱ ✹✻❪ ❢♦r t❤❡ ❝❛s❡ ✇❤❡r❡ g(x, s) ❤❛s ❝r✐t✐❝❛❧ ❣r♦✇t❤ ✐♥ t❤❡ ❚r✉❞✐♥❣❡r✲

▼♦s❡r s❡♥s❡✳ ■♥ t❤❡s❡ ♣❛♣❡rs✱ t❤❡ ❡①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s ❤❛s ❜❡❡♥ ❞✐s❝✉ss❡❞ ✉♥❞❡r ❞✐✛❡r❡♥t ❝♦♥❞✐t✐♦♥s ♦♥ t❤❡ ♣♦t❡♥t✐❛❧ V(x)✳ ❚❤❡ ♠❛✐♥ r❡❛s♦♥ ♦❢ t❤❡ ❤②♣♦t❤❡s❡s ✉s❡❞

✐s t♦ ♦✈❡r❝♦♠❡ t❤❡ ♣r♦❜❧❡♠ ♦❢ ✏❧❛❝❦ ♦❢ ❝♦♠♣❛❝t♥❡ss✑✱ ✇❤✐❝❤ ✉s✉❛❧❧② ❛♣♣❡❛r ✐♥ ❡❧❧✐♣t✐❝ ♣r♦❜❧❡♠s ✐♥ ✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥s✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ t❤❡ ♣❛♣❡rs ❬✹✱ ✹✵❪ ❛ss✉♠❡ t❤❛t t❤❡ ♣♦t❡♥t✐❛❧ ✐s ❝♦♥t✐♥✉♦✉s ❛♥❞ ♣♦s✐t✐✈❡ ❛♥❞✱ ❢✉rt❤❡r♠♦r❡✱ t❤❛t ♦♥❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❛ss✉♠♣t✐♦♥s ❤♦❧❞s✿

✭❛✮ V(x)ր+∞ ❛s|x| →+∞❀

✭❜✮ ❢♦r ❛♥②A >0✱ t❤❡ s✉❜❧❡✈❡❧ s❡t{x∈RN : V(x)A}❤❛s ✜♥✐t❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✳

Referências

Documentos relacionados

The relative importance among the pasteurization process variables (initial product temperature, heating rate, holding temperature and time, container volume and shape, cooling

Prior to the validation studies, a final item selection step was undertaken for functional and situational items only as all body items, except those that scored 0, were considered

O Kaizen foi desenvolvido para a melhoria nas áreas de manufatura, identificando pontos durante o processo produtivo que podem ser melhorados através da elimina- ção

Fo- ram avaliados 16 itens relacionados à sinalização de qualidade do produto para o consumidor, a saber: primeira impressão da estética do website; pre- sença do Selo de Pureza

a publicação dos trabalhos do cIa IX nos Estudos Arqueológicos de Oeiras (EAO), órgão científico do Centro de Estudos Arqueológicos do Concelho de Oeiras/Câmara Municipal de

Dessa forma, a “universalização excludente” segrega aqueles que podem pagar pelos serviços de saúde daqueles que não podem, na prática segmentando cidadãos consumidores dos

gloeosporioides em mamoeiro; Quanto maior a concentração testada maior o efeito fungistático e/ou fungicida dos compostos triazólicos; O efeito inibitório dos fungicidas triazóis

Considerando esses resultados e como demonstra a relação de expressão gênica ChAT/AChE, o MPTP induziu o aumento da expressão de AChE em relação a ChAT, que não foi