• Nenhum resultado encontrado

Influence of fenestration properties onto the energy consumption rate of an offi ce building in the hot summer/cold winter climatic zone in china

N/A
N/A
Protected

Academic year: 2017

Share "Influence of fenestration properties onto the energy consumption rate of an offi ce building in the hot summer/cold winter climatic zone in china"

Copied!
8
0
0

Texto

(1)

628.9:721

. .

ё

,

«

»

ɉɪɟɞɫɬɚɜɥɟɧɨ ɝɨɞɨɜɨɟ ɷɧɟɪɝɨɩɨɬɪɟɛɥɟɧɢɟ ɨɮɢɫɧɨɝɨ ɡɞɚɧɢɹ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɪɚɡɥɢɱ-ɧɵɯɜɢɞɨɜɫɜɟɬɨɩɪɨɟɦɚɜɤɥɢɦɚɬɢɱɟɫɤɨɣɡɨɧɟɫɠɚɪɤɢɦɥɟɬɨɦɢɯɨɥɨɞɧɨɣɡɢɦɨɣ. Ɋɚɫɱɟɬɧɚɹ ɦɨɞɟɥɶɨɮɢɫɚɛɵɥɚɪɚɡɪɚɛɨɬɚɧɚɢ ɫɟɪɢɹɦɨɞɟɥɢɪɨɜɚɧɢɹɷɧɟɪɝɨɩɨɬɪɟɛɥɟɧɢɹɡɞɚɧɢɹɛɵɥɚ ɩɪɨɜɟɞɟɧɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɫɜɟɬɨɩɪɨɟɦɚ.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ: ɷɧɟɪɝɨɷɮɮɟɤɬɢɜɧɨɫɬɶɨɤɧɚ, ɦɨɞɟɥɢɪɨɜɚɧɢɟɷɧɟɪɝɟɬɢɱɟɫɤɢɯɫɢɫɬɟɦ

ɡɞɚɧɢɹ, DOE-2, ɫɨɜɦɟɳɟɧɧɨɟ ɨɫɜɟɳɟɧɢɟ, ɨɮɢɫɧɨɟ ɡɞɚɧɢɟ.

.

[1].

,

-,

.

,

40 %

48 %

.

,

(

38 %),

.

30…40 %

.

,

,

-,

,

,

[2].

. 1

-

,

[3].

. 1.

-. . . . HDD18 CDD26 , / 2 , / 2

29,5 106,5 1069 251 1950 621

30,7 104,0 1426 32 2324 1049

31,2 121,4 1707 166 2885 1761

32,0 118,8 1995 179 3070 2107

30,6 114,1 1695 222 2887 1669

. HDD18 — 18 ° ;

CDD26 —

(2)

,

-,

,

-.

,

,

[4].

5

,

.

.

.

-.

,

-.

,

1-

8960 .

.

DOE-2,

(

).

-.

DOE-2

,

.

,

DOE-2

[5].

(

. 1),

, . .

.

.

,

-,

,

-

,

-.

9

.

20

/

2

.

30

3

/

.- .

-,

-.

-= 300

[6].

(3)

,

Tvis

0,35.

«

-

»

,

,

-.

7,6

.

[7].

,

,

-,

20 ° ,

12 ° .

26 ° ,

.

8

(

. 2),

7

: 0, 10, 20, 30, 40, 50, 60 % (

-,

WWR).

. 2.

№ SHGC Tvis U

1 ( DOE-1001) [8] 0,81 0,88 6,17

2

(DOE-1203) [8] 0,61 0,75 6,17

1

(DOE-2003) [8] 0,69 0,78 3,16

2

(DOE-2208) [8] 0,61 0,74 2,61

1

(DOE-2660) [8] 0,44 0,70 2,38

2

(DOE-2666) [8]

0,31 0,41 2,41

3

(DOE-2667) [8]

0,28 0,41 1,67

. SHGC — ;

Tvis — ; U

, / 2∙k.

. 3

DOE-2.

. 3.

1.

,

, / 2∙ 1

0,7

2.

, / 2 20

11 / 2

9

, 117

, 3/ 30

(4)

. 3

, ° 20

2,6

1,9

3.

, , 180°

[3].

.

. 2

WWR

.

,

5

(WWR = 0, . .

) .

-.

0 0,1 0,2 0,3 0,4 0,5 0,6 2800 2900 3000 3100 3200 3300 3400 3500 г. Чунцин СОС (WWR) Г о д о в о е с у м м ар н о е э н е р го п о т р е б л е ние , к В т∙ ч

0 0,1 0,2 0,3 0,4 0,5 0,6 2600 2700 2800 2900 3000 3100 3200 г. Чэнду СОС (WWR) Г о д о в о е с у м м ар н о е эн е р го п о т р еб л е н и е , к В т· ч

0 0,1 0,2 0,3 0,4 0,5 0,6 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 г. Шанхай СОС (WWR) Го д о в о е суммарное э н е р го п о т р е б ле н и е , кВ т∙ ч

0 0,1 0,2 0,3 0,4 0,5 0,6 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 г. Нанкин СОС (WWR) Г о д о в о е суммарное э н е р го п о т р е б ле н и е , кВ т· ч

0 0,1 0,2 0,3 0,4 0,5 0,6 2900 3100 3300 3500 3700 3900 4100 г. Ухань СОС (WWR) Го д о в о е суммарное э н е р го п о т р е б ле н и е , кВ т∙ ч

О1 О2т Д1 Д2т Э1 Э2т Э3т

(5)

1, 2 , 1, 2 , 1

WWR

,

.

. 3

,

.

2 .

WWR

0

0,2,

-,

-,

.

WWR

0,2,

;

WWR,

-,

,

,

.

2 , 3

(0 < WWR < 0,1)

-,

WWR

,

.

. 4

,

WWR

.

.

,

2 , 3

T vis

,

WWR,

SHGC

-.

0 0,1 0,2 0,3 0,4 0,5 0,6

0 500 1000 1500 2000 2500

г. Шанхай

Освещение Оргтехника Кондиционер

СОС (WWR)

Г

од

ов

ое

э

л

е

к

т

р

оп

от

р

е

б

л

е

н

и

е

, к

В

т

. ч

0 0,1 0,2 0,3 0,4 0,5 0,6

0 200 400 600 800 1000 1200 1400 1600 1800

г. Шанхай

Освещение Оргтехника Кондиционер

СОС (WWR)

Г

о

д

о

в

о

е

э

л

е

к

т

роп

от

ре

б

л

е

н

и

е

, кВ

т

. ч

. 3.

-, .

2

. 4.

,

. 3

. 2

,

WWR, 1,

2 , 1, 2

Tv is

0 , 1 < WWR < 0,2;

1

Tv

is

0, 15 < WWR < 0,3;

2 , 3

Tvis

0, 3 < WWR < 0,4.

«

»,

T vis WWR [9]. «

» (

)

(6)

«

»

.

-.

Tvis*WWR = 0,16,

-.

2 2 , 2 3

SHGC Tvis,

U

.

. 6 7

,

2 2

,

2 3

.

,

,

,

[10],

.

.

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0, 0 100 200 300 400 500 600 700 800 900 г. Шанхай

Эффективный светопроем (ЭС = СОС*Tvis)

Э н е р го п о т р е б ле н и , о с в е щ е н и я кВ т . ч

0 0,1 0,2 0,3 0,4 0,5 0,6 0 200 400 600 800 1000 1200 1400 г. Чэнду

Охлаждение (О2т) Охлаждение (Д2т) Отопление (О2т) Отопление (Д2т)

СОС (WWR) Г о д о в о е э л е к т р о п от р е б л е н и е , кВ т . ч

. 5.

.

-, . .

,

WWR(

)

0,2.

,

0,15.

.

,

-,

.

,

,

.

. 6. ,

2 , 2 .

. 7.

-,

2 , 3 .

0 0,1 0,2 0,3 0,4 0,5 0,6 0 100 200 300 400 500 600 700 800 900 1000 г. Чэнду

Охлаждение (Э2т) Охлаждение (Э3т) Отопление (Э2т) Отопление (Э3т)

(7)

1. SelkowitsS. Infl uence of windows on building energy use LBL-18663. 1984.

2. John Hogan, Robert Watson, Joe huang, Lang Siwei, Fu Xiangzhao, Lin Haiyin Development of China’s energy effi ciency design standard for residential buildings in the “Hot-summer/cold-winter” zone, 2001.

3. Z hang Qingyuan, Joe Huang, Lang Siwei Development of Chinese Weather Data for Building Energy Calculations LBNL -51435, 2001.

4. Johnson R., Selkowitz S., Sullivan R. How fenestration can signifi cantly affect energy use in commercial buildings LBL-17330, 1984.

5. D OE-2.2 Building Energy Use and Cost Analysis Program / Volume 1: Basics, October 2004, P. 1 —5.

6. S tandard for daylighting design of buildings GB/T 50033-2001.

7. Design Standard for Energy Effi ciency of Public Buildings GB 50189-2005, P. 2 8—32. 8. DOE-2.2 Building Energy Use and Cost Analysis Program / Volume 4: Libraries & Reports, March 2009, P. 21—24.

9. S ullivan R., Lee E.S., Selkowitz S. A Method of Optimizing Solar Control and Daylighting Performance in Commercial Offi ce Buildings LBL- 32931, September 1992.

10. Sullivan R., Frost K., Arasteh D., Selkowitz S. Window U-Value Effects on Residential Cooling Load LBL-34648, Sept ember 1993.

2012 .

: ё — , ,

, «

, 129337, . , , . 26, +7 (495) 287-49-14, agpz@mgsu.ru;

— ,

« », 129337, .

-, , . 26, +7 (495) 287-49-14, caselysun@gmail.com.

: ё . ., .

// . 2012. № 9. . 31—38.

A.K. Solov’ev, Sun Yifeng

INFLUENCE OF FENESTRATION PROPERTIES ONTO THE ENERGY CONSUMPTION RATE OF AN OFFICE BUILDING IN THE HOT SUMMER/COLD WINTER CLIMATIC ZONE IN CHINA

The climatic zone that has hot summers and cold winters is the most populated and economi-cally developed area of China. Therefore, responses to the power consumption growth within the construction industry require the assessment of the energy conservation potential and the use of daylight for the purposes of illumination of premises of offi ce buildings.

In the article, the authors analyze the annual energy consumption pattern based on varying of-fi ce fenestration patterns in the hot summer/cold winter zone. A pilot offi ce module was developed and a series of building energy consumption simulation sessions were completed on the basis of varied fenestration parameters. A substantial portion of electric lighting can be saved by switching off the electric light in response to the available daylight. The extent to which the daylight may reduce the energy consumption rate depends primarily on the visible transmittance and dimensions of windows. Key words: window, energy effi ciency, building energy simulation, DOE-2, daylight, offi ce building.

References

1. Selkowits S. Infl uence of Windows on Building Energy Use LBL-18663, 1984.

(8)

3. Zhang Qingyuan, Joe Huang, Lang Siwei. Development of Chinese Weather Data for Building Energy Calculations LBNL-51435, 2001.

4. Johnson R., Selkowitz S., Sullivan R. How Fenestration Can Signifi cantly Affect Energy Use in Commercial Buildings. LBL-17330, 1984.

5. DOE-2.2 Building Energy Use and Cost Analysis Program. Basics. Vol. 1, October, 2004, pp. 1—5.

6. Standard for Daylighting Design of Buildings GB/T 50033-2001.

7. Design Standard for Energy Effi ciency of Public Buildings GB 50189-2005, pp. 28—32.

8. DOE-2.2 Building Energy Use and Cost Analysis Program. Libraries & Reports, vol.4, March 2009, pp. 21—24.

9. Sullivan R., Lee E.S., Selkowitz S. A Method of Optimizing Solar Control and Daylighting Perfor-mance in Commercial Offi ce Buildings. LBL-32931, September, 1992.

10. Sullivan R., Frost K., Arasteh D., Selkowitz S. Window U-Value Effects on Residential Cooling Load. LBL-34648, September, 1993.

A b o u t t h e a u t h o r s: Solov’ev Aleksey Kirillovich — Doctor of Technical Sciences, Professor, Chair, Department of Architecture of Industrial and Residential Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; agpz@ mgsu.ru, +7 (495) 287-49-14;

Sun Yifeng — postgraduate student, Department of Architecture of Industrial and Residential Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; caselysun@gmail.com, +7 (495) 287-49-14.

Referências

Documentos relacionados

Para tanto foi realizada uma pesquisa descritiva, utilizando-se da pesquisa documental, na Secretaria Nacional de Esporte de Alto Rendimento do Ministério do Esporte

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

De uma perspectiva histórico-filosófica, é colocada a questão do direito natural no debate que se deu, principalmente, nos séculos XVI e XVII, ocasionado pela

5º, ingressam no ordenamento jurídico com status de reforma (equivalentes a emenda constitucional), os mesmos podem ser objeto de deliberação e/ou eliminação por

Dashed lines refer to the avoided burdens MCW(PA)3h Production AD AcoD H 2 S Removal Collection and Transport OFMSW Collection and Transport MCW Commercial AC Production