• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia27(2017)599–602

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Anti-adhesion

potential

of

non-polar

compounds

and

extracts

from

Ficus

natalensis

Gbonjubola

V.

Awolola

a

,

Hafizah

Chenia

b

,

Himansu

Baijnath

b

,

Neil

A.

Koorbanally

a,∗

aSchoolofChemistryandPhysics,UniversityofKwaZulu-Natal,Durban,SouthAfrica

bSchoolofLifeSciences,UniversityofKwaZulu-Natal,Durban,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14April2017

Accepted5July2017

Availableonline1September2017

Keywords:

Ficusnatalensissubsp.natalensis

Fig

Bacterialadhesion

Biofilmreduction

a

b

s

t

r

a

c

t

Fourtriterpenoids,ergosta-4,6,8(14),22-tetraene-3-one1,stigma-4-ene-3-one2,3␤-hydroxy-21␤-H -hop-22(29)-ene3,sitosterolandaquinone,tectoquinone4,wereisolatedfromtheleaf,stembarkand fruitextractsofFicusnatalensissubsp.natalensis,Moraceae,amedicinalfigfoundinAfrica.Thepure compounds1–4andcrudeextractsweretestedfortheirantibacterialactivityagainstfiveGram-negative andsevenGram-positivestrainsandfortheirpotentialanti-biofilmactivity.Antimicrobial susceptibil-itywasobservedwithallpurecompoundstestedat250␮gagainstthemajorityofGram-negativeand Gram-positivestrains.Thedichloromethane-solublefruitextractwasactiveagainstsensitiveand resis-tantStaphylococcusaureusstrains,EnterococcusfaecalisandStaphylococcusxylosus.Compounds2,3and

4demonstratedbroad-spectrumantibioticeffectsagainsteightofthetwelvebacterialstrainstested. Intheanti-biofilmassay,exposuretoethylacetate,methanolandaqueousmethanolleaf,stembark andfruitextractsdecreasedadhesionwithabiofilmreductionof≥100%forallthreetestedorganisms: Escherichiacoli,PseudomonasaeruginosaandS.aureus.Themethanolleafextractdemonstratedthemost potentanti-adhesionpotentialagainstE.coli(218%biofilmreduction).Thegreatestabilitytodecrease adhesionwasobservedwithcompounds2,3and5againstP.aeruginosaatthelowestconcentration tested(100␮gml−1).

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Adhesionofmicroorganismstodiversesurfacesandtoother microbesisessentialforbiofilmdevelopmentandestablishmentof infections.Whenbacteriacoloniseandadheretosurfaces,theyare associatedwithsevere,recurrentinfectionsandbecome10–1000 timesmoreresistanttoantimicrobialagents(Borgesetal.,2015). Pharmaceuticalsorpharmaceuticalextractscapableofpreventing bacterialadhesiontosurfacesarethereforedesirableantibacterial agents.Onesourceofthesearemedicinalplantsusedintraditional medicine,since manyplant-basedremedies areknowntohave therapeuticantimicrobialactivityagainstclinicalpathogens and anincreasingnumberhave evenbeenidentifiedashaving anti-adhesionproperties(Borgesetal.,2016).

FicusnatalensisHochst.subsp. natalensis,Moraceae,is arock splittertreewhichgrowsuptoalmost20minheight.Itis geo-graphicallysituatedinSouthAfrica,Zimbabwe,Zambia,Malawi, Mozambique and Kenya. The different parts of the tree have

Correspondingauthor.

E-mail:koorbanally@ukzn.ac.za(N.A.Koorbanally).

variousapplicationsvaryingfromcultural,decorative,and com-mercialapplicationstofolkmedicine,isa majorsourceof bark clothandapotentialnaturaldye(BurrowsandBurrows,2003).The root,bark,leavesandlatexareusedinseveralAfricancountries totreatavarietyofmedicalailmentsincludingmalaria,influenza, whoopingcough,dysenteryandguinea worm(Hutchingsetal., 1996;BurrowsandBurrows,2003).

Inpreviousstudiesontheplant,antibacterialactivityhasbeen reportedforthemethanolextractoftheroot(RabeandvanStaden, 1997).Apartfromthis,Olaokunetal.(2013)alsoreportedthe anti-diabeticpotentialoftheacetoneextractoftheleaves.

Materialsandmethods

Thefruits,leavesandstembarkfromFicusnatalensisHochst. subsp.natalensis,Moraceae,werecollectedinDurban, KwaZulu-Natal,SouthAfricainDecember2012.Theplantwasidentifiedat theWardherbariumoftheUniversityofKwaZulu-Natal,wherea voucherspecimenwasdepositedunderthecollectornumberG.V. Awolola&H.Baijnath3.Thegroundleaves,stembarkandfruits wereextractedtwicesequentiallywithorganicsolventsof increas-ingpolarity,hexane(Hex),dichloromethane(DCM),ethylacetate

http://dx.doi.org/10.1016/j.bjp.2017.07.004

0102-695X/©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

600 G.V.Awololaetal./RevistaBrasileiradeFarmacognosia27(2017)599–602

(EtOAc)andmethanol(MeOH).Detailsoftheextractionaregiven inthesupplementarydata.

Thecrude extracts weresubjected tovacuumcolumn chro-matography (CC) on silica gel using a Hex-DCM-EtOAc-MeOH gradient elution, to afford five major fractions (A–E) by TLC. Compound 3 (250.6mg), identified as 3␤-hydroxy-21␤-H -hop-22(29)-enecrystallisedoutoffractionAoftheDCMandHexcrude extractoftheleaves.FractionBofthesamecrudeextracts con-tained1ergosta-4,6,8(14),22-tetraene-3-one(140.5mg).Sitosterol (80.6mg)wasisolated fromfractionBof theEtOAc fractionof theleaves.Compound4,tectoquinone(70.8mg)wasobtainedby purificationoffractionBoftheHexandDCMcrudeextractsofthe stembark.Stigma-4-ene-3-one(2)(70.4mg)wasobtainedfrom fractionCofthesameextracts.Allcompoundswereisolatedand purifiedbysilicagelCCusingvariousratiosofHex:EtOAcand iden-tifiedbytheir1Hand13CNMRdataandverifiedbydatainthe literature,1(Fangkrathoketal.,2013),2(Liuetal.,2014),3(Sousa etal.,2012),sitosterol(Rasoanaivoetal.,2014)and4(Chengetal., 2008).

Antibacterial susceptibility testing (AST) was carried out in duplicateon12bacterialindicatorstrains(givenin the supple-mentarymaterial)usingthediscdiffusionmethodaccordingto standardprocedures(CLSI,2007).Bacterialadhesiononthree bac-terialstrains:EscherichiacoliATCC35218,Staphylococcusaureus ATCC43300andPseudomonasaeruginosaATCC27853basedonthe resultsfromtheASTaccordingtothecrystalvioletmicrotitreplate assaywerecarriedoutintriplicate(Bassonetal.,2008).Detailsof theassaysaregiveninthesupplementarydata.

Resultsanddiscussion

Thefractionationand purificationoftheleaf,stem barkand fruitextractsledtotheisolation andidentificationof five non-polarcompounds.Tothebestofourknowledge,this isthefirst reportofsecondarymetabolitesfromF.natalensissubsp.natalensis.

ThecrudeextractsofthedifferentorgansofF.natalensiswere testedalongwithcompounds1–4againstthebacterialstrainsto determinewhethertheyhadanyantibacterialactivityto substanti-atethereporteduseoftheplantasanantibacterialagent(Rabeand vanStaden,1997).Therehasbeenextensiveantibacterialstudies ontheubiquitoussitosterolandthereforeitsantibacterial proper-tieswasnottestedagain.

TheDCMextractofthefruitwasthemostactiveofallextracts demonstratingactivityagainstseveraloftheGram-positivestrains. Theantibacterialactivityofallextractsarereportedinthe sup-plementarymaterial.RabeandvanStaden(1997)havepreviously observedMICof4mgml−1 forS.aureusandStaphylococcus

epi-dermidisand8mgml−1forBacillussubtilis,usingmethanolicroot extractsofF.natalensis.

Varyingantibacterialactivitywasdemonstratedbytheisolated compounds,which rangedfromresistanttosusceptible against bothGram-negativeandGram-positiveorganisms(Table1).The antibacterialactivitywasdose-dependent,beingmore activeat 250␮g than at 100␮g. Compounds1–4 showed good activity against␤-lactamresistantE.coliATCC35218and theextended spectrum ␤-lactamase producing Klebsiella pneumoniae ATCC 700603 but was only moderately active against P. aeruginosa. AmongsttheGram-positive bacteria,thebestactivitywasseen bythemethicillin-resistantS.aureus(MRSA)strainATCC43300 byallfourcompoundsfollowing250␮gexposure(Table1).B. sub-tilisandEnterococcusfaecalisstrainsdemonstratedvaryinglevelsof susceptibilitytoallfourcompounds.Allcompounds,1–4,showed broad-spectrumantibioticeffects withas muchas10 ofthe12 indicatorbacterialstrainsbeingsusceptibletothem.Tectoquinone

4showedhighzonesofinhibitionof25mmand23mmagainst StaphylococcussciuriandK.pneumoniae,respectivelyand stigma-4-ene-3-one2at250␮gdemonstratedahighzoneofinhibition againstStaphylococcusxylosusof23mm.

Biofilmsinbodytissuescanbeformedbybacteriasuchas Acine-tobacterbaumannii,E.coli,P.aeruginosa,andS.aureus(Borgesetal., 2016).DecreasedadhesionwasobservedforallEtOAc,MeOHand aq/MeOHleaf,stembarkandfruitextractsagainstthreeresistant bacterialstrains,E.coliATCC35218,P.aeruginosaATCC27853and S.aureusATCC43300(seesupplementarydata).

The MeOH leaf extract displayed the greatest anti-adhesion potentialagainstE.coli,whilemajorityoftheextracts,withthe exceptionoftheDCMandHexextract(leavesandfruit)showed reduced biofilm formation by P. aeruginosa. For S. aureus, the aq/MeOH leaf,EtOAcstembarkand fruitandMeOH stem bark extractsreducedbiofilmformation.Allthepolarextractsdecreased adhesionsuggestinginterferencebytheextractsontheabilityof thesemicroorganismstoadheretopolystyrenesurfaces.Thereare varyingreportsonanti-adhesioneffectsofpolarextractsagainst differentbacterialstrainsintheliterature,whichcorroborateour findings. The anti-adhesion effects of polar extracts have been reportedforE.coliandBacilluscereus(Bräunlichetal.,2013),oral bacteriaStreptococcusmutans andStreptococcussobrinus (Rahim andKhan,2006),bothS.aureusandMRSA(Chusrietal.,2012)and P.aeruginosa(Sarkaretal.,2014).

Theactivityoftheisolatedcompoundswithregardto bacte-rialadhesionwasvariable.Allfourcompoundsincreasedadhesion ofE.coliATCC35218atallconcentrations(Table2). Stigmast-4-en-one(2)decreasedadhesionofP.aeruginosaATCC27853atall concentrations,with100␮gml−1beingthemosteffective. Ergost-4,6,8(14),22-tetraen-3-one(1)increasedadhesionat100␮gml−1, but decreased adhesionat inhibitory and supra-inhibitory con-centrations.For 3and4,decreasedadhesionwasonlyobserved at sub-inhibitory (100␮gml−1)concentrations, while increased adhesionwasobservedatinhibitoryandsupra-inhibitory concen-trations.IncreasedadhesionofS.aureusATCC43300wasobserved withallfourcompoundsatallconcentrationstested(Table2).

The variableactivity observed withtheisolated compounds wasinaccordancewiththeeffectsofoleanolicacidand␤-amyrin acetate from Vernonia auriculifera against biofilm formation by seven different bacterial strains (Kiplimo et al., 2011). Strain-specificeffects havebeen observedwiththetriterpenes ursolic andbetulinicacids,fromtheliverwortLepidoziachorduliferawhich inhibitedbiofilmformationandelastolyticactivityofP. aerugin-osaATCC27853,butincreasedadhesionofS.aureusATCC6538 (Gilabertetal.,2015).Theincreasedadhesionbeingobservedwith some of the isolated compounds may be due to promotion of microbialadhesionbyproviding asuitableconditioningfilmfor enhancementofcellattachment(Selimetal.,2014).

(3)

G.V.Awololaetal./RevistaBrasileiradeFarmacognosia27(2017)599–602 601

Table1

Antibacterialactivityofisolatedcompounds(zonesofinhibitioninmm)fromFicusnatalensissubsp.natalensis.

Compound Zonesofinhibition(mm)

Gram-negativebacteria

E.coliATCC25922 E.coliATCC35218 P.aeruginosa ATCC27853

P.aeruginosa ATCC35032

K.pneumoniae ATCC700603

100␮g 250␮g 100␮g 250␮g 100␮g 250␮g 100␮g 250␮g 100␮g 250␮g

1 10R 20S 9R 15S 7R 15S 9R 15S 9R 19S

2 10R 18S 9R 16S 0R 15S 10R 14I 9R 17S

3 0R 16S 0R 15S 0R 141 0R 18S 7R 16S

5 9R 18S 10R 20S 8R 13I 10R 15S 0R 23S

AMP10 22S 0R 0R 0R 0R

TE20 28S 23S 15S 14R 12R

Compound Zonesofinhibition(mm)

Gram-positivebacteria

B.subtilisATCC 6633

E.faecalisATCC 29212

E.faecalisATCC 51299

S.aureusATCC 29213

S.aureusATCC 43300

S.sciuriATCC 29062

S.xylosusATCC 35033

100␮g 250␮g 100␮g 250␮g 100␮g 250␮g 100␮g 250␮g 100␮g 250␮g 100␮g 250␮g 100␮g 250␮g

1 0R 20S 0R 13I 0R 13I 9R 16S 9R 15S 9R 15S 11I 16S

2 15S 18S 0R 14I 0R 16S 10R 18S 8R 22S 10R 19S 0R 23S

3 0R 0R 0R 17S 0R 16S 7R 20S 7R 19S 0R 19S 0R 17S

5 0R 20S 0R 16S 0R 111 9R 17S 0R 19S 9R 25S 16S 18S

AMP10 40S nt 25S 25S 20S 34S 0R

TE20 36S nt 0R 28S 36S 25S 26S

R,resistant;S,susceptible;I,intermediate;nt,nottested;AMP10,ampicillin(10␮g);TE20,tetracycline(20␮g).

Table2

Percentagebiofilmreductionfollowingexposureto100–500␮gml−1offourcompoundsisolatedfromF.natalensissubsp.Natalensis.

Compound Percentbiofilmreduction(%)a

E.coli ATCC35218 P.aeruginosa ATCC27853 S.aureus ATCC43300

100 250␮gml−1 500 100 250gml−1 500 100 250gml−1 500

1 −315.62 −1456.10 −1176.99 −64.04 28.16 18.05 −445.34 −338.40 −437.78

2 −783.27 −1168.21 −1151.57 59.65 8.59 19.45 −1.81 −330.97 −381.66

3 −149.72 −1346.58 −1071.16 39.07 −26.45 −38.54 −54.09 −302.98 −474.39

5 −593.81 −1220.89 −1189.00 54.69 −6.49 −48.49 −51.30 −395.19 −416.02

aBiofilmreductioncalculatedaccordingtoPittsetal.(2003).Negativevaluesareindicativeofanincreaseinattachment/biofilmformation.

fromF.natalensissubsp.natalensisinthisworkcouldberesponsible fortheantibacterialactivityexperiencedbythosewhousetheplant for medicinalpurposes since mostof them have demonstrated promisingantibacterialactivity.Decreasedadhesionwith>100% biofilmreductionwasdemonstratedbyallthecrudepolarextracts againstresistantbacterialstrains.Theisolatedcompounds exhib-itedstrain-specificanti-adhesionpotential,withbiofilmreduction againstP.aeruginosa,butnotE.coliorS.aureus.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethattheyhave fol-lowed theprotocolsof theirworkcenter onthe publicationof patientdata.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

GVAandHBcollectedtheplantmaterials.Allexperimentalwork wascarriedbyGVAunder thesupervision ofNK. Antimicrobial

andanti-adhesionanalysiswasdoneunderthesupervisionofHC. GVAandNKwrotethemanuscriptwithcontributionsfromHCand HBintheirfieldsofexpertise.Alltheauthorshavereadthefinal manuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsarethankfultotheResearchOffice,Universityof KwaZulu-Natal(UKZN),WestvilleCampus,Durban,SouthAfricafor adoctoralresearchgrant.GVAwasawardedaPhDstudyfellowship (studyleave)bytheUniversityofIlorin,KwaraState,Nigeria.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2017.07.004.

References

Basson,A.,Flemming,L.A.,Chenia,H.Y.,2008.Evaluationofadherence,

(4)

602 G.V.Awololaetal./RevistaBrasileiradeFarmacognosia27(2017)599–602

Borges,A.,Abreu,A.C.,Dias,C.,Saavedra,M.J.,Borges,F.,Simões,M.,2016.New

perspectivesontheuseofphytochemicalsasanemergentstrategytocontrol bacterialinfectionsincludingbiofilms.Molecules21,E877.

Borges,A.,Saavedra,M.J.,Simões,M.,2015.Insightsonantimicrobialresistance,

biofilmsandtheuseofphytochemicalsasnewantimicrobialagents.Curr.Med. Chem.22,2590–2614.

Bräunlich,M.,Økstad,O.A.,Slimestad,R.,Wangensteen,H.,Malterud,K.E.,Barsett,

H.,2013.EffectsofAroniamelanocarpaconstituentsonbiofilmformationof

EscherichiacoliandBacilluscereus.Molecules18,14989–14999.

Burrows,J.,Burrows,S.,2003.FigsofSouthernandSouth-CentralAfrica.Umdaus

Press,Hatfield,pp.176–177.

Cheng,S.,Huang,C.,Chen,W.,Kuo,Y.,Chang,Y.,2008.Larvicidalactivityof

tec-toquinoneisolatedfromredheartwood-typeCryptomeriajaponicaagainsttwo mosquitospecies.Bioresour.Technol.99,3617–3622.

Chusri,S.,Phatthalung,P.N.,Voravuthikunchai,S.P.,2012.Anti-biofilmactivityof

QuercusinfectoriaG.Olivieragainstmethicillin-resistantStaphylococcusaureus. Lett.Appl.Microbiol.54,511–517.

ClinicalandLaboratoryStandardsInstitute,2007.M100-S17.Performancestandards

forantimicrobialsusceptibilitytesting.In:17thInformationalSupplement,27, Wayne,PA.

Fangkrathok,N.,Sripanidkulchai, B.,Umehara, K.,Noguchi,H., 2013.Bioactive

ergostanoidsandanewpolyhydroxyoctanefromLentinuspolychrousmycelia andtheirinhibitoryeffectsonE2-enhancedcellproliferationofT47Dcells.Nat. Prod.Res.27,1611–1619.

Gilabert,M.,Marcinkevicius,K.,Andujar,S.,Schiavone,M.,Arena,M.E.,Bardón,

A.,2015.Sesqui-andtriterpenoidsfromtheliverwortLepidoziachordulifera

inhibitorsofbacterialbiofilmandelastaseactivityofhumanpathogenic bacte-ria.Phytomedicine22,77–85.

Hutchings,A.,Scott,A.H.,Lewis,G.,Cunningham,A.B.,1996.Zulumedicinalplants.

Aninventory.UniversityofNatalPress,Pietermaritzburg,SouthAfrica,pp.1961.

Kiplimo,J.J., Koorbanally,N.A., Chenia, H.,2011. Triterpenoidsfrom Vernonia

auriculiferaHiernexhibitantimicrobialactivity.Afr.J.Pharm.Pharmacol.5, 1150–1156.

Liu,B.,Jian,L.,Chen,G.,Song,X.,Han,C.,Wang,J.,2014.Chemicalconstituents

andinvitroanticancercytotoxicactivitiesofPolyalthiaplagioneura.Chem.Nat. Compd.49,1171–1174.

Olaokun, O.O., McGaw, L.J., Eloff, J.N., Naidoo, V., 2013. Evaluation of the

inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and

polyphenolic content of extracts of ten African Ficus species (Moraceae)

used traditionally to treat diabetes. BMC Complement. Altern. Med. 13,

http://dx.doi.org/10.1186/1472-6882-13-94.

Pitts, B.M., Hamilton, M.A., Zelver, N., Stewart, P.S., 2003. A microtitre-plate

screeningmethodforbiofilmdisinfectionandremoval.J.Microbiol.Methods 54,269–276.

Rabe,T.,vanStaden,J.,1997.AntibacterialactivityofSouthAfricanplantsusedfor

medicinalpurposes.J.Ethnopharmacol.56,81–87.

Rahim,Z.H.,Khan,H.B.,2006.Comparativestudiesontheeffectofcrudeaqueous

(CA)andsolvent(CM)extractsofcloveonthecariogenicpropertiesof Strepto-coccusmutans.J.OralSci.48,117–123.

Rasoanaivo, L.H., Wadouachi, A., Andriamampianina, T.T., Andriamalala, S.G.,

Razafindrakoto,E.J.B.,Raharisololalao,A.,Randimbivololona,F.,2014.

Triter-penes and steroids from the stem barkof Gambeya boiviniana Pierre. J. Pharmacogn.Phytochem.3,68–72.

Sarkar,R.,Chaudhary,S.K.,Sharma,A.,Yadav,K.K.,Nema,N.K.,Sekhoacha,M.,

Kar-makar,S.,Braga,F.C.,Matsabisa,M.G.,Mukherjee,P.K.,Sen,T.,2014.Anti-biofilm

activityofMarula–astudywiththestandardizedbarkextract.J. Ethnopharma-col.154,170–175.

Selim,S.A.,Adam,M.E.,Hassan,S.M.,Albalawi,A.R.,2014.Chemicalcomposition,

antimicrobialandantibiofilmactivityoftheessentialoilandmethanolextractof

theMediterraneancypress(CupressussempervirensL.)BMCComplement.Altern.

Med.14,http://dx.doi.org/10.1186/1472-6882-14-179.

Sousa,G.F.,Duarte,L.P.,Alcântara,A.F.C.,Silva,G.D.F.,Vieira-Filho,S.A.,Silva,R.R.,

Oliveira,D.M.,Takahashi,J.A.,2012.NewtriterpenesfromMaytenusrobusta:

Referências

Documentos relacionados

Analysis of the composition of Brazilian Propolis extracts chromatography and evaluation of their In vitro activity against Gram- positive bacteria. Biological properties

Antibacterial activity of synthesized nanoparticles were tested on gram-positive and gram-negative bacteria ac- cording to the radial diffusion assay (RDA) for antibacterial

Crude extracts and isolated compounds were tested for antimicrobial activity against twenty strains of microorganisms including Gram-positive and Gram-negative bacteria and

Although, there are no reports on the anti- microbial activity against both Gram-positive and Gram- negative bacteria, and yeasts, and antioxidant activities of budmunchiamine-A

Disserta¸ c˜ ao apresentada ao Curso de P´ os- Gradua¸ c˜ ao em Matem´ atica e Computa¸ c˜ ao Cient´ ıfica, do Centro de Ciˆ encias F´ ısicas e Matem´ aticas da

isolated from pasteurized milk, and investigate the production of antimicrobial substances and their potential for action against the Gram-negative bacteria and staphylococci

The ethyl acetate extract of VITJS11 showed maximum antifungal activity against three Aspergillus species and prominent antibacterial activity against two Gram positive and

Consideramos que este estudo permitiu-nos compreender a forma como os enfermeiros vivenciam o processo de cuidar do doente em agonia em contexto hospitalar,