• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número3"

Copied!
6
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Hypoglycemic

and

hypolipidemic

effects

of

Solidago

chilensis

in

rats

Mariane

Schneider

a

,

Adrieli

Sachett

a

,

Amanda

P.

Schönell

a

,

Eduarda

Ibagy

a

,

Emily

Fantin

a

,

Fernanda

Bevilaqua

a

,

Giana

Piccinin

a

,

Glaucia

D.

Santo

a

,

Marta

Giachini

a

,

Rafael

Chitolina

a

,

Silvana

M.

Wildner

a

,

Ricieri

Mocelin

b

,

Leila

Zanatta

b

,

Walter

A.

Roman

Junior

c,∗

aNúcleodeFitoterápicos,UniversidadeComunitáriadaRegiãodeChapecó,Chapecó,SC,Brazil

bProgramadePós-graduac¸ãoemCiênciasAmbientais,UniversidadeComunitáriadaRegiãodeChapecó,Chapecó,SC,Brazil

cProgramadePós-graduac¸ãoemCiênciasdaSaúde,UniversidadeComunitáriadaRegiãodeChapecó,Chapecó,SC,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18December2014 Accepted16May2015 Availableonline10June2015

Keywords:

Antihyperlipidemicactivity Arnica-do-brasil Asteraceae Hypoglycemic

a

b

s

t

r

a

c

t

SolidagochilensisMeyen,Asteraceae,istraditionallyusedtotreatinflammation.However,phytochemical

andpharmacologyinvestigationsarelacking.Thisstudyevaluatedthehypoglycemicandhypolipidemic

effectsofhydroalcoholicextractfromS.chilensisaerialpartsinrats.Inoralglucosetoleranceteststhe

ratsreceivedsaline(0.5ml/100g)incontrolgroup(C),hydroalcoholicextract(125,250or500mg/kg

p.o.;n=6)orglibenclamide(10mg/kgp.o.;n=6).After30min,glucose(4g/kg)wasadministered.Rats

treatedwithhydroalcoholicextract500demonstrateddecreasedglucoselevelsat180min(−22.1%),

whencomparedwithgroupC,similartoglibenclamide.Moreover,treatmentwithhydroalcoholicextract

500significantlyincreasedtheglycogencontentintheliverandsoleusmuscle,andhydroalcoholic

extract250specificallyinhibitedtheenzymemaltasewhencomparedwithgroupC.Furthermore,all

hyperglycemicratstreatedwithhydroalcoholicextract(125,250and500)exhibitedanaccentuated

decreaseintotalcholesterollevels(−36.8%,−36.7%and−41.3%,respectively).Ourresultssuggestthat

hypoglycemicandhypolipidemiceffectsofhydroalcoholicextractcouldbeassociatedwithincreased

productionandreleaseofinsulinaswellaswithinsulinotropicandantioxidanteffects.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Diabetesmellitus(DM)comprisesagroupofdisorders involv-ingdistinct pathogenicmechanismswithhyperglycemia asthe commondenominator(Teixeiraetal.,2000).Hyperglycemiain dia-betesmayberelatedtonumerousphysiologicalevents, suchas decreasedglucoseincells,reducedglucoseutilizationbyvarious tissues,and increasedhepaticproduction of glucose (gluconeo-genesis)(Prabhakar et al.,2013).Complicationsexperienced by patientswithdiabetesareoftenrelatedtochronichyperglycemia, includingretinopathy, peripheralvascular disease,renal failure, neuropathy,andcardiovasculardiseasesthatcausebothmorbidity andprematuremortality(Hiranyetal.,2000;Piaulinoetal.,2013). Itiswellestablishedthatpatientswithtype2DMfrequently have abnormal serum lipid profiles comprising elevated low densitylipoproteins(LDL)andtriglycerideslevelsalongwith mod-eratelydecreasedhighdensitylipoproteins(HDL)level(Zimmet, 2000), all of which are associated with an increased risk of

∗ Correspondingauthor.

E-mail:romanwa@unochapeco.edu.br(W.A.RomanJunior).

cardiovasculardiseases(Daietal.,2013).Manystudieshaveshown thatelevatedserumcholesterolconcentrationscancausecoronary atherosclerosis(ParkandVelasquez,2012)thatisassociatedwith heartdisease,stroke,anddeathinbothdevelopedanddeveloping countries(Raidaetal.,2008).

Medicinalplantshavebeenusedformany yearsbydifferent culturesworldwidetotreatDM(Modaketal.,2007).Investigating herbalmedicineshasbecomeprogressivelyimportantinthesearch foranew,effective,andsafetherapeuticagenttocombatDM.More than200purebioactiveprinciplesisolatedfromplantshavebeen showntolowerserumglucoselevels(Groveretal.,2002;Warjeet, 2011),includingphenolicsandflavonoids(Negri,2005).

Solidago chilensis Meyen, Asteraceae, is a species native to the southern region of South America. It is widely distributed in south and southeast Brazil, where it is popularly known as arnica-do-brasil and is used to relieve inflammation (Lorenzi

and Matos, 2002). Its main chemical constituents are

ace-tophenone,carotenes,diterpenoidswithlabdanicandclerodanic skeletons(Soares-Valverdeetal.,2009),flavonoids,glycosides, 3-methoxybenzaldehyde,essential oils, and saponins(Silvaet al., 2010),withquercetrinbeingthemajorconstituent(Torresetal.,

1987).

http://dx.doi.org/10.1016/j.bjp.2015.05.001

(2)

Ethnopharmacologicalinvestigationshave foundthis species tohaveantispasmodic,antihemorrhagic(Alonso,1998), wound-healing(Facury-Netoetal.,2004),andanti-inflammatoryeffects

(Tamura et al., 2009). Recently, there has been considerable

progressintheinvestigationofS.chilensisandgastricprotection

(Bucciarellietal.,2010)aswellasabetterunderstandingofthe

effectofS.chilensisoninsulinresistanceinobesemice(Meloetal., 2011).However,thehypoglycemicandhypolipidemiceffectsofS.

chilensisontheglucosetolerancecurvehavenotyetbeenstudied. Therefore, theobjective ofthis study wastoinvestigatethe hypoglycemicandhypolipidemiceffectsofhydroalcoholicextract (HE) from S. chilensis in rats. This study evaluatedthe glucose tolerance curve along with, liver and soleus muscle glycogen levels,disaccharidaseactivity,totalcholesterol(TC),andalanine aminotransferase(ALT)levels.Moreover,theinvitrofreeradical scavengingpropertiesofS.chilensiswereevaluated.

Materialsandmethods

Plantmaterials

AerialpartsofSolidagochilensisMeyen,Asteraceae,were col-lectedinChapecó,SC,Brazil(S27◦0638.83′′/W523426.52′′).The

voucherspecimenwasidentifiedbyOsmardosSantosRibasand isdepositedintheherbariumoftheBotanicalMuseumofCuritiba (MBMnumber356792).

Preparationofhydroalcoholicextract

Dried aerial parts of S. chilensis (50g) of the same particle size(300␮m;48Tyler/Mesch)weremaceratedin80%methanol (1000ml)forsixdays.Hydroalcoholicextract(HE)fromS.chilensis

wasconcentratedtodrynessunderreducedpressureat40◦Cand

thenfreeze-driedandstoredat−20◦C.

High-performanceliquidchromatographyanalysis

ChromatographyanalysiswasperformedusingaVarian®

Pro-Star HPLC system consisting of an automatic injector, ternary gradientdetectors,pumps,andaUV/VisKromasil®C18

reversed-phase ODS column (5␮m; 25mm×4.5mm).The mobile phase consistedoftwosolvents:H2O:aceticacid(40:1,v/v;solventA) andCH3CN(solventB)thatwerefilteredthrough0.45␮mMillipore polytetrafluoroethylenemembranes.Separationswereperformed with a linear gradient: 86% solvent A and 14% solvent B for 15min,35%solventBfor20minand100%solventBfor2min.UV absorbanceat360nmwasmeasured,andtheresultswere com-paredwiththeretentiontimesofanauthenticexternalstandard followedbyaUVspectrumanalysis.Theflowrateofthemobile phasewas1ml/min−1,andtheinjectionvolumewas20l.The chromatographicrunswereperformedat22◦C.UVabsorbanceat

360nm wasmeasured(Apátiet al.,2006).Quercetrin (12.5,25, 50,100and200␮g/ml;Sigma–Aldrich®)wasanalyzedin

tripli-cate,andacalibrationcurvewasgenerated.HEwasdissolvedin MeOH(1mg/ml)andfilteredthroughamicroporefilter(0.45␮m) beforethechromatographicprofilewasgenerated.Theresultsare expressedastheconcentrationofquercetrin(%)inthedriedplant material.

Invitro2,2-diphenyl-1-picrylhydrazylfreeradicalscavenging assay

ThefreeradicalscavengingactivityofHEwasmeasuredusing themethoddescribedbyBrand-Williamsetal.(1995)withsome modifications.HE(1ml;5–200␮g/ml)wasaddedto2mlofa solu-tionof2,2-diphenyl-1-picrylhydrazyl(DPPH)radicals inethanol

(0.004%).Themixturewasvigorouslyshakenandallowedtostand for30minatroomtemperature(RT).Theabsorbance(Abssample) oftheresultingsolutionwasmeasuredat517nm,andthe antiox-idantactivity(AA)percentagewascalculatedusingthefollowing formula:

AA%=100−(Abssample−Absblank)×100

Abscontrol

Asolutionofethanol(2ml)andHE(1ml)wasusedastheblank (Absblank).AsolutionofDPPH(2ml)andethanol(1ml)wasusedas thecontrol(Abscontrol).Ascorbicandgallicacidswereusedas stan-dards.Freeradicalscavengingactivitywasexpressedintermsof theamountofantioxidantsnecessarytodecreasetheinitialDPPH absorbanceby50%(IC50).TheIC50valuewasdeterminedby inter-polationfromthenonlinearregressionoftheplotofpercentageof inhibitionagainsttheconcentrationofHE,whichisdefinedasthe amountofHEneededtoscavenge50%ofDPPHradicals.

Animals

TheexperimentalprotocolwasapprovedbytheEthics Com-mitteeonAnimalUseoftheCommunityUniversityintheRegion ofChapecó,Brazil(CEUANo.020/2013).Male Rattusnorvegicus, Wistar(n=30)weighing250–275gwereusedinthestudy.The animalswerehousedinwire-bottomed17cm×33.5cm×40.5cm cagesinacontrolledenvironmentat22±2◦Cwitha12hlight–dark

cycleandminimalnoise.Theratshadadlibitumaccesstowaterand commerciallypreparedrodentchowpellets(Nuvilab®

CR-1).

Oralglucosetolerancecurve

Animalswerefastedovernightanddividedintogroups con-taining six rats each. The control group (C), received saline (0.5ml/100g);theHEgroupreceivedHE(125,250or500mg/kg)

(Patiletal.,2011);andtheglibenclamidegroupreceived

gliben-clamide(10mg/kg)(Zhaoetal.,2011).Alldrugsweredilutedwith saline(0.9%)inestablisheddosesandadministeredorallyby gav-ageinavolumeof0.5ml/100gbodyweight(Trovatoetal.,1996;

Diehletal.,2001).Glucoselevelsweremeasuredbeforetherats

receivedthetreatment(zerotime)and30minafterglucosewas administrated(4g/kg)(Alametal.,2011;Pereiraetal.,2012).Blood sampleswerecollectedfromthetailveinjustpriortoand30,60 and180minafterglucoseloading,andtheglucoselevel(mg/dl) wasassayedbyaglucometer(Accu-Chek® Performa).Attheend

oftheexperimentalperiod,theanimalswereanesthetizedwith amixtureoflidocaineandsodiumthiopental(10and150mg/kg, respectively).Bloodaliquotswerecollectedforbiochemical analy-sesviacardiacpuncture,andtheanimalsweretheneuthanizedby exsanguination(Concea,2012).Theliverandsoleuswerecollected forlateranalysis,aswasasegmentofthesmallintestine.

Glycogenmeasurements

Theharvestedliverandsoleuswereassessedforglycogen con-tent3haftertreatment.Glycogenwasisolatedfromthesetissues asdescribedbyKrisman(1962).Thetissuewasweighed, homoge-nizedin33%KOH,andboiledat100◦Cfor30min,withoccasional

(3)

Disaccharidaseextractionandassays

Theextractedsmallintestinesegmentwaswashedin0.9%NaCl solution,dried onfilterpaper,weighed,trimmed, and homoge-nized(300×g)with0.9%NaCl(400mgofduodenumper1.0mlof 0.9%NaCl)for1minat4◦C.Theresultingextractwascentrifuged

at(1300×g)for8min.Thesupernatantwasassessedtomeasure

invivo maltase,sucrase,and lactase activityas wellas protein determination.The activityofmaltase(EC 3.2.1.20),lactase (EC 3.2.1.23),andsucrase(EC3.2.1.48)wasdeterminedusingaglucose diagnosiskitbasedonthereagentglucoseoxidase.Todetermined isaccharidaseactivity,duodenumhomogenates(10␮l)were incu-batedat37◦Cfor60minwith10lofthesubstrate(equivalentto

0.056␮Mofmaltase,sucrase,orlactase)(Dahlqvist,1984;Pereira etal.,2011).Oneenzymeunit(U)wasdefinedastheamountof enzymethatcatalyzedthereleaseof1␮molofglucoseperminute undertheassayconditions.Thespecificactivitywasdefinedas enzymeactivity(U)permilligramofprotein.Proteinconcentration wasdeterminedbythemethoddescribedbyLowryetal.(1951), usingbovineserumalbuminasthestandard.Theassayswere per-formedinduplicatealongwithappropriatecontrols.

Biochemicalanalysisofserumsamples

Uponcollection,serumsampleswereimmediatelycentrifuged (3000×g)for15min.SerumTCandALTlevelsweredetermined by enzymatic colorimetric methods (UV/vis) using commercial Labtest®kitsaccordingtothemanufacturer’sinstructions.A

semi-automatedanalyzer(BioSystems®,modelBTS310)wasusedforall

analysis(Lietal.,2012).

Statistics

Allresultsshownarepresentedasmeanvalues±SEM.Thedata wereevaluatedbyone-wayANOVAfollowedbyTukey’stestand correlationanalysesusingSPSS20.0.Ap-valueof<0.05was con-sideredstatisticallysignificant.

Results

ChemicalconstituentsofS.chilensis

TheamountofquercetrininHEwasquantifiedbyHPLCusing ananalyticalcurve(r=0.999;y=0.735x=2.6971)witharetention timeof10.02min.TheHPLCanalysisrevealedthequercetrin con-centrationtobe2.4%intheaerialpartsofS.chilensis(Fig.1).

DeterminationofDPPHradicalscavengingactivity

TheDPPHassayshowedthatHEexhibitsantioxidantproperties

invitro(Fig.2).ThehighestscavengingeffectwasobservedforHE, withanIC50of59.12±3.14␮g/ml,althoughitshowedlower scav-engingabilitiesthanascorbicandgallicacids,whichwereusedas standards(16.32±2.94and2.14±1.58␮g/ml,respectively).

EffectofHEontheoralglucosetolerancecurve

Table1showsthatHE500hadasignificantantihyperglycemic

effectwhencomparedtotheCgroup(F(4,21)=12.0;p<0.05).Lower serumglucose (approx. 22%lower) wasdetected180minafter treatment;glibenclamideshowedsimilarresults.

EffectofHEonhepaticandsoleusglycogencontent

Fig.3showsthatHEandglibenclamidedidnotaffecthepaticand soleusglycogencontentcomparedwithothertreatmentgroups.

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

–10 RT [min]

Extrato bruto1.DATA mAU 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

–10 RT [min]

Padrão Quercetrina1_16_9_2013 20_02_25.DATA mAU

A

B

Fig.1. Analysisbyhighperformanceliquidchromatography(HPLC):A.quercetrin (200␮g/ml);B.hydroalcoholicextractfromaerialpartsofSolidagochilensis(1mg/ml inMeOH)(RT:10.02min).HPLCVarian®,Kromasil®ODScolumn(5M)reversed

phaseC-18(25mm×4.5mm)at24±2◦C.Twosolventsystemsusedforanalysis;

H2O:aceticacid(40:1,v/v)(solventA)andCH3CN(solventB).Theflowwas1ml/min, andthegradientusedhad86%ofAfor15min,65%ofAfor20min,and100%ofB for2min.ThedetectionbyUVwasrealizedat360nm.

0 50 100 150 200 250

0 50 100 150 HE Ascorbic acid

Gallic acid

Concentration (g/ml)

% i nh ib it io n o f D P P H

Fig.2.2,2-Diphenyl-1-picrylhydrazyl(DPPH)radicalscavengeractivityof hydroal-coholicextractfromSolidagochilensis(HE)comparedwithstandardsascorbicand gallicacids.Resultsareexpressedasmeans±SEM(n=3).

However, HE 500 significantly increased hepatic (F(4,25)=6.6;

p<0.05)andsoleus(F(4,23)=3.9;p<0.05)glycogencontent com-paredwithgroupC.

EffectofHEondisaccharidaseactivity

DisaccharidaseactivitywassignificantlyaffectedbyHEonlyat adoseof250mg/kg,asitinhibitedmaltaseactivity(F(4,24)=3.4;

p<0.05)comparedwithgroupC(Fig.4).

Table1

EffectsofhydroalcoholicextractfromSolidagochilensisonaglucosetolerancecurve (mean±SEM)(n=6).

Groups Glucoselevel(mg/dl)

Initial(timezero) 30min 60min 180min

C 93.6±2.0 128.5±4.6 136.0±1.1 126.0±6.3 HE125 95.5±2.6 144.6±4.9 150.1±12.7 114.2±5.8 HE250 100.8±3.2 151.6±20.2 150.1±6.1 114.2±2.6 HE500 91.0±4.0 148.2±10.1 142.2±1.6 98.2±2.3*

GLIB 93.3±1.1 149.8±5.5 149.3±3.5 78.5±8.9*

C,control;HE,hydroalcoholicextractfromS.chilensis(125,250or500mg/kg);GLIB, glibenclamide(10mg/kg).

(4)

C HE 125 HE 250 HE 500 GLIB 0.00

0.05 0.10 0.15 0.20

*

m

g

of

gl

yc

og

e

n

/g

o

f s

o

le

u

s

m

u

s

c

le

C HE 125 HE 250 HE 500 GLIB

0.0 0.5 1.0 1.5

*

mg

o

f g

ly

c

o

g

e

n

/g

o

f h

e

p

a

tic

ti

ss

ue

Fig.3.EffectofhydroalcoholicextractfromSolidagochilensis(HE;125,250and 500mg/kg)andglibenclamide(GLIB;10mg/kg)onhepaticandsoleusglycogen con-tentinhyperglycemicrats.Valuesareexpressedasmean±SEM(n=6).*p<0.05 one-wayANOVAcomparedtothecontrolgroup(C).

EffectsofHEonTCandALT

Followingtreatment, groupC ratshad higherserumTCthan rats in the other groups. All hyperglycemic rats treated with HE (125, 250or 500) exhibited an accentuated decrease in TC (−36.8%,−36.7%and−41.3%,respectively),comparedwithgroupC

C HE 125 HE 250 HE 500 GLIB 0

50 100 150

*

Ma

lt

a

s

e

a

ct

iv

it

y

un

it

s

/g

of

pr

ot

e

in

Fig.4.EffectofhydroalcoholicextractfromSolidagochilensis(HE;125,250and 500mg/kg)andglibenclamide(GLIB;10mg/kg)onthespecificactivityofmaltase, inasegmentofthesmallintestine.Valuesareexpressedasmean±SEM(n=6). *p<0.05one-wayANOVAcomparedtocontrolgroupsaline(C).

C HE 125 HE 250 HE 500 Glib

0 20 40 60 80

*

* *

TC

(

m

g/

dl

)

Fig.5.Theeffectsoftreatmentsontotalcholesterol(TC)values(mean±SEM;n=6). Hyperglycemicratsweregivensaline(controlgroup;C)orthefollowingtreatments: hydroalcoholicextractfromSolidagochilensis(HE;125,250or500mg/kg); gliben-clamide(GLIB;10mg/kg).*p<0.05one-wayANOVAcomparedtocontrolgroup saline(C).

(F(4,23)=5.7;p<0.05;Fig.5).TherewasnodifferenceinserumALT activitybetweenthegroups(datanotshown).

Discussion

Diabetesmellitusisachronicmetabolicdisordercharacterized by hyperglycemia. It is associated with alterations in carbohy-drate,protein,andlipidmetabolism(Pereiraetal.,2011).Plants exertantihyperglycemicandhypoglycemicactivityprimarilyvia their ability torestore pancreatictissue function by increasing insulinoutput,inhibitintestinalabsorptionofglucose,orfacilitate metabolitesininsulin-dependentprocesses(Pateletal.,2012).

Thepresentstudyshowedthataglucosedoseof4g/kgcan con-siderablyincreaseratsserumglucoselevels,whichweremitigated bya singleoral doseofHE at 500mg/kg for180minfollowing glucoseadministration.Recently,itwasdemonstratedthatrutin reducesserumglucoselevelsandpotentiatesinvivoinsulin

secre-tion(Kappeletal.,2013);rutinmechanismofactioncanalsobe

explainedbymammalssynthesizingglycogentomaintain appro-priate glucose levels. Glycogen is how mammalsstore glucose for futureuse, mainlyin skeletal musclesand theliver(Jensen etal.,2011).Insulinandglucagonregulateglycogenmetabolism byactivatingandinhibitingseveralenzymesandproteins(Ferrer etal.,2003);thehealthyorganismremovesserumglucoserapidly whenglucoseisinexcess,butinsulin-stimulatedglucosedisposalis reducedinorganismswithinsulinresistanceandtype2DM(Jensen etal.,2011).Inthepresentstudy,ratsadministeredHE500had significantly increasedglycogen contentin theliver and soleus comparedwithratsingroupC,whichhelpedleadtotheHE500rats lowerserumglucoselevels.InagreementwithTorresetal.(1987), thephytochemicalanalysisbyHPLCconfirmedthatthequercetrin flavonoidisthemajorbioactivesubstanceofS.chilensis.Flavonoids mayexert beneficial effects in DMby enhancinginsulin secre-tion;reducingapoptosisandpromotingproliferationofpancreatic

␤-cells;improvinghyperglycemiathroughregulatinghepatocyte glucose metabolism; reducing insulin resistance, inflammation, and oxidative stressin muscleand fat;and increasingglucose uptakein skeletalmuscleand whiteadiposetissue(Babuetal., 2013).ThisfindingisinagreementwithPrasathandSubramanian

(2011),whoreportedtheantidiabeticeffectoftheflavonoidfisetin

(5)

glucosehomeostasisbymodulatingenzymesthatregulate carbo-hydratemetabolism.Itwasalsodemonstratedthatkaempferitrin, themajorflavonoidfoundinBauhiniaforficataLink.,leaves,isable todiminishserumglucoselevelsandincreaseglucoseuptakein theratsoleusasefficientlyasinsulin(Jorgeetal.,2004).Thiseffect couldberelatedtotheincreasedmuscleglycogencontentseenin thepresentstudywiththeHE500treatment.

Inthepresentstudy,we demonstratedthatHE 250reduced maltase activity. Several plants exert antihyperglycemic activ-ity viainhibiting enzymes that hydrolyze carbohydratesin the smallintestine,andtheeffectappearstoinvolveinteractionswith polyphenoliccompounds(MaiandChuyen,2007).AlthoughHE500 moresignificantlyloweredratsserumglucoselevels,itdidnot sig-nificantlyinhibitmaltaseactivity.Thisfindingisinagreementwith

Pereiraetal.(2011,2012),whofoundthathigherdosesofextracts

andsubstances,didnotaffectdisacharidaseactivity.These find-ingsreinforcetheideathatHEaffectsserumglucosebyincreasing glucosestorage(asglycogen)intheliverandmuscle.

RatstreatedwithHE(125,250or500mg/kg)showeddecreased serum TC. A previous study using other plants suggested that theseeffectscanbeattributedtotherestorationoftriacylglyceride catabolism by stimulating lipolytic pathways involving plasma lipoproteinlipase(Xieetal.,2007).Inthepresentstudy,HEcould have stimulated similar effects. Intracellular glucose and lipid metabolicdisordersarethebasisofavarietyofmetabolicdiseases. Glucoseandlipid metabolicdisordersareclosely relatedtothe occurrenceandprogressionofDM,obesity,hepaticsteatosis,and cardiovasculardisease(Mengetal.,2013).

WecannotdiscountthepossibilitythatHEalsointerfereswith cholesterol’smetabolic cycle at otherpoints, suchas intestinal uptake,endogenousmetabolism,andtransportbylipoproteins(Bei

etal.,2012;Roman-Junioretal.,2015),whichwerenotassessedin

thisstudy.

FreeradicalscavengingpropertiesofS.chilensiswereobserved in the DPPH assay. Thus, we propose that theplants hydroal-coholicextractmayhavecontributedtothehyperglycemicrats improvedlipidmetabolismandoxidativestress.Thisis character-isticofpolyphenols(Liuetal.,2014);however,furtherstudiesare requiredtoconfirmtheinvivoantioxidanteffects ofS.chilensis

anditsbenefitsin hypoglycemicandhypercholesterolemic ani-malmodels.LevelsofALTdidnotdifferbetweentreatmentgroups, indicatingtheabsenceofHEtoxicityatthedosestested.

Insummary,ourresultsshowedthatHEexertedmarked hypo-glycemiceffectsviaincreasingtheproductionandreleaseofinsulin as well as via increasing insulinotropic activity. The hypolipi-demic effect of HE in rats possibly involved reduced levels of lipoproteinsaswellasantioxidantactivity.Furthermore,therewas strongevidencethatquercetrin,themajorconstituentofS.chilensis

extracts,islargelyresponsiblefortheobservedbiologicalactivities. However,theunderlyingmechanismsoftheseeffectsneedtobe elucidatedbyfurtherstudies.

Conclusions

HydroalcoholicextractofS.chilensismaybeeffectivein main-tainingglucosehomeostasisbyreducingserumglucoselevelsand TC.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Authorscontribution

MS,APSandMGcontributedinallstepsofthisstudy.EI,FB,GDS, AS,RCandRMcontributedtobiologicalstudies.EF,GPandSMW contributedtobiochemicalanalyses.LZandWARJhaveguidedthe

laboratoryworkand contributedtodesign ofthestudy.Allthe authorshavereadthefinalmanuscriptandapprovedthe submis-sion.

Acknowledgements

ThisworkwassupportedbytheUnochapecó[modalityArt.171 –FUMDES],CNPq-PIBIC(editalN◦228/Reitoria/2014),PIBIC-FAPE

(editalN◦121/Reitoria/2013)andFAPESC.

References

Alam,M.A.,Subham,N.,Chowdhury,S.A.,Awal,M.A.,Mostofa,M.,Rashid,M.A., Hasan,C.M.,Nahar,L.,Sarker,S.D.,2011.Anthocephaluscadamba(Roxb.)Miq., Rubiaceae,extractshowshypoglycemiceffectandeasesoxidativestressin alloxan-induceddiabeticrats.Rev.Bras.Farmacogn.21,155–164.

Alonso,J.R.,1998.TratadodeFitomedicina:BasesClínicaseFarmacológicas.Buenos Aires,ISISEdiciones.

Apáti,P.,Houghton,P.J.,Kite,G.,Steventon,G.B.,Kery,A.J.,2006.In-vitroeffect offlavonoidsfromSolidagocanadensisextractonglutathioneS-transferase.J. Pharm.Pharmacol.58,251–256.

Babu,P.V.A.,Liu,D.,Gilbert,E.R.,2013.Recentadvancesinunderstandingthe anti-diabeticactionsofdietaryflavonoids.J.Nutr.Biochem.24,1–28.

Bei,W.J.,Guo,J.,Wu,H.Y.,Cao,Y.,2012.Lipid-regulatingeffectoftraditionalChinese medicine:mechanismsofactions.Evid.BasedComplement.Alternat.Med.1, 1–19.

Brand-Williams,W.,Cuvelier,M.E.,Berset,C.,1995.Useofafreeradicalmethodto evaluateantioxidantactivity.Lebenson.Wiss.Technol.28,25–30.

Bucciarelli,A.,Minetti,A.,Milczakovskig,C.,Skliar,M.,2010.Evaluationof gastro-protectiveactivityandacutetoxicityofSolidagochilensisMeyen(Asteraceae). Pharmaceut.Biol.48,1025–1030.

Concea,2012.GuiaBrasileirodeBoasPráticasemEutanásiaemAnimais:Conceitos eProcedimentosRecomendados.Brasília,62p.

Dahlqvist,A.,1984.Assayofintestinaldisaccharidases.Scand.J.Clin.Lab.Invest.44, 169–172.

Dai,F.J.,Hsu,W.H.,Huang,J.J.,Wu,S.C.,2013.Effectofpigeonpea(CajamuscajanL.) onhigh-fatdiet-inducedhypercholesterolemiainhamsters.FoodChem.Toxicol. 53,384–393.

Diehl,K.H.,Hull,R.,Morton,D.,Pfister,R.,Rabemampianina,Y.,Smith,D.,Vidal, J.M.,Vorstenbosch,C.V.,2001.Agoodpracticeguidetotheadministrationof substancesandremovalofblood,includingroutesandvolumes.J.Appl.Toxicol. 21,15–23.

Facury-Neto,M.A.,Fagundes,D.J.,Beletti,M.E.,Novo,N.F.,Penha,S.Y.J.N.,2004. Sys-temicuseofSolidagomicroglossaDCinthecicatrizationofopencutaneous woundsinrats.Braz.J.Morphol.Sci.21,207–210.

Ferrer,J.C.,Favre,C.,Gomis,R.R.,Fernández-Novell,J.M.,Garcia-Rocha,M., Dela-Iglesia,N.,Cid,E.,Guinovart,J.J.,2003.Controlofglycogendeposition.FEBSLett. 546,127–132.

Grover,J.K.,Yadav,S.,Vats,V.,2002.MedicinalplantsofIndiawithantidiabetic potential.J.Ethnopharmacol.81,81–100.

Hirany,S.,O’Byrne,D.,Devaraj,S.,Jialal,I.,2000.Remnant-likeparticle-cholesterol concentrationsinpatientswithtype2diabetesmellitusandend-stagerenal disease.Clin.Chem.46,667–672.

Jensen,J.,Rustad,P.I.,Kolnes,A.J.,Lai,Y.C.,2011.Theroleofskeletalmuscleglycogen breakdownforregulationofinsulinsensitivitybyexercise.Front.Physiol.2, 1–11.

Jorge,A.P.,Horst,H.,Sousa,E.,Pizzolatti,M.G.,Silva,F.R.,2004.Insulinomimetic effectsofkaempferitrinonglycaemiaandon14C-glucoseuptakeinratsoleus

muscle.Chem.Biol.Interact.149,89–96.

Kappel,V.D.,Frederico,M.J.S.,Postal,B.G.,Mendes,C.P.,Cazarolli,L.H.,Silva,F.R.M.B., 2013.Theroleofcalciuminintracellularpathwaysofrutininratpancreatic islets:potentialinsulinsecretagogueeffect.Eur.J.Pharmacol.702,264–268. Krisman,C.R.,1962.Amethodforthecolorimetricestimationofglycogenwith

iodine.Anal.Biochem.4,14–23.

Li,W.,Zhang,M.,Gu,J.,Meng,Z.,Zhao,L.C.,Zheng,Y.,Chen,L.,Yang,G.L.,2012. Hypoglycemiceffectofprotopanaxadiol-typeginsenosidesandcompoundKon type2diabetesmiceinducedbyhigh-fatdietcombiningwithstreptozotocin viasuppressionofhepaticgluconeogenesis.Fitoterapia83,192–198. Liu,W.,Zheng,Y.,Zhang,Z.,Yao,W.,Gao,X.,2014.Hypoglycemic,hypolipidemicand

antioxidanteffectsofSarcandraglabrapolysaccharideintype2diabeticmice. FoodFunct.22,2850–2860.

Lorenzi,H.,Matos,F.J.A.,2002.PlantasmedicinaisdoBrasil:Nativaseexóticas. InstitutoPlantarumdeEstudosdaFlora,SãoPaulo.

Lowry,O.H.,Rosebrough,N.J.,Farr,A.L.,Randall,R.J.,1951.Proteinmeasurement withthefolinphenolreagent.J.Biol.Chem.193,265–275.

Mai,T.T.,Chuyen,N.V.,2007.Anti-hyperglycemicactivityofaqueousextractfrom flowerbudsofCleistocalyxoperculatus(Roxb.)MerrandPerry.Biosci.Biotechnol. Biochem.71,69–76.

(6)

Meng,S.,Cao,J.,Feng,Q.,Peng,J.,Hu,Y.,2013.Rolesofchlorogenicacidonregulating glucoseandlipidsmetabolism:areview.Evid.BasedComplement.Alternat. Med.1,1–11.

Modak,M.,Dixit,P.,Londhe,J.,Ghaskadbi,S.,Paul,A.,2007.Indianherbsandherbal drugsforthetreatmentofdiabetes.J.Clin.Biochem.Nutr.40,163–173. Negri,G.,2005.Diabetesmelito:plantaseprincípiosativosnaturais

hipoglicemi-antes.Rev.Bras.Cienc.Farm41,121–142.

Park,J.B.,Velasquez,M.T.,2012.Potentialeffectsoflignan-enrichedflaxseedpowder onbodyweight,visceralfat,lipidprofileandbloodpressureinrats.Fitoterapia 83,941–946.

Patel,D.K.,Kumar,R.,Laloo,D.,Hemalatha,S.,2012.Diabetesmellitus:anoverview onitspharmacologicalaspectsandreportedmedicinalplantshaving antidia-beticactivity.AsianPac.J.Trop.Biomed.2,411–420.

Patil,R.N.,Patil,R.Y.,Ahirwar,A.,Ahirwar,D.,2011.Evaluationofantidiabeticand relatedactionsofsomeIndianmedicinalplantsindiabeticrats.AsianPac.J. Trop.Dis.4,20–23.

Pereira,D.F.,Cazarolli,L.H.,Lavado,C.,Mengatto,V.,Figueiredo,M.S.R.B.,Guedes,A., Pizzolatti,M.G.,Silva,F.R.M.B.,2011.Effectsofflavonoidsonalpha-glucosidase activity:potentialtargetsforglucosehomeostasis.Nutrition27,1161–1167. Pereira,D.F.,Kappel,V.D.,Cazarolli,L.H.,Boligon,A.A.,Athayde,M.L.,Guesser,S.M.,

DaSilva,E.L.,Silva,F.R.M.B.,2012.InfluenceofthetraditionalBraziliandrinkIlex paraguariensisteaonglucosehomeostasis.Phytomecine19,868–877. Piaulino,C.A.,Carvalho,F.C.,Almeida,B.C.,Chaves,M.H.,Almeida,F.R.,Brito,S.M.,

2013.ThestembarkextractsofCenostigmamacrophyllumattenuatestactile allodyniainstreptozotocin-induceddiabeticrats.Pharm.Biol.,1243–1248. Prabhakar,P.K.,Prasadb,R.,Ali,S.,Doble,M.,2013.Synergisticinteractionofferulic

acidwithcommercialhypoglycemicdrugsinstreptozotocininduceddiabetic rats.Phytomedicine20,488–494.

Prasath,G.S.,Subramanian,S.P.,2011.Modulatoryeffectsoffisetin,abioflavonoid, onhyperglycemiabyattenuatingthekeyenzymesofcarbohydratemetabolism inhepaticandrenal tissuesinstreptozotocin-induceddiabeticrats.Eur.J. Pharmacol.668,492–496.

Raida,K.,Nizar,A.,Barakat,S.,2008.TheeffectdeCrataegusaronicaaqueousextract inrabbitsfedwithhighcholesteroldiet.Eur.J.Sci.Res.22,352–360.

Roman-Junior, W.A.,Piato, A.L.,Conterato,G.M.M.,Wildner,S.M.,Marcon,M., Mocelin,R.,Emanuelli,M.P.,Emanuelli,T.,Nepel,A.,Barison,A.,Santos,C.A.M., 2015.HypolipidemiceffectsofSolidagochilensishydroalcoholicextractand itsmajorisolatedconstituentquercetrinincholesterol-fedrats.Pharm.Biol., http://dx.doi.org/10.3109/13880209.2014.989622.

Silva,A.G.,De-Sousa,C.P.G.,Koehler,J.,Fontana,J.,Christo,A.G.,Guedes-Bruni,R.R., 2010.EvaluationofanextractofBrazilianarnica(SolidagochilensisMeyen, Aster-aceae)intreatinglumbago.Phytother.Res.24,283–287.

Soares-Valverde,S.S.,Azevedo,S.R.C.,Tomassini,T.C.B.,2009.Utilizac¸ãodeCLAE, comoparadigmanaobtenc¸ãoecontroledoditerpenosolidagenonaapartirde inflorescênciasdeSolidagochilensisMeyen(arnicabrasileira).Rev.Bras.Farm. 9,196–199.

Tamura,E.K.,Jimenes,J.K.,Waismam,K.,Gobbo,N.L., Peporine,L.N., Malpezzi, M.E.A.L.,Marinho,E.A.V.,Farsky,F.H.P.,2009.InhibitoryeffectsofSolidago chilen-sisMeyenhydroalcoholicextractonacuteinflammation.J.Ethnopharmacol. 122,478–485.

Teixeira,C.C.,Rava,C.A.,Da-Silva,P.M.,Melchior,R.,Argenta,R.,Anselmi,F.,Almeida, C.R.,Fuchs,F.D.,2000.Absenceofantihyperglycemiceffectofjambolanin exper-imentalandclinicalmodels.J.Ethnopharmacol.71,343–347.

Torres,L.M.B.,Akisue,M.K.,Roque,N.F.,1987.QuercetrinaemSolidagomicroglossa DC,aarnicadoBrasil.Rev.Farm.Bioquím.Univ.S.Paulo23,33–40.

Trovato,A.,Monforte,M.T.,Barbera,R.,Rossito,A.,Galati,E.M.,Forestieri,A.M.,1996. EffectsoffruitjuicesofCitrussinensisL.andCitruslimonL.onexperimental hypercholesterolemiaintherat.Phytomedicine2,221–227.

Warjeet,S.L.,2011.TraditionalmedicinalplantsofManipurasantidiabetics.J.Med. PlantsRes.5,677–687.

Xie,W.,Wang,W.,Su,H.,Xing,D.,Cai,G.,Du,L.,2007.Hypolipidemicmechanisms ofAnanascomosusL.leavesinmice:differentfromfibratesbutsimilarofstatins. J.Pharmacol.Sci.103,267–274.

Zhao,J.,Zhang,W.,Zhu,X.,Zhao,D.,Wang,K.,Wang,R.,Qu,W.,2011.Theaqueous extractofAsparagusofficinalisL.by-productexertshypoglycaemicactivityin streptozotocin-induceddiabeticrats.J.Sci.FoodAgric.91,2095–2099. Zimmet,P.,2000.Globalization,coca-colonizationandthechronicdiseaseepidemic:

Imagem

Table 1 shows that HE500 had a significant antihyperglycemic effect when compared to the C group (F (4, 21) = 12.0; p &lt; 0.05)
Fig. 4. Effect of hydroalcoholic extract from Solidago chilensis (HE; 125, 250 and 500 mg/kg) and glibenclamide (GLIB; 10 mg/kg) on the specific activity of maltase, in a segment of the small intestine

Referências

Documentos relacionados

A Farmácia Trindade para além da dispensa de medicamentos e outros produtos de saúde, efetua a determinação de parâmetros bioquímicos e fisiológicos dos utentes como,

In the present study, chronic (20 months) captopril treatment of aged rats re- duced the basal heart rate compared to age- matched control rats.. The bradycardia observed in aged

evaluated the effects of electrical coun- tershock on lipid depletion in the adrenal gland and on glycogen depletion in the liver using male Wistar rats and.. compared such

The results of the present study indicated that lipid peroxidation and protein oxidation increased in the oxidative and glycolytic skeletal muscles of rats in the untrained group

Além disso, por se tratar de uma forma de tradução audiovisual (TAV), conjunto de práticas tradutórias utilizadas com produtos audiovisuais que vertem o conteúdo linguístico de

In the present study with female rats subjected to PPVL, the intact rats showed no signiicant increase in PP, but in the castrated rats PP was signiicantly increased (P&lt;0.05)

In the present study, the gene expression levels of ␤ -Catenin, K-ras and C-myc in the colon tissues of the 5-FU treated rats in the cancer group were down-regulated in compared

he objective of the present study was to evaluate changes in liver, muscle and kidney glycogen content, as well as in blood glucose levels, of rats supplemented with maltodextrin