• Nenhum resultado encontrado

Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency

N/A
N/A
Protected

Academic year: 2021

Share "Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency"

Copied!
11
0
0

Texto

(1)

Contents lists available atScienceDirect

Journal

of

Plant

Physiology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p l p h

Physiology

Regulation

of

cell

wall

remodeling

in

grapevine

(Vitis

vinifera

L.)

callus

under

individual

mineral

stress

deficiency

João

C.

Fernandes

a

,

Luis

F.

Goulao

b

,

Sara

Amâncio

a,∗

aDRAT/LEAF,InstitutoSuperiordeAgronomia,UniversidadedeLisboa,TapadadaAjuda,1349-017Lisbon,Portugal

bBioTrop,InstitutodeInvestigac¸ãoCientíficaTropical(IICT,IP),PóloMendesFerrão—TapadadaAjuda,1349-017Lisbon,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17August2015

Receivedinrevisedform22October2015

Accepted22October2015

Availableonline1December2015

Keywords:

Cellwallpolymers

Endoglucanaseactivity

Geneexpression

Nutrientdeficiency

Pectindesterification

a

b

s

t

r

a

c

t

Cellwall(CW)isadynamicstructurethatdeterminestheplantform,growthandresponseto envi-ronmentalconditions.Vitisviniferacallusgrownundernitrogen(−N),phosphorous(−P)andsulfur(−S) deficiencywereusedasamodelsystemtoaddresstheinfluenceofmineralstressinCWremodeling. Calluscellsmorphologywasaltered,mostlyunder–N,resultinginchangesincelllengthandwidth comparedwiththecontrol.CWcompositionascertainedwithspecificstainingandimmuno-detection showedadecreaseincelluloseandalteredpatternofpectinmethylesterification.Undermineralstress genesexpressionfromcandidatefamiliesdisclosedmainlyadownregulationofaglycosylhydrolase family9C(GH9C),xyloglucantransglycosylase/hydrolases(XTHs)withpredictedhydrolyticactivityand pectinmethylesterases(PMEs).Conversely,upregulationofPMEsinhibitors(PMEIs)wasobserved.While methylesterificationpatternscanbeassociatedtoPME/PMEIgeneexpression,thelowercellulosecontent cannotbeattributedtoalteredcellulosesynthase(CesA)geneexpressionsuggestingtheinvolvementof othergenefamilies.Saltextractsfrom–Nand−Pcallustissuesincreasedplasticdeformationin cucum-berhypocotylswhilenoeffectwasobservedwith−Sextracts.Thelowerendo-actingglycosylhydrolase activityof−Ncallusextractspinpointsamoreexpressiveimpactof−NonCW-remodeling.

©2015ElsevierGmbH.Allrightsreserved.

1. Introduction

Theprimaryplantcellwall(CW)isadynamicstructureformed bya complex ofinextensible cellulosemicrofibrils bonded toa network of coextensiveglycans embedded in a pectin-rich gel matrixthatincludesstructuralglycoproteins,phenoliccompounds andenzymes.CWplaysavitalroleincontrollingthecellshape and,consequently,itsmorphology(Doblinetal.,2010;Cosgrove andJarvis,2012).Well-orchestratedCWalterationsresultingfrom synthesis, disassembly,solubilizationand rearrangements ofits

Abbreviations:2,4-D,2,4-dichlorophenoxy-aceticacid;CesA,cellulosesynthase;

CMC,carboxymethylcellulose;CW,cellwall;EXP,expansin;EXPA,␣-expansin;

GalA,galacturonicacid;GH9A,glycosylhydrolasefamily9A;GH9C,glycosyl

hydro-lasefamily9C;HG,homogalacturonan;KOR,KORRIGAN;−N,absenceofnitrogen;

−P,absenceofphosphorous;PBS,phosphatebufferedsaline;PG,

polygalactur-onase;PL,pectatelyases;PME,pectinmethylesterase;PMEI,pectinmethylesterases

inhibitor; PVP-40T, polyvinylpyrrolidone; −S, absence of sulfur; XEH,

endo-hydrolaseactivityofxyloglucantransglycosylase/hydrolases;XET,transglycosylase

activityofxyloglucantransglycosylase/hydrolase;XTH,xyloglucan

transglycosy-lase/hydrolase;XyG,xyloglucan.

∗ Correspondingauthor.

E-mailaddress:samport@isa.ulisboa.pt(S.Amâncio).

structuralcomponentsand linkages,arethebasisofcell expan-sionandgrowth.Moreover,CWsrepresentoneofthefirstlevelsof communicationbetweentheplantandsurroundingenvironment, playingadecisiveroleinadaptationtobioticandabioticpressures (LandreinandHamant,2013;Malinovskyetal.,2014;Tenhaken, 2015).CWchangesrelatetoeventssuchaslocalizedcelldivision, arrestmentofcellelongationandalterationsindifferentiation sta-tus,resultinginconstraintsthatimpactchangesinanatomyand development(Pottersetal.,2007;Braidwoodetal.,2014).

ThemolecularregulationunderlyingCWdynamicbehavior out-comesparadoxaleffectsinthecontributionprovided tothecell mechanical properties. Growingcells expand by CW loosening while, at thesame time, enoughstrength is kept toretain the integrity and withstand highturgor forces. The control of CW loosening hasbeenpostulatedtooccur, atleast inpart,due to modificationsinthecellulose-xyloglucan(XyG)networklinkages (McQueen-MasonandCosgrove,1995;Cosgrove,2000;Whitney etal.,2000),wasprovedbyVanSandtetal.(2007).RecentlyPark and Cosgrove(2012,2015) proposedthat XyGisrestrictedtoa minorcomponentoftheCW,closely intertwinedwithcellulose atlimitedsites,promotingselectivetargetsforCWloosening,the socalled“biomechanicalhotspots”theory.Othermodificationsin the same network as wellas in the pectin structure can, con-http://dx.doi.org/10.1016/j.jplph.2015.10.007

(2)

versely,resultinCWstiffeningandsuppressionofcellelongation (Takedaetal.,2002),alsocontributingtoCWintegrityandrigidity. Infact,hydrolysisofmethylesterbondsatGalAresidues,leading toalterationsinlinearhomogalacturonan(HG)domains,degree andpatternofpectinmethylesterification,significantlyimpacts CWbiophysicalproperties(Peaucelleetal.,2008,2011;Jolieetal., 2010).

TheroleofCW synthesisand modificationhasbeen investi-gatedthroughquantificationofrelatedenzymeactivityandgene expressionandtheenzymebiologicalfunctionhasbeendisclosed ingenotypesimpairedoroverexpressingspecificgenemembers (e.g.,Osatoetal.,2006;Peaucelleetal.,2008;Miedesetal.,2010). Inknocked-outcellulosesynthase(CesA)Arabidopsisthaliana mutantsaneffectivereductionincellulosecontentwasobserved togetherwithmoderateabnormalgrowth(Desprezetal.,2007; Handakumbura et al., 2013)confirming other resultson CesAs requirementforcellulosesynthesis(Somerville,2006;Endlerand Persson,2011).Nonetheless,CesAactivityisinsufficientto guar-anteethecorrectformation ofthenetwork suggesting thatthe coordinatedparticipationofothercomponentsisneededfor cel-lulosesynthesis,assemblageordeposition(Takahashietal.,2009). MutationsimpairingtheexpressionofKORRIGAN(KOR),aclassA ␤-1,4-endo-glucanase(GH9A)(Urbanowiczetal.,2007a), demon-strate the requirement of KOR for the correct assemblage in elongatingcells(Nicoletal.,1998)sincetheyshowasignificant reductionincellulosecontentevenwhentheexpressionofallCesA memberswasnormal.Thisreductionwasapparentlycompensated withincreasedpectinamountsand alteredcomposition, partic-ularlyanincreasedglucosecontent(Satoetal.,2001).Recently Vainetal.(2014)showedthatKORisanintegralpartoftheCesA complex.AroleforapoplarclassC␤-1,4-endo-glucanase(GH9C) memberinmodulatingcellulosecrystallinityanditsinvolvement incellgrowthwasrecentlydemonstratedusingreversegenetic approaches(Glassetal.,2015).

RegardingCWremodeling,expansins(EXP),proteinswiththe abilitytocauselooseningininvitroassays(McQueen-Masonetal., 1992),areconsideredthemajorcontributors,actingbyreversible weakeninginteractions or disrupting hydrogen bondsbetween cellulosemicrofibrilsandmatrix-linkedglycans(McQueen-Mason andCosgrove,1995;Cosgrove,2000;Whitneyetal.,2000;Wang etal.,2013).Amongtheexpansinsuperfamily,␣-expansins(EXPA) aretheforemostpromotersincontrollingcellextensibilityindicots (Cosgrove,1999,2000).AsreviewedbyChoietal.,(2006),genetic modificationallowedassociatingEXPAstocellenlargementand fruitsoftening amongothereffects onplantgrowthand devel-opment. Other members of CW enzyme families were further demonstrated to cause CW extensibility under in vitro condi-tions,namelysomexyloglucanendotransglycosylases/hydrolases (XTHs)(VanSandtetal.,2007)andendoglucanases(GHs)(Yuan etal.,2001;ParkandCosgrove,2012).Tomatohypocotyls over-expressingorsuppressedinaspecificXTHproducedrespectively increasedanddecreasedlevelsofsolubleXETactivity,anda pos-itive correlation with CW extensibility and organ growth was observed(Miedesetal.,2010).WithaspecificArabidopsis RNAi-silencedXTHOsatoetal.(2006)obtainedasmallbutsignificant reductionin primaryroot cellelongationrecentlyconfirmed in Wilsonet al. (2015) using multi-omics analysis. Similarly, also in Arabidopsis, the down-regulationof a specificclass C ␤-1,4-endo-glucanase(GH9C)ledtoweakeningoftheCWduringroot hairformationandgrowth(delCampilloetal.,2012).The regu-lation,patternandextentofpectinde-esterificationiscontroled bytheactivityofparticular membersofpectinmethylesterases (PMEs)(reviewedbyGoulao,2010)andtheirinteractionwith spe-cificinhibitors(PMEI)(Bellincampietal.,2004;DiMatteoetal., 2005; Juge, 2006; Jolie et al., 2010) and therefore, are among themain enzymesto impactchanges in biophysical properties

of the CW. It is proposed that depending onthe specific pat-ternanddegreeofmethylesterification,pectinscanaggregateinto hydratedcalcium-linked gelstructures, that increase wall stiff-ness and reduce creep (Willats et al., 2001), or make pectins moresusceptibletodepolymerisationbypolygalacturonases(PGs) andpectatelyases(PLs)hydrolysiscontributingtoCWrelaxation (BrummellandHarpster,2001;Wakabayashietal.,2003).In Ara-bidopsismutantsover-expressingaPMEoraPMEI,Peaucelleetal. (2008,2011)observedrespectively,decreasedandincreasedpectin methylesterification,suggestingCWlooseningisgeneratedbyPME activity. This assumption was confirmed in other works using ArabidopsismutantsimpairedinPMEactivitywithevidenceof inhi-bitionofcellelongation(Derbyshireetal.,2007)andreductionin thedegreeofmethylesterification(Hongoetal.,2012).Modelsof CWarchitecturearesupportedbyevidencesforthepresenceof covalentbondsbetweenpectinchainsandcellulosemicrofibrils (Zykwinskaetal.,2005,2007;ParkandCosgrove,2015)or matrix-linkedglycans(PopperandFry,2005;Marcusetal.,2008)disclosing importanttiesinCWbiochemistryandanunder-lookedroleplayed byPMEsand PMEIsinCW mechanicalproperties.Furthermore, underconditions thatdrasticallycompromise theCW integrity, plantcellsareknowntotriggercompensatoryalternative mech-anismstoitsreinforcementviabiosynthesisofnewmaterialor establishmentofnewlinkages(PillingandHöfte,2003;Wolfetal., 2012),addingadditionalcomplexitytothefine-tunedprocessof CWresponsestodevelopment-impactingstimuli.

UsingVitisviniferacallusasamodelexperimentalsystemwe recentlyshowedthatindividualmineraldeprivationleadstoCW structuralmodifications (Fernandes etal.,2013), inparticular a decreaseincellulosecompensatedbyanincreaseinlignincontent, andmodificationsinpectinmethylesterification.Thissuggestsa specificlevel of controlto producea complex fine-tuned sens-ing mechanism tomaintain CW integrity. Plant CW-modifying enzymesarepresentinlargemultigenicfamilies(Lerouxeletal., 2006; Farrokhi et al., 2006), involving more than 2000 genes (Carpitaetal.,2001)withdistinctpatternsofexpressionamong cellsandtissues.

ToextendourpreviousresultsontheCWspecificcomposition andarrangementmodificationsinresponsetoindividualmineral deprivationatmolecularregulationlevel,acomprehensiveinsilico dataminingwasundertakentoretrievethesequenceofall iden-tifiedmembersofV.viniferacandidateCW-modifyingmultigenic familiesandtheexpressionofamplifiedsequencesincalluswas quantified.Thepotentialloosening activityofsalt extractsfrom callusgrowingunder mineraldeficiency wasaddressedand an extensometer-basedexperimentalapproachwasusedtoevaluate invivomechanicalmodificationsondicotCWspecimens.

2. Materialandmethods

2.1. Calluscultureandmineralstressimposition

CallustissuesestablishedfromV.viniferacv.TourigaNacional leaveswereobtainedasdescribedinJacksonetal.(2001).Four explantswithcirca4.5gtotalweightper9cmPetridishwere growinginMSbasalsaltsmedium(MurashigeandSkoog,1962) (DuchefaBiochemie, Haarlem, NL) supplemented with 2.5␮M 2.4-D(2,4-dichlorophenoxy-aceticacid);1␮Mkinetin;5gl−1 PVP-40T;20gl−1,sucrose;2gl−1Gelrite®,pH5.7,at25C,inthedark.

FollowingtheexperimentalconditionsdescribedinFernandesetal. (2013)callustissuewassub-culturedeverythreeweeks,foratotal of9weeks.Toobtainthesamplesunderimposedmineral defi-ciency(mineral stresses), fourtreatments were applied:(i) MS completemedium(control),and(ii)nitrogen(−N),(iii)phosphorus (−P),(iv)sulfur(−S)deficientmedia,inwhichnitrates,phosphates

(3)

and sulfateswerereplaced bychlorides. Aftereach three week culturecycleineachtreatmentmedium,samplescorresponding tothreePetridisheswerecollectedtomonitorgrowth.Basedon theresultsobtained,sixweeksgrowncallus(2×3weeks)were usedimmediatelyformicroscopystudiesorstoredat−80◦Cfor

subsequentextractionofproteinsaltextractsorRNA. 2.2. Histologicalstaining

SamplesofcallustissueweregentlydesegregatedinPBSbuffer andaddedwith2–3dropsof0.1%(w/v)CalcofluorWhite fluores-centbrightener(Sigma,St.Louis,MO)forcellulosedetection.The materialwasthentransferredtoamicroscopeslidewithacover slipandvisualizedwithaLeitzLaborluxSFluorescenceMicroscope underUVlight.ImageswereacquiredwithaZeissAxioCam digi-talcamera.Pecticpolysaccharideswerestainedaccordingtothe sameprocedure,butinthiscase,Calcofluorwasreplacedby2–3 dropsof1%(w/v)ToluidineBlueandtheslideswereobservedunder lightmicroscopy.CellsweremeasuredusingtheCarlZeissVision AxioVisionViewer4.

2.3. Immunolocalizationwithmonoclonalantibodies

Callus were gently desegregated and equilibrated in 5% dry milk/PBSfor30minatRTandthenincubatedovernightat4◦Cwith a10-folddilutionof2F4orPAM1antibodies(Linersetal.,1989; Willatsetal.,1999)dilutedin5%w/vnon-fatdrymilk/PBS.After extensivewashingwithPBS,a30-folddilutionofthesecondary antibody(anti-mouseIgGandanti-ratIgG(Sigma),respectively) wasappliedtothesectionsandlefttoincubatefor60mininthe dark.Fornegativecontrolstheprimaryantibodieswereomitted. TheslideswerethenwashedwithPBSandbrieflyincubatedwith 1%(w/v)CalcofluorWhiteindistiledwater,rinsedandmounted onamicroscopeslide.SectionswereobservedwithaLeitz Labor-luxSFluorescenceMicroscopeandimageswereacquiredusinga ZeissAxioCamdigitalcamera.TheImagesweresuperimposedand analyzedusingtheImageJ1.48package(http://imagej.nih.gov/ij/ ).Theaveragenumberofbluepixels(Calcofluor)andgreenpixels (PAM1and2F4)wasquantified.

3. Geneexpressionanalyzes

3.1. DatabaseminingandsequenceretrievalofV.vinifera CW-relatedgenes

Sequences from members of the CesA, EXPA, XTH, EGase from hereon referred as GH9 (http://www.cazy.org), PME and PMEI families were retrieved by multiple database searches for V. vinifera and three other model species with sequenced genomes,namelytalecress(A.thaliana),rice (Oryzasativa) and poplar(Populustrichocarpa).TheNCBI(http://www.ncbi.nlm.nih. gov/) and Genoscope 12X (http://www.genoscope.cns.fr/spip/) databaseswereusedforV.viniferagenesearcheswhileTAIR(http:// www.arabidopsis.org/index.jsp),OryGenesDG(http://orygenesdb. cirad.fr/cgi-bin/gbrowse/odbjaponica/?name=Os1:1..10000)and Phytozome (http://www.phytozome.net/poplar)wereminedfor Arabidopsis, Oryza and Populus, respectively. In each case, after identificationoftheaminoacidsequence,thesamedatabasewas minedforeachhittoretrievethefull-lengthcDNAsequenceofthe predictedcorrespondinggene.V.viniferasequenceswerenamed accordingtotheirsimilaritywithArabidopsisorthologous. After prediction(SignalP4.0;Petersenetal.,2011)andremovalof sig-nal peptides from the amino acid sequences, alignments were performedusingMUSCLEsoftware(Edgar,2004a,b)andcurated by Gblockssoftware (Talavera and Castresana,2007).The den-drogramswereconstructedusingPhyML(Guindonetal.,2010),

andviewedusingTreeDynsoftware(Chevenetetal.,2006). Puta-tivebiological activitywasinferredfromamino acidsequences using InterProScan 5 (http://www.ebi.ac.uk/Tools/pfa/iprscan5/; Quevillonet al.,2005.Tertiary structure-modelswerepredicted usingthealignment-basedmodelingtoolsSWISS-MODEL(http:// swissmodel.expasy.org/;Arnoldetal.,2006)andSwisspdbViewer DeepView4.0(http://www.expasy.org/spdbv/;GuexandPeitsch, 1997).

3.2. RNAextractionandcDNAsynthesis

TotalRNAwasextractedfromV.viniferacallususingthemethod describedbyReidetal.(2006).RNAsampleswerefurthertreated withRNase-freeDNaseI(Qiagen)accordingtothemanufacturer protocol.QuantificationwascarriedoutinaSynergyHTMultiplate Reader,withGene5software,usingaTake3TMMulti-VolumePlate

(Bio-TekInstrumentsInc.,Winooski,USA).Forreverse transcrip-tion,theRevertAidreversetranscriptaseprimingwitholigo-d(T) kitwasused(ThermoScientific)accordingtothemanufacturer’s recommendations.

3.3. Quantificationofgeneexpressionbyquantitativereal-time PCR(RT-qPCR)

For each V. vinifera cDNA sequence retrieved, a set of spe-cificprimersweredesigned(TableS1)andusedtoamplifycallus grapevinecDNAresultingfromthetranscriptionof2␮goftotal RNA, using conventional PCR and gel agarose electrophoresis. Whenamplificationwasobserved,confirmingtheexpressionin callustissues,thetranscriptswerequantifiedbyreal-timePCR (RT-qPCR),performedin20␮LreactionvolumescomposedofcDNA derivedfrom2␮gRNA,0.5␮Mgene-specificprimers(TableS1) inSsoFastTMEvaGreen®Supermixes(Bio-Rad,Hercules,CA)using

aiQ5Real-TimeThermalCycler(BioRad,Hercules,CA).Reactions conditionsforcyclingwere:9◦Cfor3minfollowedby40cyclesof 9◦Cfor10s,61◦Cfor2sand2◦Cfor30s.Meltingcurveswere gen-eratedineachcasetoconfirmtheamplificationofsingleproducts andabsenceofprimerdimerization.Eachanalysiswasperformed intriplicatereactionsofthreebiologicreplicates.The correspond-ingquantificationcycles(Cq)weredeterminedbytheiQ5optical

systemsoftware(Bio-Rad,Hercules,CA)andexportedtoaMSExcel spreadsheet(MicrosoftInc.,CA)forfurtheranalysis.Cqvaluesof

eachgeneofinterestwerenormalizedwithrespecttoactin(Act) andtranslationinitiationfactoreIF-3subunit4(TIF)Cqs(Coitoetal., 2012).Relativegeneexpressionvaluesintheabsenceofagiven nutrient(−N,−P,−S)arepresentedaslog2fold-changevaluesin

relationwiththecontrolconditions(C).HeatMapwasperformed withPearsoncorrelationsusing theMeV software(Saeedetal., 2003).

4. EvaluationofcallussaltextractpotentialtoinduceCW extensibility

4.1. Preparationofsaltextracts

Samplesof20g(FW) V.viniferacallustissuesgrowingunder eachexperimentalconditionwerecutintosmallpiecesandwashed with20mMNaOAcpH4.5buffer.Thewashedcallussampleswere filteredbyvacuumandtheflowthroughswerediscarded.Twenty millilitersofa20mMNaOAc;1MKClpH4.5solutionwerethen addedtothecallusandthemixtureswereincubatedfor30min at4◦C,filteredandeachsolutionwasconcentratedto1mlusing AmiconUltraUltracell3Kcolumns(Millipore)asperthe manu-facturer’srecommendationsanddesalinizedwithPD-10desalting columns(cut-off5kDA)(GE,Fairfield,USA).Proteinineach callus-derivedextractwasquantifiedusingtheBradford(1976)method

(4)

withBSAasstandard.Thesameextractswereevaluatedforability toinduceextensibledeformationincucumberhypocotylsections, takenasmodelfordicotCWspecimens,andtestedfor ␤-1,4-endo-glucanaseactivity.

4.2. Extensibilityassays

Cucumberseedsweresownat25◦C,inthedarkandgerminated hypocotylapicalzones(3cm)werecutandstoredat−20◦C.Prior

totheanalyzes,thehypocotylscuticleswereabradedusing car-borundumpowderandsampleswereboiledfor1s.toinactivate endogenousenzymes.Thehypocotylswerethenassayedclapped totensiongripsin aTA-XTTextureAnalyzer(StableMicro Sys-temsLtd.,UK),usingacustommadeclampingreservoirfilledwith 50mMNaOAcpH4.5buffer.A20gloadtensileforcewasapplied witha 1.5mm test length betweenclampsand, after a 20min periodofextensionforequilibration,thebufferwasreplacedby eachsalineextractsolutionbeingtestedandassayedforadditional 15min.Theforcewasthenremovedduring10minandreapplied for additional 20min, to allowcalculation of Total, Plastic and Elasticextensibilities(Cosgrove,1993).Totalextensibilitywas cal-culatedasthemaximumhypocotyllengthatconstantload.Plastic extensibilitywascalculatedastheminimumvaluereachedafter forceremoval.Elasticextensibilityisthedifferencebetweenthe totalandplasticextensibility(Richmondetal.,1980).Each experi-mentwasperformedusingatleast6independentsamplesforeach treatment.

4.3. ˇ-1,4-Endo-glucanaseactivity

Endo-actingglycosyl hydrolaseactivitywasmeasuredbythe changeinviscosityofa carboxymethylcellulose(CMC)(medium viscosity,Sigma)solution(DurbinandLewis,1988).Onehundred microlitreofeachsaltextract,ataconcentrationof3␮g␮l−1,were

addedto350mlofa1.5%(w/v)CMCsolutionin20mMphosphate bufferpH6.0,incubatedfor6hat37◦C.Viscositywasdetermined bymeasuringthetimetaken forthemovement ofthemixture throughthe0andthe0.05mlmarksofa0.1mlglasspipettefixedin averticalpositionusingastopwatch.Readingsweretakenattime 0h,2hand6hintriplicates.Activityisreportedasthedecreasein viscosity(%)withrespecttotimezero.

4.4. Statisticalanalysis

Alldataispresentedasmeanvalues±standarddeviation(SD)of anappropriatenumberofreplicatesineachassay.Theresultswere statisticallyevaluatedbyvarianceanalysis(ANOVA)andposthoc Bonferronitestwithap<0.05tocomparethesignificanceofeach treatmenteffect.The SigmaPlot(Systat SoftwareInc.)statistical packagewasused.

5. Results

5.1. Callusgrowthin−N,−Pand−SandfullMSmedium

TheeffectoftheimposedindividualmineralstressesontheVitis calluswasassessedbymeasuringthecallusgrowthalong time. Afterwithdrawingofnutrients,therelativegrowthofthecallus wassignificantlyaffectedinthethreecycleswhencomparedtothe control(Fig.S1).Afterthefirstcycle,−Ncalluscellswerethemost affected;attheendofthesecondcyclethethreemineralstresses severelyaffectedcallusgrowthimpairingtheirviabilitythereafter. So,sixweeksoldcalluswereselectedforsubsequentanalyzes.

Supplementrymaterialrelatedtothisarticlefound,intheonline version,athttp://dx.doi.org/10.1016/j.jplph.2015.10.007.

Table1

MeasuredlengthandwidthofV.viniferacalluscellsaftersixweeksgrowthin

com-pletenutrientmedium(control),andintheabsenceofnitrogen(−N),phosphorus

(−P)andsulfur(−S).Valuesarethemean±SDof20randomcells.Differentletters

ineachrowindicatesignificantdifferencesatp<0.05.

Control −N −P −S

Length(␮m) 121.0a±12.1 228.7b±38.9 147.9c±19.1 130.5a±13.3

Width(␮m) 48.6a±3.5 47.2a±2.7 49.4b±2.0 48.1a±3.2

5.2. Cellmorphologyinresponsetomineraldeficiencies

Afirstindicationoftheeffectofstressimpositioninthe

cal-lustissuesusingthebiologicalsystemusedwasgainedthrough

measurementofcellanatomicalparameters.Exceptforsulfur,the

absenceofindividualmineralsproducedchangesinthe

morphol-ogyofV.viniferacalluscells(Table1).Noticeably,thedeprivationof

eachmineraleffecteddifferentalterationstothecellmorphology. Undernitrogenstarvationthecellswerelongerbuthadasimilar width,whencomparedwiththecontrol.Ontheotherhand,under phosphorusdepletionthecells werelongerand widerthanthe control,althoughstillshorterthanunder−Nconditions(Table1). 5.3. InsitulocalizationofcallusCWpolymersandepitopes

CalcofluorWhite wasusedtodetectCW matrix polysaccha-rideasitreadilybindstocellulose.Theabsenceofmineralsinthe mediumresulted,inallcallustissues,inareducedintensityof Cal-cofluorlabeling.Thisreductionwasmorepronouncedinsamples producedundernitrogenstarvation(Fig.1;TableS2).Toluidine Bluebindstocarboxylatedpolysaccharidessuchaspectins, produc-ingareddishpurplestaining.AsobservedinFig.1,intheabsenceof nitrogenamoreintensestainingoccurs.Immunolocalizationwith monoclonalantibodiestargetedtospecificCWepitopesisauseful tooltoanalyzeinvivodetailedlocalizationofCWcomponentsand wasemployedtoascribeputativemodificationsintheCW com-positioninresponsetotheimposedstresses,targetingdifferences inmethylesterificationpatterns.ThecombineduseofCW-epitope antibodiesandhistologicaldyesenabledustogainmoredetailed informationregardingdifferencesinthepecticcomposition.The resultsshowthat,under–Nand–Sconditions,anincreasein2F4 labeling,anantibodythatrecognisesdimericassociationof pec-ticchainsthroughcalciumions,isobservedinthewholecell,being moreprominentinthemiddlelamella(Fig.1;arrows).Ontheother hand,PAM1,whichrecognizesepitopesoflongun-esterifiedblocks ofGalAresidues,didnotbindtotheboundariesofthecellin−Nand −Scallustissues,whileitwasclearlynoticeableinthesespecific regionsincellsofcallusgrowingunderfullnutrientsandfaintly under−Pconditions(Fig.1;arrow;TableS2).

6. ChangesingeneexpressionofCW-relatedfamilies

6.1. Insilicoanalyzes

TheinitialapproachwastoevaluatetherelationshipofCW syn-thesisandmodificationcandidategenefamiliesbetweenV.vinifera andannotatedgenesinotherfloweringspecies.Insilicoanalysis showedthat,ingeneral,theV.viniferagenomehasasimilarnumber ofmemberstoArabidopsis,OryzaandPopulusforCW-relatedgene familiesthatactoncellulose-hemicellulosecomplexes(Table2).V. viniferaandO.sativashowedasignificantlylowernumberofPME membersidentifiedinthedatabasesthantheothertwospecies usedforcomparison.Ontheotherhand,thenumberofPMEIs var-iedaccordingtoeachindividualspecies,beinglowerinA.thaliana(6 members)andhigherinO.sativa(13members).Itshouldbe how-evernotedthatdatabaseminingdidnotdifferentiatetruePMEI

(5)

Fig.1.Histologicalstainingforcelluloseandpecticpolysaccharidesandimmunolocalizationof2F4andPAM1reactivehomogalacturonanepitopesincallusgrownunder

controland−N,−Pand−Sconditions.ImmunolocalizationsampleswerealsostainedwithCalcofluorWhitetorevealanatomicaldetails.2F4andPAM1signalsareshown

ingreen.Nolabelwasobservedwhenprimaryantibodieswereomittedfromcontrolsections(Fig.S2).ThephotostakenforCalcofluorWhite,2F4andPAM1havethesame

expositiontimeforalltreatments.Barscaleforhistologicalobservationsrepresents50␮m(and)and10␮mforimmunolocalizationof2F4andPAM1.

Table2

NumberofgenesrelatedtoprimaryCWbiosynthesisandmodificationretrieved

insilicofromthehigherplantsequencedspeciesVitisvinifera,Oryzasativa,Populus

trichocarpaandArabidopsisthalianagenomes.

Vitis vinifera Arabidopsis thaliana Oryza sativa Populus trichocarpa CesA 10 10 10 18 Expansinsuperfamily 30 36 56 36 XTH 33 33 29 24 GH9 21 25 24 31 PME 36 66 37 84 PMEI 11 6 13 10

frominvertaseinhibitors.AhighernumberofEXPAs(53members)

wasretrievedfromtheO.sativagenome.

Thedendrogramsbuiltwithaminoacidsequences,revealsthat,

ingeneral,V.viniferaCW-relatedsequencesclusterwithorthologs

frommonocot,dicotandwoodymodelspeciesinmostfamilies

(Figs. S3–S5). Noticeably, in the XTH family, some clustersare

enrichedwithV.viniferasequences.

Supplementrymaterialrelatedtothisarticlefound,intheonline

version,athttp://dx.doi.org/10.1016/j.jplph.2015.10.007.

SinceXTHgenesencodeproteinsthat canhavetwo distinct catalytic activities, sequence alignments and structural insilico analysiswereperformedtodistinguishputativexyloglucan endo-transglucosylases (XET) from xyloglucan endohydrolases (XEH) (Fig.S6).TheXTHidentitywasconfirmedbythepresenceinall V.viniferasequencesoftheconservedcatalyticmotif (W/R)-(D/N)-E-(I/L/F/V)-D-(F/I/L/M)-E-(F/L)-(L/M)-G,aspreviouslydescribedby EklöfandBrumer,(2010)andXETorXEHputativeactivitieswere assignedbasedonthepresence/absenceoftwoinsertions, (Y/N)-P-GandR-(I/L)-I-G-R(Fig.S7)intheaminoacidsequence(Eklöfand Brumer,2010).Basedonthesestructuraldifferences,twoisoforms, VviXTH31(XP002275862)andVviXTH32(XP002269285),were identified.Despitetheinsertions,thestructuralsimilaritybetween XETandXEHwasfoundtobeveryhigh,asindicatedbythe

super-impositionoftheirbackbones(Fig.S6).Themaindifferenceoccurs betweenspecies,especiallyintheC-terminusinwhichan␣-helix isobservedbothinTropaeolummajusandArabidopsisbutisabsent inV.vinifera.

Supplementrymaterialrelatedtothisarticlefound,intheonline version,athttp://dx.doi.org/10.1016/j.jplph.2015.10.007.

Likewise,PMEIssharestructuralpropertieswithotherinvertase inhibitorsanditsclassificationwasproposedtobepossiblebased ontheconformationfeaturesofanextensionthatprecedesa four-helixbundlecore(Scognamiglioetal.,2003).We noticedahigh similaritybetweenV.viniferaandArabidopsisPMEI,whichshowed similarextension(Fig.S8).

Supplementrymaterialrelatedtothisarticlefound,intheonline version,athttp://dx.doi.org/10.1016/j.jplph.2015.10.007.

6.2. Changesinexpressionofkeygenesinvolvedinthe biosynthesisandmodificationofCWundermineralstress

Onewayoftacklingthepathwaysofagivenphysiologicalevent istounderstandthetranscriptionofrelatedgenes.Thus,isoformsof severalgenefamilies(TableS1)werechosenbasedontheirputative roleinthesynthesisandmodificationofCWafternutrient starva-tion.Fiftyoutofthe131genesinvestigated(38.2%)expressedinthe callustissueandtheirexpressionlevelwasquantifiedbyRT-qPCR asshowninFigs.3and4 inTableS3withmoredetail.

Supplementrymaterialrelatedtothisarticlefound,intheonline version,athttp://dx.doi.org/10.1016/j.jplph.2015.10.007.

Althoughasimilarnumberofgeneshadbeenup-and down-regulatedinresponsetoindividualmineralstressimposition,the majorityofthemweredownregulatedinalltreatments(Fig.2). Seven showed up-regulation in all stress conditions (VviCesA2, VviEXP8, VviXTH8, VviXTH10, VviPMEI2,VviPMEI3 and VviPMEI4) (Fig.2a),while16weredown-regulatedinalltreatments(VviCesA4, VviXTH32, VviGH9A1,VviGH9C2, VviXTH2, VviEXP5, VviEXP3, Vvi-EXP11,VviXTH15,VviPME1.17,VviPME1.18,VviPME1.19,VviPME2.4,

(6)

Fig.2.Venndiagramsummarizingthenumberofuniqueandcommongenesshowingdifferenttrendsofgeneexpression,up-(A)ordown-regulated(B),inresponseto

eachindividualmineralstressimposed(−N,−Pand−S),whencomparedtocontrolconditions.Inbraketsisthenumberofgeneswithmorethantwofoldchange.TheVenn

diagramwasdrawnusingtheVennyTool(Oliveros,2007).

VviPME2.7,VviPME2.14,VviPME2.20)(Fig.2b).Thenumberofgenes withdetectedaltered expressionwasalwayshigherin−N, fol-lowedby−Pandlowerin−Scallussampleswhich,asshowedby hierarchicalclustering(Fig.3)indicatesthatsamplesfrom−N cal-lustissueshavemoreuncorrelatedtranscriptionpatternsthanthe samplesobtainedundertheothertwoconditions.

Concerningthegenesstudiedthatcanbeputativelyassociated withcellulosebiosynthesis,theresultsdisclosedtheup-regulation ofoneCesAgeneinresponsetonitrogen(VviCesA3)andphosphorus (VviCesA8)deficienciesinthegrowingmedium,andthreemembers inresponsetosulfur(VviCesA1-3)deprivation,whereasthe tran-scriptionofVviCesA6was3-foldrepressedunder−Sconditions. GH9A,whichareorthologoustoKORRIGANgenes,showednotto bedifferentiallyexpressedinresponsetothemineralstress imposi-tionbutaseverereductionof4.45and5.25fold-changeintheclass C,VviGH9C2,transcriptamountswasobservedinsamplesgrowing undernitrogenandsulfurdeficiency,respectively(Fig.3).

EXPAgeneexpressionwassimilarlyregulatedinresponseto nitrogenandphosphorusdeficiencies,asillustratedbythe down-regulation,inbothcases,oftwoisoforms,VviEXP6andVviEXP11 (TableS3).Transcriptionimpairmentofthosememberswas par-ticularly severe in –P conditions (Fig. 3). Noticeably, VviEXP6 transcriptsshoweda2-foldincreaseunder−Sstarvationandthe absenceof this mineral in the growingmedium repressed the transcriptionofthreeotherEXPAfamilymembers(VviEXPA5, Vvi-EXPA19andVviEXPA20).

Outofthe10XTHmembersexpressingincallustissue, two (VviXTH31and VviXTH32)werepredictedby sequence analyzes ascandidatestohavehydrolaseactivity(Fig.S7).Thequantified gene expressionof VviXTH32 wassignificantly compromised in responsetoallstressconditions(Fig.3).Moreover,VviXTH31was alsostronglyrepressedundernitrogendeficiency(TableS3).The remainingXTHsweredifferentlyregulatedaccordingtothespecific experimentalcondition.UndernitrogendeficiencyonlyVviXTH14 was differently expressed, showing a 3. fold down-regulation. Under–P,whichwastheconditionthataffectedmoreXTHs,this memberwasalsorepressed,togetherwithVviXTH2andVviXTH15 whileVviXTH4showedaclearupregulation.Onthecontrary,under –SconditionsnosignificantXTHdown-regulationwasdetected, withtwogenes(VviXTH4andVviXTH8)up-regulated(TableS3).

MorePMEgenesweredown-regulatedundermineralstarvation thanup-regulated.Thelattersituationwasobservedforthesame twomembers,VviPME1.4andVviPME1.1,inboth−Pand,toahigher extent,−Sconditions.About1/3ofthePMEgenesquantifiedwere

down-regulatedineachexperimentalcondition.Somedisplayed thesame pattern in response tomore thanone stress, namely VviPME1.19and VviPME2.14under −P and −S,and VviPME2.20 under−Nand−P.VviPME1.1wasdown-regulatedinresponseto allstresses.HighlightedistheresponseofVviPME1.4whichwas severelyimpairedunder nitrogen(5-fold downregulation)and strongly induced under sulfur starvation(6-fold up-regulation) (Fig.3).Interestingly,undermineraldepletion,PMEIgene expres-sionshowed tobe generallyup-regulated, althougha different memberwasaffectedaccordingtoeachindividualmineralstress under−Nand −Sconditionsandphosphorusstarvation signifi-cantlyimpactedthreeoutofthefourPMEIsexpressinginV.vinifera callustissues.CollectivelyPMEdown-regulationresultssuggesta reductioninenzymaticde-esterificationpotentialunderimposed mineralstress.

6.3. Looseningactivityfromcallusextracts

Theoccurrenceofdifferentamountsandrelativeproportionsof theproteinmixturethatactsontheCWtoalteritsstructural prop-ertiescanbeaddressedbymeasuringthechangesinextensionthat theyabletoinduce.Saltextractsfromthefourexperimental sam-pleswereaddedtocucumberhypocotyls,usedasmodeldicotCW specimens,inanextensometerassayandasignificantincreasein thetotaldeformationwasobservedwhenthe−Nand–Pextracts wereused(Fig.4).Theeffectwasmore evidentinextracts iso-latedfrom−Ncalluseventhoughthetotalquantityofextractable proteinshadbeenlowerthanintheotherconditions(Fig.4.Inset KClextracts).Thehighertotaldeformationobservedisthedirect resultofanincreaseoftheplasticdeformationsincetheelastic deformationwasnotsignificantlyaffectedbyanyofthemineral stresses.Endoglucanaseactivitywasestimatedthroughaviscosity testwherethehigherthedecreaseinCMCsubstrateviscosityafter incubationwithactingenzymesolutions,thehighertheenzymatic activity.Aftertwohoursincubation,theextractspreparedfrom−N callusshowedsignificantlyloweractivitythanalltheother treat-ments,whileinthoseobtainedfrom−Sand−Phigheractivities weremeasuredascomparedtothecontrol(Fig.5).

7. Discussion

Takingadvantageoftheoptimizedexperimentalcallusmodel system,insightsintotheregulationunderlyingtheeffectsof lim-itingnutrientsupplytocelldevelopmentthroughCWdynamics weregained.ApreviousworkbasedonFT-IRspectroscopyand

(7)

bio-Fig.3.Differentiallyexpressedgenestranscribedincallusundermineralstress

withrespecttocallusgrownundercompletemedium.Hierarchicalclusteringwas

performedon50CW-modifying-encodinggenesfromcandidatefamiliesshowing

expressionincallustissues.Genedendrogram(left)andconditiondendrogram(top)

wereobtainedusingPearson’suncentereddistancemetriccalculatedfromalllog2

transcriptionratios(mineralstress/control).Colorscalefromgreentoredindicates

log2transcriptionratiosfrom6-foldundertranscriptionto6-foldover

transcrip-tion).Theexactvalueofrelativeexpressionisgivenwhenastrikingfoldchangeof

4wasobserved,althoughinthispaperwediscussdifferencesingeneexpression

whenthefoldchangeatleastdoubles.Eachgeneisidentifiedbythecodeprovided

inSupplementarymaterial1.

chemicalquantificationofCWcomponentsreportschangesinthe amountorrearrangementsofcelluloseandmatrixlinkedglycans, inthelevelsofpectinmethyl-esterificationandinthestrengththe polysaccharidesassociateintotheCWasthemaineffectsinduced byN,PandSmineraldeprivation(Fernandesetal.,2013).

Confirming biochemical changes observed (Fernandes et al., 2013),undermineralstressareductionincelluloseandanincrease inpectincontentswereperceivedviaCalcofluorandtoluidineblue labelling,respectively.Similarly,higherlabellingbytheantibody

Fig.4. Plastic(dP),Elastic(dE)andTotal(dT)deformationofcucumberhypocotyls

whensaltextractsfromcallusgrownundernitrogen(−N),phosphorus(−P),

sul-fur(−S)depletionandcontrol(C)wereapplied.Innertablerepresentstheprotein

quantificationforthesaltextractsfrom−N,−P,−Sandcontrol±SDof6

measure-ments.Thesameamountofsolubleprotein,ineachtreatment,wasusedinalltests.

Differentlettersindicatesignificantdifferencesatp<0.05.

Fig.5.␤-1,4-Endo-glucanaseactivityofsaltextractsfromcallusgrownunder

nitro-gen(−N),phosphorus(−P),sulfur(−S)depletionandcontrol(C).Activityisgivenas

thedecreaseinviscosity(%)withrespecttotimezero.Thesameamountofsoluble

protein,ineachtreatment,wasusedinalltests.Differentlettersindicatesignificant

differencesatp<0.05,n=9.

identifyingdimericassociationsofpecticchainsthroughcalcium ions,2F4,wasdetectedin–Ncallus,supportingtheevidenceof alowerdegreeofmethyl-esterification,andthepromotionofthe conditionsfavorabletotheformationofcalciumbridges(Pelloux etal.,2007).

CW-biosynthesisandmodificationassociatedgenesarepresent in large multigenicfamilies withrelated overlapping functions whichmayleadtocompensatorymechanismsforthetranscription changesofmostofthesegenes(Giovannoni,2004).Makinguseof thesequencedV.viniferagenomeavailability(Jaillonetal.,2007; Velascoetal.,2007)list,acomprehensiveinsilicoanalysiswas con-ductedto,inafirststep,comparethesizeofthegenefamilieswith otherplantmodelspecies.Then,thetranscriptionpatternofgenes encodingCWsynthase,hydrolase,trans-glycosylase,expansinand esteraseenzymeswhich,basedontheirknownmodesofaction andcombinedactivitymayresultintheobservedchanges,were examined.Thisapproachwascomplementedwiththeevaluationof

(8)

saltextractsloosening–promotingactivityondicotCWspecimens (Figs.4and5).

MostoftheV.viniferaCW-relatedgenefamiliesincludea simi-larnumberofmembersthanA.thaliana,O.sativaandP.trichocarpa. Moreover,thedendrogramanalysisofV.viniferaCW-relatedamino acidsequences,showedclusteringwithorthologuesfromthosein modelspecies(Figs.S3–S5),aspreviouslyobservedbyBaumann etal.(2007),suggesting aconservationofCW biosynthesis and modificationmechanismsthroughoutangiospermevolution.

Geneexpressionofkeycandidategenesabovealog2 ±2-fold

changerelativetothecontrolshowedthatresponsivemembers weredetectedinallfamilies(Fig.2andTableS3).Despitetheimpact ofnitrogenstarvation,leadingtomoredramaticdevelopmental andmorphologicalmodificationsincallustissues(Fernandesetal., 2013;Fig.S1),alowernumberofgeneswithsignificant expres-sionalteration,wasobserved.(Fig.3andTableS3).Lowerlevelsof celluloseweredetectedunder−Nand−P(Fernandesetal.,2013; Fig.2),whichleadustoinvestigatethegeneexpressionoffamilies associatedwithcellulosebiosynthesis.CesAarepresentin multi-genicfamilieswithatleast10membersinA.thaliana,10inO.sativa (RichmondandSomerville,2000),andatleast18inP.trichocarpa (Suzukietal.,2006).ExceptforVviCesA6under−Sconditions,all othersignificantlyaffectedgenesshowedanincreased(ca.2–3log2

fold-change)transcriptaccumulation,notexplainingthereduction intheobservedcellulosecontent.InArabidopsis,threedistinctCesA proteinsarerequiredtoproducecellulose(Desprezetal.,2007). IfVviCesA6isthecounterpartofAtCesA6,itcanbeassumedthat thecallusprimaryCWinourexperimentalsystemmayhavebeen affectedinsimilarwaytotheirregularxylem(irx)mutant lines whichharborlesionsinAtCesAs4,7,and8(Tayloretal.,2003). Acceptingthehypothesisofnon-redundancy,inthelackofoneof theproteinstheassemblageofthecomplexisimpairedwithout for-mationofthecellulosemicrofiber(Desprezetal.,2007).Strikingly, VviCesAdown-regulationwasobservedonlyunder–Sconditions, whichistheonlytestedmineralthatdoesnotimpactareduction incellulosecontent(Fernandesetal.,2013).

Nevertheless,CesAactivityisnotsufficienttoproducecellulose, requiringthecombined actionwithmembers fromother fami-lies.Amongthose,thesub-classesAandC oftheGH9family is alsoknowntointeractincellulosebiosynthesis.Regardingclass A,amutant(KORRIGAN)impairedinthisgeneexpressionshowed a dwarf phenotypeand changes in thecellulose-XyG network, demonstratingthatthesegenemembersareessentialfora cor-rectcelluloseformation(Nicoletal.,1998).V.viniferacallustissue growingundermineralstressdidnotshowsignificant modifica-tionsintheexpressionofthesegenemembers.Ontheotherhand, classCGH9harborsacellulosebindingmodule(CBM)attachedto theC-terminusofthecatalyticdomain(Urbanowiczetal.,2007b), anditsroleincellulosebiochemistrywasrecentlydemonstratedin P.trichocarpa.Inthisspecies,aspecificmember,PtGH9C2,showed tobeinvolved inregulatingthedegreeofcellulose crystallinity (Glassetal.,2015).AsproposedbyFujitaetal.(2011)thisproperty regulatestherateofexpansionoftheprimaryCWbyrestricting thenumberofcross-linkswithhemicelluloses(Lai-Kee-Himetal., 2002).PtGH9C2mayplayaroleincessationofprimarygrowth, therebyresultinginimpairedorenhancedgrowthofpoplarlines overexpressingorRNAisuppressed,respectively(Glassetal.,2015). UndermineralstresstheonlyGH9Cthatexpressedincallustissues, VviGH9C2,wasseverelydown-regulatedunder−N and, surpris-ingly,under–Sconditions,showinganinvariantexpressionpattern under–P(Figs.1and3andTableS3).Theobservedreductionin endoglucanaseactivityunder−N(Fig.5)couldcausetheinhibition ofmicrofibril crystallization and consequent increase cellulose-XyGcross-linkingtoreinforcethewall(Fujitaetal.,2011).

Under–Pand–SspecificXTHandPMEfamilymemberswere up-regulated,whileotherswererepressed.Thisobservationcan

berelated totheopposite effects in CW modifications that, as discussed,particularmembersofbothfamiliescanexert(Osato et al.,2006).Regarding XTHs,the enzymescoded by this gene familycanholddistinctactivities,xyloglucanendotransglucosylase (XET),xyloglucanendohydrolase(XEH)orboth,oftentoproduce paradoxaleffectsontheCW(EklöfandBrumer,2010).Hencethe assignmentofeachV.viniferaXTHtoaputativeactivitywas con-ductedbasedonsequenceanalyzes(EklöfandBrumer,2010).As expected,andinaccordancewithJohanssonetal.(2004)in Pop-ulus,keyactive-sitesrevealedsubtledifferencesrestrictedtotwo loopsoutsidethesubstrate-bindingcleft,attributedtotwo inser-tionsinXTHenzymesproposedtodisplayXEHactivity(Eklöfand Brumer,2010).TwoV. viniferaXTHproteinsdisplayedan inser-tionofthosemotifs,makingthemstrongcandidatesasXEHs(Fig. S7).ThenumberofV.viniferaofXTH-XEHmembersissimilarto theoneintheA.thalianagenome(Baumannetal.,2007)and,in thepresentstudy,thesegeneswererepressedunderallmineral stresses,oftenathighlevels.RecentstudiesreportedbyKaewthai etal.(2013)demonstratethattheseenzymeshavenosignificant effectongrowthpatterns ordevelopmentalphenotypes, which maysuggesttheiractionaskeyenzymesinaXyG-recycling path-waywhereanexcessofnon-reducingendsleadstoareinforced XyGnetwork(Sampedroetal.,2010,2012).Ontheotherhand, XTHgenesmayfunctionredundantly(Matsuietal.,2005),withthe repressionofonemembercompensatedbytheup-transcriptionof others.

PMEgenesalsobelongtoamultigene family(Markovicand Janecek,2004).Somememberscarry anN-terminal PROregion extension,whichprecedesaconserveddomainsimilartothePMEI domain(Jolie etal., 2010).Depending on theabsence or pres-enceofthisPROregion,PMEsareclassifiedintotwosubfamilies: type II/group1and typeI/group2 respectively(Micheli,2001). After the integration into the CW, PMEs can randomly or lin-earlyde-esterifytheHGchain(MarkovicandKohn,1984).Random PMEde-esterificationactivatesthepolygalacturonaseactivity pro-motingtheCWlooseningwhilelinearPMEde-esterificationcan promoteCa2+-linkedgelstructuresand stiffentheCW (Micheli, 2001).It is referred that plantPMEs withan acidicpI act in a nonblock-wisefashion,while plantbasicpI PMEs,which repre-sentsmostisoforms,actinablock-wisefashion(BoschandHepler, 2005)makingthesefamiliesstrongcandidatestoactin compen-satorymechanismswithinthesamefunction.Hence,thelower globaldegree(Fernandesetal.,2013)andpattern(Fig.1)of methyl-esterificationobservedundersomemineralstarvationconditions cannotbedirectlyexplainedbythePMEgeneexpressionlevels.In factmostPMEgenesweredown-regulatedandallPMEIgeneswere up-regulatedwiththeexceptionofthebasicPME1.4andPME1.11 under−Pand−S.AnequivalentbalancebetweenPMEandPMEI controllingtherateofde-esterification,wasobservedinArabidopsis roots(Wilsonetal.,2015).Fromthesefindingswehypothesizethat undermineralstressesthebasicPMEsproducelonglinearstretches ofunesterifiedHGchainspromotingtheformationofCa2+-linked

gelstructuresand,inthisway,stiffeningtheCW.Asawhole,the resultsofgeneexpressionchangesinresponsetotheindividual mineralstressesareinaccordancewithpreviousevidencesthat theresponseandeventualadaptationarespecifictoeachstress.

Afterincubationofproteinsaltextractswithheatinactivated cucumberhypocotylusedasdicotCWspecimensunderconditions thatpromoteextensibility,increasesintheplasticdeformations were observed under –N and −P callus (Fig. 4).Plastic defor-mation,meaninganirreversibleincreaseinlengthafterremoval of an appliedstretching force, is a necessary conditionfor the wall-looseningreactionsinvolvedingrowth(HohlandSchopfer, 1992).ExpansinsandXTHsareCW-looseningagentsthatregulate CWexpansionandcellenlargementthroughelasticdeformation (Cosgrove,2000;Miedesetal.,2013).Thegeneraldown-regulation

(9)

of␣-expansinand mostXTHs genesinV. viniferacallustissues observedinresponsetomineralstressareinlinewiththeresults obtainedinextensibilitytests,wherenoalterationintheelastic componentofthedeformationswasobserved.

Consideringthegeneexpressionresultsdiscussedabove,itmay bespeculatedthat thelower proportion ofhydrolyticenzymes foundintheproteinextractsundermineralstressconditionshad lesseffectonthecucumberhypocotylCWspolysaccharides.This feature maypromote irreversiblemodifications in the physical propertiesduetomechanical,non-enzymaticeffects.Infact, XTH-XEH,GH9CandPMEexpressingincalluswereamongthegeneswith amoredramaticdown-regulation,alongwiththereducedactivity ofendoglucanaseunder−N,suggestingthattheputativeencoding enzymesarepresentatlowerlevelsintheextractsappliedtothe inactivateddicotCWsamples.

Theuseof ssNMRCW analyzes unraveled that less than8% ofcellulosesurfaceisincontactwithXyG(Boottenetal.,2004; Dick-Perezetal.,2011),withpectinsfillingthegaps.Pectinsare presentedasverydynamicpolymerswhichduetotheirhydrophilic charactermayeasemicrofibrilsmotionsasCWexpands,reducing thedirectcellulose–cellulosecontacts(ParkandCosgrove,2015). InsteadofXyG,pecticmonosaccharides(mostlikelyfromRG-Iside chainsgalactanandarabinanrich(Zykwinskaetal.,2007,2008) maybeassociatedtothecellulose(Cosgrove,2014).Pectinscan thenserveasmechanicaltethersbetweenmicrofibrils(Wangetal., 2012;Peaucelleetal.,2012).Usingthesamesystemwehad pre-viouslyobserved anincrease in arabinoseunder−N conditions leading toCW reinforcement althoughstill allowing significant plasticdeformation(Fig.4).Theseresultsagreewiththepresenceof “biomechanicalhotspots”asproposedbyParkandCosgrove(2012, 2015) inwhich wallextensibility is less dependentonthe vis-coelasticityofthematrixpolymersdependingmoreoftheselective separationbetweenmicrofibrilsatlimitedCWsites.

TheroleofhydrolyticenzymesinCWlooseningwasformerly envisionedastheprimeplayersintheexpansionprocess(Farkas andMaclachlan,1988;McDougallandFry,1990).Althoughitis notclearlyacknowledgedthattheybreakglycosidicbondsof crys-talline cellulose (Vissenberg et al., 2001; Cosgrove, 2005), it is recognizedthattheiractivitycouldcontributetothelooseningof theCW,makingitmorepliableforexpansion(Cosgrove,2005).Park and Cosgrove (2012)reported that ␤-1,4-endo-glucanasesmay induceplasticdeformation.Thisassumptionagreeswithour obser-vationsontheincreaseinendoglucanaseactivityandtheincrease inplasticdeformationunder−P.

Theresultstakenasawholesupportthehypothesisthat differ-entmineralstressesimpactdifferentresponsesintheCW-related mechanismsthatunderliedevelopment,withnitrogeneffecting thoseresponsesmoredramaticallyandsulfurleadingtoless pro-nouncedresponses.Thismaybeduetothevitalroleofnitrogen inplantmetabolism.Infact,askeyelementinproteinsynthesis, nitrogendepletioncanredirectthemetabolismpreventingprotein compensationbyothermembersofthesamefamily.

Acknowledgments

The research was funded by Fundac¸ão para a Ciência e a Tecnologia (FCT) project PTDC/AGR-GPL/099624/2008, CBAA (PestOE/AGR/UI0240/2011)andGrantSFRH/BD/64047/2009toJCF.

References

Arnold,K.,Bordoli,L.,Kopp,J.,Schwede,T.,2006.TheSWISS-MODELworkspace:a

web-basedenvironmentforproteinstructurehomologymodelling.

Bioinformatics22,195–201,http://dx.doi.org/10.1093/bioinformatics/bti770.

Baumann,M.J.,Eklof,J.M.,Michel,G.,Kallas,A.M.,Teeri,T.T.,Czjzek,M.,BrumerIII,

H.,2007.Structuralevidencefortheevolutionofxyloglucanaseactivityfrom

xyloglucanendo-transglycosylases:biologicalimplicationsforcellwall

metabolism.PlantCell19,1947–1963,http://dx.doi.org/10.1105/tpc.107.

Bellincampi,D.,Camardella,L.,Delcour,J.A.,Desseaux,V.,D’Ovidio,R.,Durand,A.,

Elliot,G.,Gebruers,K.,Giovane,A.,Juge,N.,Sorensen,J.F.,Svensson,B.,Vairo,D.,

2004.Potentialphysiologicalroleofplantglycosidaseinhibitors.BBAProteins

Proteom.1696,265–274,http://dx.doi.org/10.1016/j.bbapap.2003.10.011.

Bootten,T.J.,Harris,P.J.,Melton,L.D.,Newman,R.H.,2004.Solid-state13CNMR

spectroscopyshowsthatthexyloglucansintheprimarycellwallsofmung

bean(VignaradiataL.)occurindifferentdomains:anewmodelfor

xyloglucan-celluloseinteractionsinthecellwall.J.Exp.Bot.55,571–583,

http://dx.doi.org/10.1093/jxb/erh065.

Bosch,M.,Hepler,P.K.,2005.Pectinmethylesterasesandpectindynamicsinpollen

tubes.PlantCell17,3219–3226,http://dx.doi.org/10.1105/tpc.105.037473.

Bradford,M.M.,1976.Arapidandsensitivemethodforthequantitationof

microgramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding. Anal.Biochem.72,248–254.

Braidwood,L.,Breuer,C.,Sugimoto,K.,2014.Mybodyisacage:mechanismsand

modulationofplantcellgrowth.NewPhytol.201,388–402,http://dx.doi.org/

10.1111/nph.12473.

Brummell,D.A.,Harpster,M.H.,2001.Cellwallmetabolisminfruitsofteningand

qualityanditsmanipulationintransgenicplants.PlantMol.Biol.47,311–340,

http://dx.doi.org/10.1023/A.1010656104304.

delCampillo,E.,Gaddam,S.,Mettle-Amuah,D.,Heneks,J.,2012.Ataleoftwo

tissues:AtGH9C1isanendo-␤-1,4-glucanaseinvolvedinroothairand

endospermdevelopmentinArabidopsis.PLoSOne7,e49363,http://dx.doi.org/

10.1371/journal.pone.0049363.

Carpita,N.,Tierney,M.,Campbell,M.,2001.Molecularbiologyoftheplantcell

wall:searchingforthegenesthatdefinestructure,architectureanddynamics.

PlantMol.Biol.47,1–5,http://dx.doi.org/10.1023/A.1010603527077.

Chevenet,F.,Brun,C.,Banuls,A.L.,Jacq,B.,Chisten,R.,2006.TreeDyn:towards

dynamicgraphicsandannotationsforanalysesoftrees.BMCBioinf.7,439,

http://dx.doi.org/10.1186/1471-2105-7-439.

Choi,D.,Cho,H.T.,Lee,Y.,2006.Expansinsexpandingimportanceinplantgrowth

anddevelopment.Physiol.Plant.126,511–518,http://dx.doi.org/10.1111/j.

1399-3054.2006.00612.x.

Coito,J.L.,Rocheta,M.,Carvalho,L.,Amâncio,S.,2012.Microarray-based

uncoveringreferencegenesforquantitativerealtimePCRingrapevineunder

abioticstress.BMCRes.Notes5,220,

http://dx.doi.org/10.1186/1756-0500-5-220.

Cosgrove,D.J.,1993.Howdoplantcellwallsextend?PlantPhysiol.102,1–6.

Cosgrove,D.J.,1999.Enzymesandotheragentsthatenhancecellwallextensibility.

Annu.Rev.PlantPhysiol.PlantMol.Biol.(50),391–417,http://dx.doi.org/10.

1146/annurev.arplant.50.1.391.

Cosgrove,D.J.,2000.Looseningofplantcellwallsbyexpansins.Nature407,

321–326,http://dx.doi.org/10.1038/35030000.

Cosgrove,D.J.,2005.Growthoftheplantcellwall.Nat.Rev.Mol.CellBiol.6,

850–861.

Cosgrove,D.J.,Jarvis,M.C.,2012.Comparativestructureandbiomechanicsofplant

primaryandsecondarycellwalls.Front.PlantSci.3(204),http://dx.doi.org/10.

3389/fpls.2012.00204.

Cosgrove,D.J.,2014.Re-constructingourmodelsofcelluloseandprimarycellwall

assembly.Curr.Opin.PlantBiol.22,122–131,http://dx.doi.org/10.1016/j.pbi.

2014.11.001.

Derbyshire,P.,McCann,M.C.,Roberts,K.,2007.Restrictedcellelongationin

Arabidopsishypocotylsisassociatedwithareducedaveragepectin

esterificationlevel.BMCPlantBiol.7,31,

http://dx.doi.org/10.1186/1471-2229-7-31.

Desprez,T.,Juraniec,M.,Crowell,E.F.,Jouy,H.,Pochylova,Z.,Parcy,F.,Höfte,H.,

Gonneau,M.,Vernhettes,S.,2007.Organizationofcellulosesynthase

complexesinvolvedinprimarycellwallsynthesisinArabidopsisthaliana.Proc.

Natl.Acad.Sci.U.S.A.104,15572–15577,http://dx.doi.org/10.1073/pnas.

0706569104.

DiMatteo,A.,Giovane,A.,Raiola,A.,Camardella,L.,Bonivento,D.,DeLorenzo,G.,

Cervone,F.,Bellincampi,D.,Tsernoglou,D.,2005.Structuralbasisforthe

interactionbetweenpectinmethylesteraseandaspecificinhibitorprotein.

PlantCell17,849–858,http://dx.doi.org/10.1105/tpc.104.028886.

Dick-Perez,M.,Zhang,Y.,Hayes,J.,Salazar,A.,Zabotina,O.A.,Hong,M.,2011.

Structureandinteractionsofplantcell-wallpolysaccharidesbytwo-and

three-dimensionalmagicangle-spinningsolid-stateNMR.Biochemistry50,

989–1000,http://dx.doi.org/10.1021/bi101795q.

Doblin,M.S.,Pettolino,F.,Bacic,A.,2010.Plantcellwalls:theskeletonoftheplant

world.Funct.PlantBiol.37,357–381http://dx.doi.org/10.1071/FP09279.

Durbin,M.L.,Lewis,L.N.,1988.CellulasesinPhaseolusvulgaris.MethodsEnzymol.

160,342–351,http://dx.doi.org/10.1016/0076-6879(88)60137-6.

Edgar,R.,2004a.MUSCLE:amultiplesequencealignmentmethodwithreduced

timeandspacecomplexity.BMCBioinf.5,113,http://dx.doi.org/10.1186/

1471-2105-5-113.

Edgar,R.C.,2004b.MUSCLE:multiplesequencealignmentwithhighaccuracyand

highthroughput.NucleicAcidsRes.32,1792–1797,http://dx.doi.org/10.1093/

nar/gkh340.

Eklöf,J.M.,Brumer,H.,2010.TheXTH:genefamily:anupdateonenzyme

structure,function,andphylogenyinxyloglucanremodeling.PlantPhysiol.

153,456–466,http://dx.doi.org/10.1104/pp.110.156844.

Endler,A.,Persson,S.,2011.CellulosesynthasesandsynthesisinArabidopsis.Mol.

(10)

Farkas,V.,Maclachlan,G.,1988.Stimulationofpea1,4-␤-glucanaseactivityby oligosaccharidesderivedfromxyloglucan.Carbohydr.Res.184,213–219.

Farrokhi,N.,Burton,R.A.,Brownfield,L.,Hrmova,M.,Wilson,S.M.,Bacic,A.,

Fincher,G.B.,2006.Plantcellwallbiosynthesis:genetic,biochemicaland

functionalgenomicsapproachestotheidentificationofkeygenes.Plant

Biotechnol.J.4,145–167,http://dx.doi.org/10.1111/j.1467-7652.2005.00169.x.

Fernandes,J.C.,García-Angulo,P.,Goulao,L.F.,Acebes,J.L.,Amâncio,S.,2013.

Mineralstressaffectsthecellwallcompositionofgrapevine(VitisviniferaL.)

callus.PlantSci.205–206,111–120,http://dx.doi.org/10.1016/j.plantsci.2013.

01.013.

Fujita,M.,Himmelspach,R.,Hocart,C.H.,Williamson,R.E.,Mansfield,S.D.,

Wasteneys,G.O.,2011.Corticalmicrotubulesoptimizecell-wallcrystallinityto

driveunidirectionalgrowthinArabidopsis.PlantJ.66,915–928,http://dx.doi.

org/10.1111/j.1365-313X.2011.04552.x.

Giovannoni,J.J.,2004.Geneticregulationoffruitdevelopmentandripening.Plant

Cell16(Suppl),S170–S180,http://dx.doi.org/10.1105/tpc.019158.

Glass,M.,Barkwill,S.,Unda,F.,Mansfield,S.D.,2015.Endo-␤-1,4-glucanases

impactplantcellwalldevelopmentbyinfluencingcellulosecrystallization.J.

Integr.PlantBiol.57,396–410,http://dx.doi.org/10.1111/jipb.12353.

Goulao,L.F.,2010.Pectinde-esterificationandfruitsoftening:revisitingaclassical

hypothesis.StewartPostharvestRev.1,1–12,http://dx.doi.org/10.2212/spr.

2010.1.7.

Guex,N.,Peitsch,M.C.,1997.SWISS-MODELandtheSwiss-Pdbviewer:an

environmentforcomparativeproteinmodeling.Electrophoresis18,

2714–2723,http://dx.doi.org/10.1002/elps.1150181505.

Guindon,S.,Dufayard,J.-F.,Lefort,V.,Anisimova,M.,Hordijk,W.,etal.,2010.New

algorithmsandmethodstoestimatemaximum-likelihoodphylogenies:

assessingtheperformanceofPhyML3.0.Syst.Biol.59,307–321,http://dx.doi.

org/10.1093/sysbio/syq010.

Handakumbura,P.P.,Matos,D.A.,Osmont,K.S.,Harrington,M.J.,Heo,K.,Kafle,K.,

Kim,S.H.,Baskin,T.I.,Hazen,S.P.,2013.PerturbationofBrachypodium

distachyonCELLULOSESYNTHASEA4or7resultsinabnormalcellwalls.BMC

PlantBiol.13,131,http://dx.doi.org/10.1186/1471-2229-13-131.

Hohl,M.,Schopfer,P.,1992.Physicalextensibilityofmaizecoleoptilecellwalls:

apparentplasticextensibilityisduetoelastichysteresis.Planta187,498–504,

http://dx.doi.org/10.1007/BF00199968.

Hongo,S.,Sato,K.,Yokoyama,R.,Nishitani,K.,2012.Demethylesterificationofthe

primarywallbyPECTINMETHYLESTERASE35providesmechanicalsupportto

theArabidopsisstem.PlantCell24,2624–2634,http://dx.doi.org/10.1105/tpc.

112.099325.

Jackson,P.,Galinha,C.,Pereira,C.,Fortunato,A.,Soares,N.,Amâncio,S.,Pinto,C.,

2001.Ricardorapiddepositionofextensinduringtheelicitationofgrapevine

callusculturesisspecificallycatalysedbya40kDaperoxidase.PlantPhysiol.

127,1065–1076http://dx.doi.org/10.1104/pp.01019.

Jaillon,O.,Aury,J.M.,Noel,B.,Policriti,A.,Clepet,C.,Casagrande,A.,Choisne,N.,

Aubourg,S.,Vitulo,N.,Jubin,C.,etal.,2007.Thegrapevinegenomesequence

suggestsancestralhexaploidizationinmajorangiospermphyla.Nature449,

463–467,http://dx.doi.org/10.1038/nature06148.

Johansson,P.,Brumer3rd,H.,Baumann,M.J.,Kallas,A.M.,Henriksson,H.,Denman,

S.E.,Teeri,T.T.,Jones,T.A.,2004.Crystalstructuresofapoplarxyloglucan

endotransglycosylaserevealdetailsoftransglycosylationacceptorbinding.

PlantCell16,874–886,http://dx.doi.org/10.1105/tpc.020065.

Jolie,R.P.,Duvetter,T.,VanLoey,A.M.,Hendrickx,M.E.,2010.Pectin

methylesteraseanditsproteinaceousinhibitor:areview.Carbohydr.Res.345,

2583–2595,http://dx.doi.org/10.1016/j.carres.2010.10.002.

Juge,N.,2006.Plantproteininhibitorsofcellwalldegradingenzymes.TrendsPlant

Sci.11,359–367,http://dx.doi.org/10.1016/j.tplants.2006.05.006.

Kaewthai,N.,Gendre,D.,Eklöf,J.M.,Ibatullin,F.M.,Ezcurra,I.,Bhalerao,R.P.,

Brumer,H.,2013.GroupIII-AXTH:genesofArabidopsisencodepredominant

xyloglucanendohydrolasesthataredispensablefornormalgrowth.Plant

Physiol.161,440–454,http://dx.doi.org/10.1104/pp.112.207308.

Lai-Kee-Him,J.,Chanzy,H.,Muller,M.,Putaux,J.,Imai,T.,Bulone,V.,2002.Invitro

versusinvivocellulosemicrofibrilsfromplantprimarywallsynthases:

structuraldifferences.J.Biol.Chem.277,36931–36939,http://dx.doi.org/10.

1074/jbc.M203530200.

Landrein,B.,Hamant,O.,2013.Howmechanicalstresscontrolsmicrotubule

behaviorandmorphogenesisinplants:history,experimentsandrevisited

theories.PlantJ.75,324–338,http://dx.doi.org/10.1111/tpj.12188.

Lerouxel,O.,Cavalier,D.M.,Liepman,A.H.,Keegstra,K.,2006.Biosynthesisofplant

cellwallpolysaccharides—acomplexprocess.Curr.Opin.PlantBiol.9,

621–630,http://dx.doi.org/10.1016/j.pbi.2006.09.009.

Liners,F.,Letesson,J.J.,Didembourg,C.,VanCutsem,P.,1989.Monoclonal

antibodiesagainstpectin:recognitionofaconformationinducedbycalcium.

PlantPhysiol.91,1419–1424http://dx.doi.org/10.1104/pp.91.4.1419.

Malinovsky,F.G.,Fangel,J.U.,Willats,W.G.T.,2014.Theroleofthecellwallinplant

immunity.Front.PlantSci.5(178),http://dx.doi.org/10.3389/fpls.2014.00178.

Marcus,S.E.,Verhertbruggen,Y.,Hervé,C.,Ordaz-Ortiz,J.J.,Farkas,V.,Pedersen,

H.L.,Willats,W.G.T.,Knox,J.P.,2008.Pectichomogalacturonanmasks

abundantsetsofxyloglucanepitopesinplantcellwalls.BMCPlantBiol.8,60,

http://dx.doi.org/10.1186/1471-2229-8-60.

Markovic,O.,Janecek,S.,2004.Pectinmethylesterases:sequence-structural

featuresandphylogeneticrelationships.Carbohydr.Res.339,2281–2295,

http://dx.doi.org/10.1016/j.carres.2004.06.023.

Markovic,O.,Kohn,R.,1984.ModeofpectindeesterificationinTrichodremareesei

pectinesterese.Experientia5,842–843.

Matsui,A.,Yokoyama,R.,Seki,M.,Ito,T.,Shinozaki,K.,Takahashi,T.,Komeda,Y.,

Nishitani,K.,2005.AtXTH27playsanessentialroleincellwallmodification

duringthedevelopmentoftrachearyelements.PlantJ.42,525–534,http://dx.

doi.org/10.1111/j.1365-313X.2005.02395.x.

McDougall,G.J.,Fry,S.C.,1990.Xyloglucanoligosaccharidespromotegrowthand

activatecellulase.Evidenceforaroleofcellulaseincellexpansion.Plant

Physiol.93,1042–1048http://dx.doi.org/10.1104/pp.93.3.1042.

McQueen-Mason,S.,Durachko,D.M.,Cosgrove,D.J.,1992.Twoendogenous

proteinsthatinducecellwallextensioninplants.PlantCell4,1425–1433

http://dx.doi.org/10.1105/tpc.4.11.1425.

McQueen-Mason,S.J.,Cosgrove,D.J.,1995.Expansinmodeofactiononcellwalls

analysisofwallhydrolysis,stressrelaxationandbinding.PlantPhysiol.107,

87–100http://dx.doi.org/10.1104/pp.107.1.87.

Micheli,F.,2001.Pectinmethylesterases:cellwallenzymeswithimportantroles

inplantphysiology.TrendsPlantSci.6,414–419,http://dx.doi.org/10.1016/

s1360-1385(01)02045-3.

Miedes,E.,Herbers,K.,Sonnewald,U.,Lorences,E.P.,2010.Overexpressionofacell

wallenzymereducesxyloglucandepolymerizationandsofteningoftransgenic

tomatofruits.J.Agric.FoodChem.58,5708–5713,http://dx.doi.org/10.1021/

jf100242z.

Miedes,E.,Suslov,D.,Vandenbussche,F.,Kenobi,K.,Ivakov,A.,VanDerStraeten,

D.,etal.,2013.Xyloglucanendotransglucosylase/hydrolase(XTH)

overexpressionaffectsgrowthandcellwallmechanicsinetiolatedArabidopsis hypocotyls.J.Exp.Bot.64,2481–2497.

Murashige,T.,Skoog,F.,1962.Arevisedmediumforrapidgrowthandbioassays

withtobaccotissue.Physiol.Plant.15,493–497,http://dx.doi.org/10.1111/j.

1399-3054.1962.tb08052.x.

Nicol,F.,His,I.,Jauneau,A.,Vernhettes,S.,Canut,H.,Höfte,H.,1998.Aplasma

membrane-boundputativeendo-1,4-beta-d-glucanaseisrequiredfornormal

wallassemblyandcellelongationinArabidopsis.EMBOJ.17,5563–5576,

http://dx.doi.org/10.1093/emboj/17.19.5563.

Oliveros,J.C.,2007.VENNY:aninteractivetoolforcomparinglistswithVenn

Diagrams,http://bioinfogp.cnb.csic.es/tools/venny/index.html.

Osato,Y.,Yokoyama,R.,Nishitani,K.,2006.AprincipalroleforAtXTH18in

Arabidopsisthalianarootgrowth—afunctionalanalysisusingRNAiplants.J.

PlantRes.119,153–162,http://dx.doi.org/10.1007/s10265-006-0262-6.

Park,Y.B.,Cosgrove,D.J.,2012.Arevisedarchitectureofprimarycellwallsbased

onbiomechanicalchangesinducedbysubstrate-specificendoglucanases.Plant

Physiol.158,1933–1943,http://dx.doi.org/10.1104/pp.111.192880.

Park,Y.B.,Cosgrove,D.J.,2015.Xyloglucananditsinteractionswithother

componentsofthegrowingcellwall.PlantCellPhysiol.56,180–194,http://dx.

doi.org/10.1093/pcp/pcu204.

Peaucelle,A.,Louvet,R.,Johansen,J.N.,Hofte,H.,Laufs,P.,Pelloux,J.,Mouille,G.,

2008.Arabidopsisphyllotaxisiscontrolledbythemethyl-esterificationstatus

ofcell-wallpectins.Curr.Biol.18,1943–1948,http://dx.doi.org/10.1016/j.cub.

2008.10.065.

Peaucelle,A.,Braybrook,S.A.,LeGuillou,L.,Bron,E.,Kuhlemeier,C.,Höfte,H.,2011.

Pectin-inducedchangesincellwallmechanicsunderlieorganinitiationin

Arabidopsis.Curr.Biol.21,1720–1726,http://dx.doi.org/10.1016/j.cub.2011.08.

057.

Peaucelle,A.,Braybrook,S.,Hofte,H.,2012.Cellwallmechanicsandgrowth

controlinplants:theroleofpectinsrevisited.Front.PlantSci.3,121,http://dx.

doi.org/10.3389/fpls.2012.00121.

Pelloux,J.,Rustérucci,C.,Mellerowicz,E.J.,2007.Newinsightsintopectin

methylesterasestructureandfunction.TrendsPlantSci.12,267–277,http://

dx.doi.org/10.1016/j.tplants.2007.04.001.

Petersen,T.N.,Brunak,S.,vonHeijne,G.,Nielsen,H.,2011.SignalP4.0:

discriminatingsignalpeptidesfromtransmembraneregions.Nat.Methods8,

785–786,http://dx.doi.org/10.1038/nmeth.1701.

Pilling,E.,Höfte,H.,2003.Feedbackfromthewall.Curr.Opin.PlantBiol.6,

611–616,http://dx.doi.org/10.1016/j.pbi.2003.09.004.

Popper,Z.A.,Fry,S.C.,2005.Widespreadoccurrenceofacovalentlinkagebetween

xyloglucanandacidicpolysaccharidesinsuspension-culturedangiosperm

cells.Ann.Bot.96,91–99,http://dx.doi.org/10.1093/aob/mci153.

Potters,G.,Pasternak,T.P.,Guisez,Y.,Palme,K.J.,Jansen,M.A.K.,2007.

Stress-inducedmorphogenicresponses:growingoutoftrouble?TrendsPlant

Sci.12,98–105,http://dx.doi.org/10.1016/j.tplants.2007.01.004.

Quevillon,E.,Silventoinen,V.,Pillai,S.,Harte,N.,Mulder,N.,Apweiler,R.,Lopez,R.,

2005.InterProScan.proteindomainsidentifier.NucleicAcidsRes.33,

W116–W120,http://dx.doi.org/10.1093/nar/gki442(WebServerissue).

Reid,K.E.,Olsson,N.,Schlosser,J.,Peng,F.,Lund,S.T.,2006.Anoptimizedgrapevine

RNAisolationprocedureandstatisticaldeterminationofreferencegenesfor

real-timeRT-PCRduringberrydevelopment.BMCPlantBiol.6,27,http://dx.

doi.org/10.1186/1471-2229-6-27.

Richmond,P.A.,Métraux,J.P.,Taiz,L.,1980.Cellexpansionpatternsand

directionalityofwallmechanicalpropertiesinnitella.PlantPhysiol.65,

211–217,http://dx.doi.org/10.1104/pp.65.2.211.

Richmond,T.A.,Somerville,C.R.,2000.Thecellulosesynthasesuperfamily.Plant

Physiol.124,495–498,http://dx.doi.org/10.1104/pp.124.2.495.

Saeed,A.I.,Sharov,V.,White,J.,Li,J.,Liang,W.,Bhagabati,N.,Braisted,J.,Klapa,M.,

Currier,T.,Thiagarajan,M.,Sturn,A.,Snuffin,M.,Rezantsev,A.,Popov,D.,

Ryltsov,A.,Kostukovich,E.,Borisovsky,I.,Liu,Z.,Vinsavich,A.,Trush,V.,

Quackenbush,J.,2003.TM4:afree,open-sourcesystemformicroarraydata

managementandanalysis.Biotechniques34,374–378.

Sampedro,J.,Pardo,B.,Gianzo,C.,Guitián,E.,Revilla,G.,Zarra,I.,2010.Lackof

(11)

ingrowthdefects.PlantPhysiol.154,1105–1115,http://dx.doi.org/10.1104/ pp.110.163212.

Sampedro,J.,Gianzo,C.,Iglesias,N.,Guitián,E.,Revilla,G.,Zarra,I.,2012.AtBGAL10

isthemainxyloglucan␤-galactosidaseinArabidopsis,anditsabsenceresults

inunusualxyloglucansubunitsandgrowthdefects.PlantPhysiol.158,

1146–1157,http://dx.doi.org/10.1104/pp.111.192195.

Sato,S.,Kato,T.,Kakegawa,K.,etal.,2001.Roleoftheputativemembrane-bound

endo-1,4-beta-glucanaseKORRIGANincellelongationandcellulosesynthesis

inArabidopsisthaliana.PlantCellPhysiol.42,251–263,http://dx.doi.org/10.

1093/pcp/pce045.

Scognamiglio,M.A.,Ciardiello,M.A.,Tamburrini,M.,Carratore,V.,Rausch,T.,

Camardella,L.,2003.Theplantinvertaseinhibitorsharesstructuralproperties

anddisulfidebridgesarrangementwiththepectinmethylesteraseinhibitor.J. ProteinChem.22,363–369.

Somerville,C.,2006.Cellulosesynthesisinhigherplants.Annu.Rev.CellDev.Biol.

22,53–78,http://dx.doi.org/10.1146/annurev.cellbio.22.022206.160206.

Suzuki,S.,Li,L.,Sun,Y.H.,Chiang,V.L.,2006.Thecellulosesynthasegene

superfamilyandbiochemicalfunctionsofxylem-specificcellulose

synthase-likegenesinPopulustrichocarpa.PlantPhysiol.142,1233–1245,

http://dx.doi.org/10.1104/pp.106.086678.

Takahashi,J.,Rudsander,U.J.,Hedenström,M.,Banasiak,A.,Harholt,J.,Amelot,N.,

Immerzeel,P.,Ryden,P.,Endo,S.,Ibatullin,F.M.,Brumer,H.,delCampillo,E.,

Master,E.R.,Scheller,H.V.,Sundberg,B.,Teeri,T.T.,Mellerowicz,E.J.,2009.

KORRIGAN1anditsaspenhomologPttCel9A1decreasecellulosecrystallinity

inArabidopsisstems.PlantCellPhysiol.50,1099–1115,http://dx.doi.org/10.

1093/pcp/pcp062.

Takeda,T.,Furuta,Y.,Awano,T.,Mizuno,K.,Mitsuishi,Y.,Hayashi,T.,2002.

Suppressionandaccelerationofcellelongationbyintegrationofxyloglucans

inpeastemsegments.Proc.Natl.Acad.Sci.U.S.A.99,9055–9060,http://dx.

doi.org/10.1073/pnas.132080299.

Talavera,G.,Castresana,J.,2007.Improvementofphylogeniesafterremoving

divergentandambiguouslyalignedblocksfromproteinsequencealignments.

Syst.Biol.56,564–577,http://dx.doi.org/10.1080/10635150701472164.

Taylor,N.G.,Howells,R.M.,Huttly,A.K.,Vickers,K.,Turner,S.R.,2003.Interactions

amongthreedistinctCesAproteinsessentialforcellulosesynthesis.Proc.Natl.

Acad.Sci.U.S.A.100,1450–1455,http://dx.doi.org/10.1073/pnas.0337628100.

Tenhaken,R.,2015.Cellwallremodelingunderabioticstress.Front.PlantSci.5,

771,http://dx.doi.org/10.3389/fpls.2014.00771.

Urbanowicz,B.R.,Bennett,A.B.,delCampillo,E.,Catalá,C.,Hayashi,T.,Henrissat,B.,

Höfte,H.,McQueen-Mason,S.J.,Patterson,S.E.,Shoseyov,O.,Teeri,T.T.,Rose,

J.K.,2007a.Structuralorganizationandastandardizednomenclatureforplant

endo-1,4-beta-glucanases(cellulases)ofglycosylhydrolasefamily9.Plant

Physiol.144,1693–1696http://dx.doi.org/10.1104/pp.107.102574.

Urbanowicz,B.R.,Catalá,C.,Irwin,D.,Wilson,D.B.,Ripoll,D.R.,Rose,J.K.C.,2007b.A

tomatoendo-␤-1,4-glucanase,SlCel9C1,representsadistinctsubclasswitha

newfamilyofcarbohydratebindingmodules(CBM49).J.Biol.Chem.282,

12066–12074,http://dx.doi.org/10.1074/jbc.M607925200.

Vain,T.,Crowell,E.F.,Timpano,H.,Biot,E.,Desprez,T.,Mansoori,N.,Trindade,L.M.,

Pagant,S.,Robert,S.,Höfte,H.,Gonneau,M.,Vernhettes,S.,2014.Thecellulase

KORRIGAN:ispartofthecellulosesynthasecomplex.PlantPhysiol.165, 1521–1532httsp://dx.doi.org/10.1104/pp.114.241216.

VanSandt,V.S.,Suslov,D.,Verbelen,J.P.,Vissenberg,K.,2007.Xyloglucan

endotransglucosylaseactivityloosensaplantcellwall.Ann.Bot.100,

1467–1473,http://dx.doi.org/10.1093/aob/mcm248.

Velasco,R.,Zharkikh,A.,etal.,2007.Ahighqualitydraftconsensussequenceofthe

genomeofaheterozygousgrapevinevariety.PLoSOne2,e1326,http://dx.doi.

org/10.1371/journal.pone.0001326.

Vissenberg,K.,Fry,S.C.,Verbelen,J.-P.,2001.Roothairinitiationiscoupledtoa

highlylocalizedincreaseofxyloglucanendotransglycoslyaseactionin

Arabidopsisroots.PlantPhysiol.127,1125–1135,http://dx.doi.org/10.1104/pp.

010295.

Wakabayashi,K.,Soga,K.,Kamisaka,S.,Hoson,T.,2003.Modificationofcellwall

architectureofwheatcoleoptilesgrownunderhypergravityconditions.Biol. Sci.Space17,228–229.

Wang,T.,Zabotina,O.,Hong,M.,2012.Pectin-celluloseinteractionsinthe

Arabidopsisprimarycellwallfromtwo-dimensionalmagic-angle-spinning

solid-statenuclearmagneticresonance.Biochemistry51,9846–9856,http://

dx.doi.org/10.1021/bi3015532.

Wang,T.,Park,Y.B.,Caporini,M.A.,Rosay,M.,Zhong,L.,Cosgrove,D.J.,Hong,M.,

2013.Sensitivity-enhancedsolid-stateNMRdetectionofexpansin’stargetin

plantcellwalls.Proc.Natl.Acad.Sci.U.S.A.110,16444–16449,http://dx.doi.

org/10.1073/pnas.1316290110.

Whitney,S.E.C.,Gidley,M.J.,McQueen-Mason,S.J.,2000.Probingexpansinaction

usingcellulose/hemicellulosecomposites.PlantJ.22,327–334,http://dx.doi.

org/10.1046/j.1365-313x.2000.00742.x.

Willats,W.G.,Gilmartin,P.M.,Mikkelsen,J.D.,Knox,J.P.,1999.Cellwallantibodies

withoutimmunization:generationanduseofde-esterifiedhomogalacturonan

block-specificantibodiesfromanaivephagedisplaylibrary.PlantJ.18,57–65,

http://dx.doi.org/10.1046/j.1365-313X.1999.00427.x.

Willats,W.G.T.,Orfila,C.,Limberg,G.,Buchholt,H.C.,vanAlebeek,G.J.W.M.,

Voragen,A.G.J.,Marcus,S.E.,Christensen,T.M.I.E.,Mikkelsen,J.D.,Murray,B.S.,

Knox,J.P.,2001.Modulationofthedegreeandpatternofmethyl-esterification

ofpectichomogalacturonaninplantcellwalls.Implicationsforpectinmethyl

esteraseaction,matrixproperties,andcelladhesion.J.Biol.Chem.276,

19404–19413,http://dx.doi.org/10.1074/jbc.M011242200.

Wilson,M.H.,Holman,T.J.,Sorensen,I.,Cancho-Sanchez,E.,Wells,D.M.,Swarup,

R.,etal.,2015.Multi-omicsanalysisidentifiesgenesmediatingtheextension

ofcellwallsintheArabidopsisthalianarootelongationzone.Front.CellDev.

Biol.3,10,http://dx.doi.org/10.3389/fcell.2015.00010.

Wolf,S.,Mravec,J.,Greiner,S.,Mouille,G.,Höfte,H.,2012.Plantcellwall

homeostasisismediatedbybrassinosteroidfeedbacksignaling.Curr.Biol.22,

1732–1737,http://dx.doi.org/10.1016/j.cub.2012.07.036.

Yuan,S.,Wu,Y.,Cosgrove,D.J.,2001.Afungalendoglucanasewithplantcellwall

extensionactivity.PlantPhysiol.127,324–333,http://dx.doi.org/10.1104/pp.

127.1.324.

Zykwinska,A.,Ralet,M.C.,Garnier,C.,Thibault,J.F.,2005.Evidenceforinvitro

bindingofpecticsidechainstocellulose.PlantPhysiol.139,397–407,http://

dx.doi.org/10.1104/pp.105.065912.

Zykwinska,A.,Thibault,J.-F.,Ralet,M.-C.,2007.Organizationofpecticarabinan

andgalactansidechainsinassociationwithcellulosemicrofibrilsinprimary

cellwallsandrelatedmodelsenvisaged.J.Expl.Bot.58,1795–1802,http://dx.

doi.org/10.1093/jxb/erm037.

Zykwinska,A.,Thibault,J.F.,Ralet,M.C.,2008.Competitivebindingofpectinand

xyloglucanwithprimarycellwallcellulose.Carbohydr.Polym.74,957–961,

Imagem

Fig. 1. Histological staining for cellulose and pectic polysaccharides and immunolocalization of 2F4 and PAM1 reactive homogalacturonan epitopes in callus grown under control and −N, −P and −S conditions
Fig. 2. Venn diagram summarizing the number of unique and common genes showing different trends of gene expression, up- (A) or down-regulated (B), in response to each individual mineral stress imposed (−N, −P and −S), when compared to control conditions
Fig. 5. ␤-1,4-Endo-glucanase activity of salt extracts from callus grown under nitro- nitro-gen (−N), phosphorus (−P), sulfur (−S) depletion and control (C)

Referências

Documentos relacionados

In order to search for candidate genes associated to the response to water deficit, we analyzed the gene expression profiles, under severe drought stress, in roots and leaves of

Moreover, we examine if the observed patterns are explained by differences in scavenger efficiency, namely if scavenger identity determined (i) carcass detection (i.e. elapsed

This review will focus on the: (i) importance of legumes in the accomplishment of United Nations Sustainable Development Goals for production systems; (ii) understanding the role

Eu tenho que tentar transmitir à criança que ela não deve fazer e não é porque é feio ou mau é porque… Às vezes acontece, por exemplo, os miúdos introduzirem objectos e o que

Obviamente, para Geertz, tal como em Latour, o facto de o antropólogo pertencer predominantemente a um sistema cultural expansivo e de recobrimento ‘universal’ não

[r]

Este estudo teve como objectivo a investigação das crenças sobre a violência doméstica e satisfação com o suporte social em sujeitos adictos e não-adictos. Foram

notadas entre as diferentes classes de percentil de IMC, relativamente à insatisfação com a imagem corporal, são estatisticamente significativas para ambos os