• Nenhum resultado encontrado

Settling velocity of quasi-neutrally-buoyant inertial particles

N/A
N/A
Protected

Academic year: 2021

Share "Settling velocity of quasi-neutrally-buoyant inertial particles"

Copied!
11
0
0

Texto

(1)

Contents lists available atScienceDirect

Comptes

Rendus

Mecanique

www.sciencedirect.com

Settling velocity

of quasi-neutrally-buoyant inertial particles

Vitesse

de

sédimentation

de

particules

inertielles

dotées

de

flottabilité

quasi

neutre

Marco Martins

Afonso

,

Sílvio

M.A. Gama

CentrodeMatemáticadaUniversidadedoPorto,RuadoCampoAlegre687,4169-007Porto,Portugal

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received5August2017 Accepted20November2017 Availableonline6December2017

Keywords: Fluiddynamics Inertialparticles Settlingvelocity Quasi-neutralbuoyancy Steady/periodic/cellularflows Browniandiffusivity Mots-clés :

Dynamiquedesfluides Particulesinertielles Vitessedesédimentation Flottabilitéquasineutre

Fluxstationnaires/périodiques/cellulaires Diffusivitébrownienne

We investigatethe sedimentationpropertiesofquasi-neutrally buoyant inertialparticles carried by incompressible zero-mean fluid flows. We obtain generic formulae for the terminalvelocityingenericspace-and-timeperiodic(orsteady)flows,alongwithfurther informationforflowsendowedwithsomedegreeofspatialsymmetrysuchasoddparity in the vertical direction. These expressions consistin space-time integrals of auxiliary quantities that satisfy partial differential equations of the advection–diffusion–reaction type,whichcanbesolvedatleastnumerically,sinceourschemeimpliesahugereduction oftheproblemdimensionalityfromthefullphasespacetotheclassicalphysicalspace.

©2017Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

r

é

s

u

m

é

Nousétudionslespropriétésdesédimentationdeparticulesinertiellesdotéesdeflottabilité quasi neutreet transportées par un écoulement incompressible àmoyenne nulle.Nous obtenons des formules génériques pour la vitesse terminale dans des écoulements en généralpériodiquesenespaceetentemps(oustatiques),avecd’ultérieuresinformations disponiblespour les écoulements dotésde symétries spatiales spécifiques,telles qu’une parité négative dans la direction verticale. Cesexpressions consistent en des intégrales spatio-temporelles de quantités auxiliaires qui obéissent à des équations aux dérivées partielles du type advection–diffusion–réaction. Ces dernières peuvent être résolues au moins numériquement, car notre procédure implique une forte réduction de la dimensionnalitéduproblème,del’espacedesphasescompletàl’espacephysiqueclassique.

©2017Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

*

Correspondingauthor.

E-mailaddress:marcomartinsafonso@hotmail.it(M. MartinsAfonso). https://doi.org/10.1016/j.crme.2017.11.005

(2)

1. Introduction

Particles advected by a fluid are called“inertial” if, when studying their motion,one cannot neglectthe particle rel-ative inertia withrespect to the surroundingfluid. This isusually dueto their (small but) not negligiblesize, and/or to a mismatchbetweenthe twomass densities.Common examples arerepresented bysmall bubblesinliquids, droplets in gases,andaerosolsinagenericfluid.Thecomprehensionofthedynamicsoftheseimpuritiesisstillanopenissuefromthe theoretical,experimental,andnumericalpointsofview

[1–9]

.Implicationsarerelevantinmanyapplieddomains:plankton dynamics in biology [10], chemical reactors, spray combustion and emulsions in industrial engineering[11], planet for-mation inastrophysics [12], transport ofpollutants orfloaters, raininitiation andsedimentationprocesses in geophysics

[13].

Our focus isprecisely on sedimentation, with a specialattention to those situations wherethe mass–density ratio is (differentfrombut)veryclosetounity.Thisisforinstancethecaseformostlivingbeingssuspendedinanaquaticmedium. Theintuitive pictureisthefollowing:inertiacausesadeviationoftheparticlesfromtheunderlyingfluidtrajectory,which leads to inhomogeneitiesfortheparticleconcentration inregions oftheflow withdifferentdynamicalproperties,dueto thepresenceofsymmetry-breakingforcesandpreferentialdirections—inourcase,gravityalongtheverticalone.Moreover, we will also considerthe effectof Browniandiffusivity. The latteris usually neglected in mostinvestigations on inertial particles,assumingthatBrowniannoiseisverysmallforfinite-sizeparticles.However,thisisnottruefortinyparticles,and especiallyinbiophysicalapplications,wherealimitedcapacityofautonomousmovementcouldbeconsideredinthissimple fashion. Thisworkthereforerepresentsacomplementary studywithrespectto similaronesthatfocused onthelimitsof smallinertiaoroflargeBrowniandiffusivity.

OurprincipalobjectiveistoobtainanEuleriandescriptionofthesettling(i.e.fallingorrising)insteadyorperiodicflows startingfromthewell-knownLagrangianviewpointforparticlemotion.Despitethis,ourtheoryprovidesthewholedetailed statisticalinformationofparticlemotion.Indeed,theprobabilitydensityfunctionofhavingaparticleinagivenpositionat acertaintimeisavailablefromourapproach,atleastinaperturbativeway.However,thisimpliestheresolutionofpartial differentialequations,whichingeneralcanbeaccomplishedonlynumerically.

Thepaperisorganizedasfollows.Insection2,we definetheproblemunderinvestigation,wespecifyourassumptions andwesketchouranalyticalprocedure.Weenouncethefinalresultforgenericflowsinsection 3,andwespecializeitfor vertically-antisymmetriconesinsection4.Conclusionsandperspectivesfollowinsection 5.The

Appendix A

isdevotedto showingthedetailsofthecalculationandtorecallingthemathematicaltoolsemployed.

2. Equations

We consider avery dilute suspension ofpoint-like inertialparticles subjectto the gravitationalacceleration g andto Brownian diffusion,carriedby a fluid flow.We suppose that ourd-dimensionalincompressiblevelocity field issteadyor periodic intime(withperiod

T

),andperiodicinspacewithunit cell

P

oflinearsize



.Itisnot arestrictiontofocuson velocityfieldswhoseaveragevanishesover

P

:



P

dx u

(

x

,

t

)

=

0 (1)

In thisway,anydeviation ofthesettling velocity withrespect tothe value found instill fluidswillrepresent agenuine interplaybetweengravityandtheotherpropertiesofparticleandflow,andnota merestreamingorsweepingeffect.The sametechniquecanbeextendedtohandlethecaseofarandom,homogeneous,andstationaryvelocityfield

[14]

withsome non-trivialmodifications intherigorousproofsofconvergence

[15]

.Foran interestinginvestigation oftherole played by meancurrentsontheeddydiffusivityoftracers,see,e.g.,

[16–21]

.

Neglectinganypossibleinteractionwithotherparticlesorwithphysicalboundaries,andtakingintoaccountthefeedback onthetransportingfluidinan effectivewaybymeansofasimplifiedadded-masseffect,theLagrangiandynamicsreduces tothefollowingsetofstochasticdifferentialequationsfortheparticleposition

X (

t)andcovelocity

V(

t)[22,23]:

˙X(

t

)

= V(

t

)

+ β

u

(

X (

t

),

t

)

+

2

D

μ(

t

)

˙V(

t

)

= −

V(

t

)

− (

1

− β)

u

(

X (

t

),

t

)

τ

+ (

1

− β)

g

+

τ

ν(

t

)

(2)

The independentvectorialwhitenoises

μ

(t)

and

ν

(t)

influencetheparticledynamicsby meansofthecouplingconstants

D

and

κ

,whichcanbeidentifiedasBrowniandiffusivities

[24]

.Thepresenceoftwodifferentparametersintheequations for theposition andthe velocity willbecome clear shortly.The pure number

β

3

ρ

f

/(

ρ

f

+

2

ρ

p

)

∈ [

0

,

3

]

,built fromthe

constant fluid(

ρ

f) andparticle(

ρ

p) massdensities,isdubbed“added-massfactor”,becauseit takesinto accountthefact

thatanyparticlemotionnecessarilyimpliessomefluidmotionaroundit,thusincreasingtheintrinsicinertia—withthesole exception ofvery heavyparticles such asaerosols ordropletsina gas(

β



0).It alsoinduces amacroscopicdiscrepancy between the particle velocity

˙X(

t) and covelocity

V(

t), which is maximum forvery light particles such asbubbles in a liquid(

β



3). Alternatively, in terms of slipvelocity—defined asthe difference betweenthe particle velocity and the

(3)

localinstantaneousfluidvelocitysampledbytheparticle:

Y(

t)

≡ ˙X (

t)

u

(

X (

t),t)—thecovelocityturnsouttobe

V(

t)

=

Y(

t)

+ (

1

− β)

u

(

X (

t),t)

2

D

μ

(t)

.Finally, theStokes time

τ

in thedrag termexpresses thetypical response delayof particles to flow variations, and is definedas

τ

Q2

/(

3

γ

β)

for spherical inertial particles of radius Q immersed in a

fluid with kinematicviscosity

γ

. Note,however, that, ascustomary in inertial-particlestudies,

β

and

τ

are assumed as independentparameters,sincethelattercanbevariedevenwhentheformeriskeptfixedbysuitablychanging Q and

γ

. The dynamical system (2) neglects the classical contributions dueto Basset (time integration for memory/history/wake effects),Oseen(nonlinearfinite-Reynolds-numbercorrectiontothebasicStokesflow),Faxén(spatialexpansionofthefluid flowforfiniteparticlesize)andSaffman(lateralliftincaseofrotation).

Afterstatisticalaveraging of

(2)

on

μ

(t)

and

ν

(t)

[25–28],thegeneralizedFokker–Planck(or Kramers,orforward Kol-mogorov)equationforthephase-spacedensityp(x

,

v

,

t)isobtained:



t

+ ∂

x

· [

v

+ β

u

(

x

,

t

)

] + ∂

v

·



(

1

− β)

u

(

x

,

t

)

v

τ

+ (

1

− β)

g

D

x2

κ

τ

2

2 v

p

=

0 (3)

Letusdenoteby

L(

x

,

v

,

t)thelinearoperatorincurlybracesontheleft-handsideof

(3)

,sothat

L

p

=

0.Forfutureuse, letusalsointroducethecorrespondingphysical-spaceconcentration,obtainedbyintegratingonthecovelocityvariable:

q

(

x

,

t

)



Rd

dv p

(

x

,

v

,

t

)

(4)

Theparticleterminal velocity

[29–35]

is definedasaweighted averageoftheparticlevelocity, fromthefirstequation in(2): w

≡ V(

t

)

+ β

u

(

X (

t

),

t

)

+

2

D

μ(

t

)



p

=

T



0 dt

T



P dx



Rd dv

[

v

+ β

u

(

x

,

t

)

]

p

(

x

,

v

,

t

)

(5)

(hereandinwhatfollows,theaverageonthetemporalperiod

T

isskippedforsteadyflows).Noticethatingeneralsuch quantity corresponds toa mean behavior andnot toan asymptoticvalue—except forthe case ofstill fluids ifBrownian diffusionisnegligible.Indeed,insideaflow,each particlecan wanderinanydirectionandfollowmoreorlesscloselythe underlyingfluid trajectory, buttheoverall evolutionofa bunchofnon-interacting particleswill consistin afalling/rising describedby w.Onthecontrary,inourmodel,thewell-known“bare”asymptoticvalueofsedimentationinstillfluidsis:

W ≡ (

1

− β)

τ

g (6)

Asprovenin

A.1

,thedeviationoftheterminalvelocityfromitsbarevaluecanberewrittenusing

(4)

as:

Z ≡

w

− W =

T



0 dt

T



P dx



Rd dv u

(

x

,

t

)

p

(

x

,

v

,

t

)

=

T



0 dt

T



P dx u

(

x

,

t

)

q

(

x

,

t

)

(7)

Now,letusfocusonparticleswhosemassdensitydiffersonlyslightly(eitherinexcessorinshortfall)fromthefluidone

[36–38].Since

β



1,then1

− β

issmallbutwithanundefinedsign,soweintroduceasecondsmallparameterintheform of

α

≡ |

1

− β|

1.Wealsodefine

J ≡

sgn

(

1

− β)

,thus

β

=

1

J

α

.Itcanbeshownthat,inthissituation,itispossible to proceed analytically only ifone makes the further assumption that the Brownian-diffusioncoefficient

κ

appearing in theequationfortheparticleaccelerationissmallaswell,namelywiththesameasymptoticbehaviorasthemass–density mismatch:

κ

α

1;or,inotherwords,onecandefineafiniteconstant

K ≡

κ

/

|

1

− β|

=

α

−1

κ

withdimensionsofsquare

length over time. Notice that no assumptionis made on the Browniandiffusivity

D

driving the particle velocity, which canthenbethoughtofasaregularizingparameter.Asiswell known,thediffusivityofatracer particle—obeying

(2)

with

τ

=

0—wouldturnouttobesimply

D +

κ

,butforinertialparticlesthesituationismoresubtleand,indeed,ouranalytical procedureworksonlyif

κ

issmalland

D

isnon-zero.Itisalsoworthmentioningthat,hadoneproceededonaLagrangian route before turning to the (Eulerian) phase-space description, the zeroth-order situation

β

=

1 would correspond to a Markovianprocessdriven byacolorednoise (Ornstein–Uhlenbeck)intheLangevin equation,asalreadydescribed in

[39]

. TheLagrangianapproachhasalsobeenfollowedin

[40]

tofindexactexpressions fortheparticleeddydiffusivityinshear orGaussianflows.

Uponrescalingthecovelocityvariableaccordingto v

y

v

/

|

1

− β| =

α

−1/2v,thegeneralizedFokker–Planck

oper-atorsplitsinto:

L

=

L

(0)

+

α

1/2

L

(1)

+

α

L

(2)

(4)

L

(0)

= ∂

t

+

u

(

x

,

t

)

· ∂

x

D

x2

τ

−1

y

·

y

K

τ

−2

2y (8a)

L

(1)

=

y

· ∂

x

+

J

[

τ

−1u

(

x

,

t

)

+

g

] · ∂

y (8b)

L

(2)

= −

J

u

(

x

,

t

)

· ∂

x (8c)

Forthesakeofnotationalsimplicity,wedefinea“gravitationalvelocityfield”z

(

x

,

t)

u

(

x

,

t)

+

τ

g (with

x

·

u

=

0

⇒ ∂

x

·

z

=

0)andtwolinearoperators,

M

(

x

,

t

)

≡ ∂

t

+

u

(

x

,

t

)

· ∂

x

D

x2 (9)

(advection–diffusioninphysicalspace)and

N

(

y

)

≡ ∂

y

·

y

+

K

τ

−1

2y (10)

(relatedtotheOrnstein–Uhlenbeckformalism).Intermsofthem,

L

(0)

=

M

(

x

,

t

)

τ

−1

N

(

y

) ,

L

(1)

=

y

· ∂

x

+

J

τ

−1z

(

x

,

t

)

· ∂

y

Ourrescalingisdictatedbythecloseanalogywiththesituationdescribed in

[35,41,42]

,wherethesmall-inertialimitwas performed.Inthatcase,thesmallquantityinthedenominatorwasthesquarerootof

τ

,whilehereitisthatof

|

1

− β|

.As shownintheappendix,theadvantage ofsuch rescalingliesinthefactthat itallowsforafulldecouplingoftherescaled covelocityfromthephysical-spacedynamics,andfortheresolutionofequationsbasedontheoperator

(10)

intermsofa basicGaussianstate.Notethatinthepresentframeworkwehavetorequestthesmallnessof

κ

explicitly,aconditionthat, onthecontrary,wassomehowimplicitinthoseworks,asexplainedin

[41]

byintroducingthenon-dimensionalStokesand Pécletnumbers(whoseproductwasrequiredtobe O(1

)

).

Itisnownaturaltoexpandthephase-spacedensityintoapowerseriesin

α

andtoreplaceinto

(3)

:

p

(

x

,

y

,

t

)

=

I=0

α

I/2p(I)

(

x

,

y

,

t

)

implyingthat

L

(0)p(0)

=

0 (11a)

L

(0)p(1)

= −

L

(1)p(0) (11b)

L

(0)p(I)

= −

L

(1)p(I−1)

L

(2)p(I−2)

(

I

2

)

(11c) 3. Resultsforperiodicincompressibleflows

Theterminalvelocityisaccordinglyexpandedas: w

=

I=0

α

I/2w(I)

Z =

I=0

α

I/2

Z

(I) (12) Since

W =

α

J

τ

g,thenw(I)

= Z

(I)

+ δ

I2

J

τ

g.Itcanbeshown(seeappendixfordetails)thatactuallyallthehalf-integer

orders of these expressions (corresponding to odd

I

) identically vanish, so that in practice such expansions reduce to commonanalyticalones.Moreover, onealsoseesthat w(0)

=

0

= Z

(0),i.e.particles withexactly-neutralbuoyancy—which

would macroscopically stand still in fluidsatrest—on average donot settle either inthe presence ofour class offlows. In what follows,we are going to provide the expressions forthe terminal velocity up to thesecond order, that is, w(2)

and w(4).Formula

(5)

canbe manipulatedinordertosucceedinperformingthecovelocityintegrals,andwhatisleftare

space–timeintegralsofasetoffieldssatisfyingtheequationsoftheadvection–diffusion–reactiontypeintheconfiguration space. At workingorder, suchfieldsofourinterest aredenotedby q(0),ri(1),q(2),s(2)i j ,ri(3),andq(4).Apartfromimposing the constancy ofq(0)

= 

d,their other partial differentialequations aresolvableanalytically only forspecificflows such asparallelones.However, suchaclassofflowisnot relevantforourscope,sincenocontributiontotheterminalvelocity arises fromthem.Nevertheless,our procedureallows foratleast anumerical resolutioningeneric flows, becauseofthe drasticreductioninthedimensionalityoftheproblemfrom2d

+

1 tod

+

1.

Postponingalldetailsto

Appendix A

,anddefining

i

≡ ∂

xi,weassertfirstofallthat:

w(2)i

=

J

τ

gi

+

Z

i(2)

,

Z

i(2)

=

T



0 dt

T



P dx ui

(

x

,

t

)

q(2)

(

x

,

t

)

(13)

(5)

withq(2)introducedin

(26)

;and w(4)i

=

Z

(4) i

=

T



0 dt

T



P dx ui

(

x

,

t

)

q(4)

(

x

,

t

)

(14) withq(4)introducedin

(30)

.

Todeterminetheorder

α

1,thesetofrelevantequationsconsistsof:

(

M

+

τ

−1

)

ri(1)

= 

d

J K

−1zi (15a)

M

q(2)

= −

K

τ

−1

iri(1) (15b)

withr(1)i introducedin

(24)

.

Toanalyze O(

α

2

)

too,thesystemalsocomprises:

(

M

+

2τ−1

)

s(2)i j

= −∇

ir(1)j

+

J K

−1zir(1)j (16a)

(

M

+

τ

−1

)

ri(3)

= −∇

iq(2)

+

J K

−1ziq(2)

+

J

u

· ∇

r(1)i

K

τ

−1

j

(

s(2)ji

+

s(2)i j

)

(16b)

M

q(4)

=

J

u

· ∇

q(2)

K

τ

−1

ir(3)i (16c)

withs(2)i j andr(3)i introducedin

(26)

and

(28)

respectively.

Theconclusionsthatcanbedrawnanalyticallyatthisstagearethefollowing.Theterminalvelocityisgivenby

w

=

α

w(2)

+

α

2w(4)

+

O

(

α

3

)

(17)

withtheleadingorderfrom

(13)

representedby:

α

w(2)

= |

1

− β|

J

τ

g

+

T



0 dt

T



P dx u

(

x

,

t

)

J

−1q(2)

(

x

,

t

)

= W + (

1

− β)



u f

(

u

,

τ

,

g

,

D

)

(18)

Herewe exploitedtherelation1

− β =

J

α

andthefactthat—dueto

(15a)

—thefieldr(1)

/(J K

−1

)

isindependentofboth

J

and

K

(i.e.ofboth

β

and

κ

),sothesameindependencealsoholdsforthefield q(2)

/J

becauseof

(15b)

.Therefore,in

thelimitofquasi-neutrally-buoyantparticles(andof

κ

withthesameorderofsmallnessas

|

1

− β|

),themaincontribution to the terminal velocity isrepresented by its bare value plus a same-order deviation only dependent onthe other finite quantitiesintoplay,andwhichcanbecomputednumericallyvia

(18)

and

(15a)

–(15b).Thisleadingorderisindependentof

κ

andoverallodd in1

− β

:withalltheotherparametersfixed,particlesslightlyheavierthanthefluidsettlewithavelocity opposite totheone ofslightlylighter particles; atthisstage, noimmediateconclusioncanbe drawnon thesignofsuch adeviation.Notethatexpression

(17)

doesnotexcludethepossiblepresenceoffurthertermslinearin

|

1

− β|

,butwitha “prefactor”proportionaltoapositivepowerof

κ

,becauseinourasymptoticsthesewouldbehigher-ordercontributions.No immediatesimplificationcanbeperformedontheterm

α

2w(4)from

(14)

forthetimebeing.

4. Simplificationsforflowsendowedwithverticalparity

Ifa vertical-parity symmetry isimposed on the flow, further simplificationscome along (atleast forthose situations wheregravityisalignedwithone sideoftheperiodicitycell).Namely,ifatapoint x definedastheverticalreflectionof thepoint x withrespect toa referencehorizontalplane (x

·

g

= −

x

·

g and x

×

g

=

x

×

g),thevertical andhorizontal componentsoftheflowsatisfy

u

(

x

,

t

)

·

g

= −

u

(

x

,

t

)

·

g and u

(

x

,

t

)

×

g

=

u

(

x

,

t

)

×

g (19)

then it is possible to split all the relevant physical-space fields intotheir even andodd parts. Forinstance, ue/o

(

x

,

t)

[

u

(

x

,

t)

±

u

(

x

,

t)

]/

2, with a purely odd vertical component u

·

g

=

uo

·

g and (a) purely even horizontalcomponent(s) u

×

g

=

ue

×

g. The consequentequationsderived fromthe sets

(15)

and(16)aresimpler todeal with,first ofall from

a numerical point of view as definedon a halveddomain. Analytically, it can be shown that the function f in (18)is actuallylinearin g,sothat w(2)isoverallproportionaltogravity;sincethesamecanbestatedalsofor w(4)in

(17)

,such aconclusionholdsforthewholeterminalvelocityatworkingorder.

Noticethatthiscategoryalsocomprisescellularflowsoftenadoptedinanalyticalandnumericalinvestigationstomimic LangmuircirculationontheoceansurfaceorlateralconvectiverollsinRayleigh–Bénardcells

[29,31,43–45,35]

.

(6)

5. Conclusionsandperspectives

We investigated the sedimentation process of quasi-neutrally buoyant inertial particles in zero-mean incompressible flows.Suchparticlesareespeciallyrelevantinbiophysicalapplications,wheremostoftheaquaticmicroorganisms

[46]

have a massdensityvery similarto theone ofwater.Generalformulaehavebeen foundfortheir terminalvelocity ingeneric space-and-timeperiodic(orsteady)flows,withsomeadditionalinformationavailableforflowsendowedwithsomedegree of spatial symmetrysuch asnegative parityin thevertical direction.These expressionsconsist in space-timeintegralsof auxiliary quantitiesthatsatisfypartialdifferentialequationsoftheadvection–diffusion–reactiontype,whichcanbesolved atleastnumerically,sinceourprocedureallowedforadrasticreductionoftheproblemdimensionalityfromthefullphase spacetotheclassicalphysicalspace.Moreover,ourexpressionsextendtherangeofvalidityofthisapproachtoanyvalueof theStokes’time—awayfrompreviousperturbativelimits—oratleasttothosesituationswherethebasicdynamicalsystem

(2) makes sense andthe (Basset, Oseen, Faxén, Saffman) correctionscan be neglected. As a byproduct, ouranalysis also providesthephysical-spaceparticleprobabilitydensityfunctiononcethesedifferentialequationsaresolved.

Amongthepossibleperspectives,firstofallwementionthestudyoftheparticleeffective—or“eddy”—diffusivity

[47–51,

42]. This can be performed by means of the multiple-scale method [52–54], and represents the following step in the investigation of higher-order effects in particle advection, including also the possibility of anomalous transport [55,56]. Whenanalyzingthepossibilityofanetdisplacementalsointhehorizontaldirection,aclearconnectionwiththeproblem ofStokes’drift arises

[57–59]

.Finally,we wouldliketoattacktheproblemofparticledispersionfollowinga point-source emission, an issue that hasalreadybeen tackled fortracers[25,60] orslightly-inertial particles

[41]

,andthat shouldbe recastinthepresentframeworkofquasi-neutralbuoyancy.

Acknowledgements

We thankAndrea Mazzino,Paolo Muratore-Ginanneschi, SemyonYakubovich, and Luca Biferalefor usefuldiscussions andsuggestions.ThisarticleisbaseduponworkfromCOSTAction MP1305,supportedby COST(EuropeanCooperationin Science andTechnology).The authorswere partiallysupported by CMUP(UID/MAT/00144/2013),whichis fundedby FCT (Portugal)withnational(MEC)andEuropeanstructuralfunds(FEDER), underthepartnershipagreementPT2020;andalso byProjectSTRIDENORTE-01-0145-FEDER-000033,fundedbyERDFNORTE2020.

Appendix A. Calculationdetails

Thefirstequationtoattackis

(11a)

.Thankstothefulldecouplingintheoperator

(8a)

,wecansolveitthroughvariable separation: p(0)

(

x

,

v

,

t

)

=

σ

(

y

)

q(0)

(

x

,

t

)

(20)

=⇒

1 q(0)

(

x

,

t

)

M

(

x

,

t

)

q (0)

(

x

,

t

)

=

c

=

τ

−1

σ

(

y

)

N

(

y

)

σ

(

y

)

(21)

Lookingattheright-hand-sideequalityin

(21)

integratedonthecovelocityspace,weget:



d y cσ

(

y

)

=

τ

−1



d y

y

· [

y

σ

(

y

)

+

K

τ

−1

y

σ

(

y

)

] =

0

=⇒

c

=

0

=⇒

σ

(

y

)

= (

2

π

K

/

τ

)

d/2e−y2τ/2K(chosen with unit normalization) (22)

Fromthecorrespondingleft-hand-sideequality,wededuceanadvection–diffusionequationinphysicalspace:

tq(0)

(

x

,

t

)

+

u

(

x

,

t

)

· ∂

xq(0)

(

x

,

t

)

D

x2q(0)

(

x

,

t

)

=

0 (23) Forfutureuse,weintroducethefully-symmetricpolynomials(equivalenttomultivariated-dimensionalHermite polynomi-als,andwith

+

S

denotingthesymmetrizationprocessofanytensoronitsfreeindices):

Ci j

yiyj

K

τ

−1

δ

i j

,

Ai jk

yiyjyk

K

τ

−1

(

yi

δ

jk

+

S

)

Bi jkl

yiyjykyl

K

τ

−1

(

yiyj

δ

kl

+

S

)

+

K

2

τ

−2

i j

δ

kl

+

S

)

togetherwiththeGaussianweight

σ

(

y

)

,theyenjoytherelations:

N

(

y

)

σ

(

y

)

=

0

,

N

(

y

)

[

yi

σ

(

y

)

] = −

yi

σ

(

y

) ,

N

(

y

)

[

Ci j

σ

(

y

)

] = −

2

Ci j

σ

(

y

)

N

(

y

)

[

Ai jk

σ

(

y

)

] = −

3

Ai jk

σ

(

y

) ,

N

(

y

)

[

Bi jkl

σ

(

y

)

] = −

4

Bi jkl

σ

(

y

)



d y yi

σ

(

y

)

=



d y

Ci j

σ

(

y

)

=



d y

Ai jk

σ

(

y

)

=



d y

Bi jkl

σ

(

y

)

=

0 along with



d y

σ

(

y

)

=

1

,

and



d y y

y

σ

(

y

)

=

K

τ

−1I

(7)

Bymakinguseoflower-orderresults,wecannowproceedtosolvethesystem

(11)

recursively,startingfrom

(11b)

:

[

M

(

x

,

t

)

τ

−1

N

(

y

)

]

p(1)

(

x

,

y

,

t

)

= −[

y

· ∂

x

+

J

τ

−1z

(

x

,

t

)

· ∂

y

]

p(0)

(

x

,

y

,

t

)

=

σ

(

y

)

yi

[−∂

xi

+

J K

1z

i

(

x

,

t

)

]

q(0)

(

x

,

t

)

TheresolutionpassesthroughaprocessofHermitianization(verycloselyrelatedtothesecond-quantizationalgorithm

[35]

). ItconsistsinrewritingtheunknownastheproductbetweentheGaussianweightandanexpansioninapowerseriesin y

uptotheorderinquestion, inthiscasethefirst,withspace–time-dependentprefactors(notice thatin

(20)

anexpansion uptoorder0,i.e.noexpansionatall,appeared):

p(1)

(

x

,

y

,

t

)

=

σ

(

y

)

[

q(1)

(

x

,

t

)

+

yir(1)i

(

x

,

t

)

]

(24)

=⇒



[∂

t

+

u

· ∇ −

D

2

]

q(1)

=

0

[∂

t

+

u

· ∇ −

D

2

+

τ

−1

]

r(1)i

= −∇

iq(0)

+

J K

−1ziq(0) (25) Resolutionof

(11c)

(for

I =

2):

[

M

(

x

,

t

)

τ

−1

N

(

y

)

]

p(2)

(

x

,

y

,

t

)

= −[

y

· ∂

x

+

J

τ

−1z

(

x

,

t

)

· ∂

y

]

p(1)

(

x

,

y

,

t

)

+

J

u

(

x

,

t

)

· ∂

xp(0)

(

x

,

y

,

t

)

=⇒

p(2)

(

x

,

y

,

t

)

=

σ

(

y

)

[

q(2)

(

x

,

t

)

+

yiri(2)

(

x

,

t

)

+

Ci j

s(2)i j

(

x

,

t

)

]

(26)

=⇒

[∂

t

+

u

· ∇ −

D

2

]

q(2)

=

J

u

· ∇

q(0)

K

τ

−1

ir(1)i

[∂

t

+

u

· ∇ −

D

2

+

τ

−1

]

ri(2)

= −∇

iq(1)

+

J K

−1ziq(1)

[∂

t

+

u

· ∇ −

D

2

+

2τ−1

]

si j(2)

= −∇

ir(1)j

+

J K

−1zir(1)j (27) Resolutionof

(11c)

(for

I =

3):

[

M

(

x

,

t

)

τ

−1

N

(

y

)

]

p(3)

(

x

,

y

,

t

)

= −[

y

· ∂

x

+

J

τ

−1z

(

x

,

t

)

· ∂

y

]

p(2)

(

x

,

y

,

t

)

+

J

u

(

x

,

t

)

· ∂

xp(1)

(

x

,

y

,

t

)

=⇒

p(3)

(

x

,

y

,

t

)

=

σ

(

y

)

[

q(3)

(

x

,

t

)

+

yiri(3)

(

x

,

t

)

+

Ci j

s (3) i j

(

x

,

t

)

+

Ai jk

a (3) i jk

(

x

,

t

)

]

(28)

=⇒

[∂

t

+

u

· ∇ −

D

2

]

q(3)

=

J

u

· ∇

q(1)

K

τ

−1

ir(2)i

[∂

t

+

u

· ∇ −

D

2

+

τ

−1

]

ri(3)

= −∇

iq(2)

+

J K

−1ziq(2)

+

J

u

· ∇

r(1)i

K

τ

−1

j

(

s(2)ji

+

s (2) i j

)

[∂

t

+

u

· ∇ −

D

2

+

2τ−1

]

s(3)i j

= . . .

[∂

t

+

u

· ∇ −

D

2

+

3τ−1

]

a(3)i jk

= . . .

(29) Resolutionof

(11c)

(for

I =

4):

[

M

(

x

,

t

)

τ

−1

N

(

y

)

]

p(4)

(

x

,

y

,

t

)

= −[

y

· ∂

x

+

J

τ

−1z

(

x

,

t

)

· ∂

y

]

p(3)

(

x

,

y

,

t

)

+

J

u

(

x

,

t

)

· ∂

xp(2)

(

x

,

y

,

t

)

=⇒

p(4)

(

x

,

y

,

t

)

=

σ

(

y

)

[

q(4)

(

x

,

t

)

+

yiri(4)

(

x

,

t

)

+

Ci j

s(4)i j

(

x

,

t

)

+

Ai jl

a(4)i jl

(

x

,

t

)

+

Bi jkl

b(4)i jkl

(

x

,

t

)

]

(30)

=⇒

[∂

t

+

u

· ∇ −

D

2

]

q(4)

=

J

u

· ∇

q(2)

K

τ

−1

iri(3)

[∂

t

+

u

· ∇ −

D

2

+

τ

−1

]

r(4)i

= . . .

[∂

t

+

u

· ∇ −

D

2

+

2τ−1

]

s(4)i j

= . . .

[∂

t

+

u

· ∇ −

D

2

+

3τ−1

]

a(4)i jk

= . . .

[∂

t

+

u

· ∇ −

D

2

+

4τ−1

]

b(4)i jkl

= . . .

(31)

Notethat,forourpurpose,in

(29)

weonlyneedtoinvestigateq(3)andr(3),andin

(31)

onlyq(4).Itisalsoworthunderlining thatq(x

,

t)

=



I=0q(I)

(

x

,

t),buttheequationsfortheq(I)’s necessarilyimplythe parallelresolutionoftheonesforthe r(•)’sands(•)’stoformaclosedsystemandthustocomputetheterminalvelocity.

The overall normalization of the phase-spacedensity p corresponds to an integration on the whole covelocity space (eitherintheoriginal coordinatev orintherescaled one y,whichisindifferentbecauseoftheappearanceofaJacobian) andonthespatialperiodicitycell,foranytime:



P dx



Rd dv p

(

x

,

v

,

t

)

=

1

=



P dx q

(

x

,

t

)

(32)

=⇒



P dx



Rd d y p(I)

(

x

,

y

,

t

)

= δ

I0

=



P dx q(I)

(

x

,

t

)

(8)

For whatconcerns theinitial conditionsof p, they are moredifficultto implement, nevertheless itispossible toimpose them on q(0) andq(1).Indeed, thesetwo scalar fieldssatisfy theunforced advection–diffusion equations (23) and(25a),

whoseuniqueperiodicsolutions(theoneweareinterestedin)aretheconstants.Thetwoexactvaluesoftheconstants—the inverseofthephysicalvolumeandzero,respectively—aredictatedby thespatialnormalization

(32)

andbythecovelocity one

(22)

:

q(0)

(

x

,

0

)

= 

d

=

q(0)

(

x

,

t

) ,

q(1)

(

x

,

0

)

=

0

=

q(1)

(

x

,

t

)

(33)

Notethata transportpropertysuchasw cannotdependontheinitialconditions,whichareactually forgottenduetothe diffusivetermintheoperator

M

.Inotherframeworkswherethisindependenceisapriorinotmet,theymustbetakenas uniformorotherwiseaveragedupon.Thispointisstrictlyrelatedtothefactthatweneglectanypossibletransientdecayin thephase-spacedensity,andweonlyfocusonitslong-termbehaviorwhichinfluencestheterminalvelocity.Thissteadyor periodicbehaviorofp(x

,

v

,

t)isduetothesteady/periodiccharacterofthefluidflowu

(

x

,

t),whichistheonlynon-constant drivingagentintheevolutionequation

(3)

.

Keepingintoaccounttheexpansionsofthetermsmakingup p startingfrom

(20)

,definition

(5)

translatesinto:

w(0)

=

T



0 dt

T



P dx



Rd d y u

(

x

,

t

)

p(0)

(

x

,

y

,

t

)

=

T



0 dt

T



P dx u

(

x

,

t

)

q(0)

(

x

,

t

)

=

0 (34) w(1)

=

T



0 dt

T



P dx



Rd d y

[

u

(

x

,

t

)

p(1)

(

x

,

y

,

t

)

+

y p(0)

(

x

,

y

,

t

)

]

=

T



0 dt

T



P dx u

(

x

,

t

)

q(1)

(

x

,

t

)

=

0 (35) w(I)

=

T



0 dt

T



P dx



Rd d y

{

u

(

x

,

t

)

[

p(I)

J

p(I−2)

](

x

,

y

,

t

)

+

y p(I)

(

x

,

y

,

t

)

}

=

T



0 dt

T



P dx

{

u

(

x

,

t

)

[

q(I)

J

q(I−2)

](

x

,

t

)

+

K

τ

−1r(I−1)

(

x

,

t

)

}

(36)

(for

I ≥

2).Thevanishingofexpressions

(34)

and

(35)

isdueto

(33)

,intheformercasecoupledwith

(1)

.Becauseof(29a) and(27b)(i.e.q(3)

(

x

,

t)

=

0),oneseesthatalso w(3)

=

0,andsimilarlyforallodd

I

’sin

(36)

byinduction.

Therelevantequationsfromthesystems

(25)

–(31)havealreadybeenreportedin

(15)

and

(16)

.Itisparticularlyuseful towritedownthetemporalevolutionofthefollowingspatialintegrals,arisingfrom(25b)and(29b)respectively:

(∂

t

+

τ

−1

)



P dx r(1)i

(

x

,

t

)

=

J K

−1

τ

gi (37)

(∂

t

+

τ

−1

)



P dx r(3)i

(

x

,

t

)

=

J K

−1



P dx ui

(

x

,

t

)

q(2)

(

x

,

t

)

(38)

Atemporalintegrationof

(37)

allowsustorecast

(36)

for

I =

2 intotheform

(13)

;asimilarmanipulationof

(38)

for

I =

4 leadsto

(14)

.

It is easy to show that parallel flows, i.e. fluid motions in which the velocity points always and everywhere in the same direction(say x1), donotaffectsedimentationifthey aresteady/periodic andincompressible—implying that u does

not dependon x1 itself—at leastat workingorder. Indeed,forsuch a class of flows, all theadvective terms ofthe type u

(

x

,

t)

· ∇

p(x

,

v

,

t)vanish(alsowhenactingonother statisticalquantitiesbasedon p),becausenolong-termdependence onthespatialcoordinatex1 alignedwithu canarise—exceptforpossibletransientbehaviorsthatcanbeneglectedforour

scope.Asaconsequence,onecaneasilyprovethatallthefollowingquantitiesderivedfrom

(15)

and

(16)

vanish:

∇ ·

r(1)

(

x

,

t

)

=

q(2)

(

x

,

t

)

= ∇∇ :

s(2)

(

x

,

t

)

= ∇ ·

r(3)

(

x

,

t

)

=

q(4)

(

x

,

t

)

=

0

(9)

A.1. Proofoftheexpressionfortheterminal-velocitycorrection

Letusfirstlyprovetherewriting

(5)

ofthefullterminalvelocity,byexploitingthedefinitionofthephase-spacedensity asanaverageofDiracdelta’soneveryrandomfactor:

p

(

x

,

v

,

t

)

≡ δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν (39)

Letus remindthat both

μ

(t)

and

ν

(t)

are whitenoises, meaning that the valuesassumedat a certain time instant are completelyuncorrelatedfromthe onesassumedatatime instantimmediatelyfollowing.Moreover,byinvokingcausality, one infersthat theinstantaneous valuesofthenoisesattime t caninfluencetheparticledynamicsonly atfuturetimes, butnotcomputedatt itself.Thismeansthat



μ(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

=

0

= 

ν(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν (40)

sincetheaveragessplitthankstotheuncorrelation,andbothnoiseshavezeromean. Forthesakeofnotationalsimplicity,let



t,x,v

• ≡

T



0 dt

T



P dx



Rd dv

Asaconsequence,using

(40)

and

(39)

,

V(

t

)

+ β

u

(

X (

t

),

t

)

+

2

D

μ(

t

)



p

=



t,x,v

[V(

t

)

+ β

u

(

X (

t

),

t

)

+

2

D

μ(

t

)

]δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

=



t,x,v

[

v

+ β

u

(

x

,

t

)

]δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

+

0

=



t,x,v

[

v

+ β

u

(

x

,

t

)

]

p

(

x

,

v

,

t

)

thankstotheproperty ofthedeltathatallows forthesubstitution

(

X (

t),

V(

t))

→ (

x

,

v

)

,andtothefact thattheselatter coordinatesareindependentofthenoises.

Letusnowcomputethedeviation

(7)

oftheterminalvelocity

(5)

fromitsbarevalue

(6)

:

Z =



t,x,v

[

v

+ β

u

(

x

,

t

)

]

p

(

x

,

v

,

t

)

− (

1

− β)

τ

g

=



t,x,v

[

v

+ β

u

(

x

,

t

)

− (

1

− β)

τ

g

]δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

= 



t,x,v

[V(

t

)

+ β

u

(

X (

t

),

t

)

− (

1

− β)

τ

g

]δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

havingused

(32)

.Exploitingthesecondequationof

(2)

,thisrewritesas:

Z = 



t,x,v

[

u

(

X (

t

),

t

)

+

2κν

(

t

)

τ

˙V(

t

)

]δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

=



t,x,v u

(

x

,

t

)

p

(

x

,

v

,

t

)

+

0

τ





t,x,v

˙V(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

after making useof (40).Keeping (4)in mind, thedemonstration is complete ifwe prove that the addendinvolving

˙V

doesnot give anycontribution.This isachieved throughintegrations by parts (withvanishing ofthe integralsof deriva-tives,becauseofperiodicityandrapiddecayatinfinity)andchain-rulederivation,andtheexploitationofthematerialand functionalderivatives—d andD,respectively—andofthetranslationalinvarianceofthedelta’s:

(10)





t,x,v

˙V(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

=

 

t,x,v



d dt

[V(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))

] − V(

t

)

d dt

[δ(

x

− X (

t

))δ(

v

− V(

t

))

]



μ,ν

=



t,x,v

t

V(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))



μ,ν

 

t,x,v

V(

t

)



δ(

v

− V(

t

)) ˙

X (

t

)

·

·

D D

X (

t

)

δ(

x

− X (

t

))

+ δ(

x

− X (

t

)) ˙

V(

t

)

·

D D

V(

t

)

δ(

v

− V(

t

))



μ,ν

=

0

+

 

t,x,v

V(

t

)



δ(

v

− V(

t

)) ˙

X (

t

)

·

x

δ(

x

− X (

t

))

+δ(

x

− X (

t

)) ˙

V(

t

)

·

v

δ(

v

− V(

t

))



μ,ν

=



t,x,v



x

·  ˙X (

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))

V(

t

)



μ,ν

+

v

·  ˙V(

t

)δ(

x

− X (

t

))δ(

v

− V(

t

))

V(

t

)



μ,ν

=

0

+

0

2

References

[1]M.W.Reeks,Onakineticequationforthetransportofparticlesinturbulentflows,Phys.FluidsA3 (3)(1991)446–456. [2]M.W.Reeks,Onthecontinuumequationsfordispersedparticlesinnonuniformflows,Phys.FluidsA4 (6)(1992)1290–1303.

[3]E.Balkovsky,G.Falkovich,A.Fouxon,Intermittentdistributionofinertialparticlesinturbulentflows,Phys.Rev.Lett.86(2001)2790–2793. [4]J.Bec,Fractalclusteringofinertialparticlesinrandomflows,Phys.Fluids15(2003)L81–L84.

[5]M.Wilkinson,B.Mehlig,Pathcoalescencetransitionanditsapplications,Phys.Rev.E68(2003)040101.

[6]G.Falkovich,A.Pumir,Intermittentdistributionofheavyparticlesinaturbulentflow,Phys.Fluids16(2004)L47–L50. [7]I.M.Mazzitelli,D.Lohse,Lagrangianstatisticsforfluidparticlesandbubblesinturbulence,NewJ.Phys.6(2004)1–28.

[8]M.Cencini,J.Bec,L.Biferale,G.Boffetta,A.Celani,A.S.Lanotte,S.Musacchio,F.Toschi,Dynamicsandstatisticsofheavyparticlesinturbulentflows, J.Turbul.7 (36)(2006)1–36.

[9]R.Volk,E.Calzavarini,G.Verhille,D.Lohse,N.Mordant,J.-F.Pinton,F.Toschi,Accelerationofheavyandlightparticlesinturbulence:comparison betweenexperimentsanddirectnumericalsimulations,PhysicaD237(2008)2084–2089.

[10]G.Károlyi,Á.Péntek,I.Scheuring,T.Tél,Z.Toroczkai,Chaoticflow:thephysicsofspeciescoexistence,Proc.Natl.Acad.Sci.97(2000)13661–13665. [11]C.Habchi,N.Dumont,O.Simonin,Multidimensionalsimulationofcavitatingflowsindieselinjectorsbyahomogeneousmixturemodelingapproach,

Atomiz.Spr.18 (2)(2008)129–162.

[12]S.Matarrese,R.Mohayee,Thegrowthofstructureintheintergalacticmedium,Mon.Not.R.Astron.Soc.329(2002)37–60. [13]G.Falkovich,A.Fouxon,M.Stepanov,Accelerationofraininitiationbycloudturbulence,Nature419(2002)151–154. [14]A.S.Monin,A.M.Yaglom,StatisticalFluidMechanics,MITPress,Cambridge,1975.

[15]M.Avellaneda,A.Majda,Anintegralrepresentationandboundsontheeffectivediffusivityinpassiveadvectionandturbulentflows,Commun.Math. Phys.138(1991)339–391.

[16]D.J.Horntrop,A.Majda,Subtlestatisticalbehaviorinsimplemodelsforrandomadvection–diffusion,J.Math.Sci.Univ.Tokyo1(1994)23–70. [17]A.Mazzino,M.Vergassola,Interferencebetweenturbulentandmoleculardiffusion,Europhys.Lett.37 (8)(1997)535–540.

[18]A.Mazzino,S.Musacchio,A.Vulpiani,Multiple-scaleanalysisandrenormalizationforpreasymptoticscalartransport,Phys.Rev.E71(2005)011113. [19]M.Cencini,A.Mazzino,S.Musacchio,A.Vulpiani,Large-scaleeffectsonmeso-scalemodelingforscalartransport,PhysicaD220(2006)146–156. [20]R.Ferrari,M.Nikurashin,SuppressionofeddydiffusivityacrossjetsintheSouthernocean,J.Phys.Oceanogr.40(2010)1501–1519.

[21]M.MartinsAfonso,A.Mazzino,S.Gama,Combinedroleofmoleculardiffusion,meanstreamingandhelicityintheeddydiffusivityofshort-correlated randomflows,J.Stat.Mech.2016 (10)(2016)103205.

[22]M.R.Maxey,J.J.Riley,Equationofmotionforasmallrigidsphereinanonuniformflow,Phys.Fluids26 (4)(1983)883–889. [23]R.Gatignol,TheFaxénformulaeforarigidparticleinanunsteadynon-uniformStokesflow,J.Méc.Théor.Appl.1(1983)143–160.

[24]M.W.Reeks,The relationshipbetweenBrownian motionand the random motionofsmallparticlesinaturbulentflow, Phys. Fluids31 (1988) 1314–1316.

[25]S.Chandrasekhar,Stochasticproblemsinphysicsandastronomy,Rev.Mod.Phys.15(1943)1–89.

[26]C.W.Gardiner,HandbookofStochasticMethods:ForPhysics,ChemistryandtheNaturalSciences,Springer,Berlin,1985. [27]H.Risken,TheFokker–PlanckEquation:MethodsofSolutionsandApplications,Springer,Berlin,1989.

[28]N.G.VanKampen,StochasticProcessesinPhysicsandChemistry,Elsevier,Amsterdam,2007.

[29]M.R.Maxey,S.Corrsin,Gravitationalsettlingofaerosolparticlesinrandomlyorientedcellularflowfields,J.Atmos.Sci.43 (11)(1986)1112–1134. [30]M.R.Maxey,Thegravitationalsettlingofaerosolparticlesinhomogeneousturbulenceandrandomflowfields,J.FluidMech.174(1987)441–465. [31]M.R.Maxey,Themotionofsmallsphericalparticlesinacellularflowfield,Phys.Fluids30(1987)1915–1928.

[32]L.P.Wang,M.R.Maxey,Settlingvelocityandconcentrationdistributionofheavyparticlesinhomogeneousisotropicturbulence,J.FluidMech.256 (1993)27–68.

Referências

Documentos relacionados

The benefits of the processed feed in broiler chicken performance is well documented, and, despite the high cost of production, the pelleted diet, even with a lower

In AWAKE Run 1 we demonstrated that: a proton bunch (∼two orders longer than the plasma electron wavelength λ pe ) self-modulates over 10 m of plasma; that this self-modulated

In light of the literature and by means of a content analysis to local and international newspapers articles, the main project related events that occurred

In particular, for the motion of particles in a curved spacetime we establish a relationship between conserved quantities connected with the Lax pair, and integrals of motion

O experimento foi realizado com uma amostra de 43 alunos dos cursos de licenciatura em Engenharia Informática da Universidade Fernando Pessoa, como já referido,

É um período de grandes mudanças na Ciência e tem as principais características na obra de Galileu, inspirado pelas idéias de Francis Bacon (falecido em 1626) e Descartes

Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) is able to distinguish between true molecular diffusion and the pseudo-random motion of water

Keywords: Forward and backward fractional derivatives; Generalised Cauchy derivative; Liouville derivative; Differintegration; Central fractional derivatives; Fractional