• Nenhum resultado encontrado

PD study PKPD intex

N/A
N/A
Protected

Academic year: 2019

Share "PD study PKPD intex"

Copied!
9
0
0

Texto

(1)

w w w . e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Review

article

Antifungal

pharmacodynamics:

Latin

America’s

perspective

Javier

M.

Gonzalez

a,b

,

Carlos

A.

Rodriguez

b

,

Maria

Agudelo

b,c

,

Andres

F.

Zuluaga

b

,

Omar

Vesga

b,c,

aClinicaCARDIOVID,Medellín,Colombia

bUniversidaddeAntioquia,FacultaddeMedicina,GrupoInvestigadordeProblemasenEnfermedadesInfecciosas(GRIPE),Medellín,

Colombia

cHospitalUniversitarioSanVicenteFundación,UnidaddeEnfermedadesInfecciosas,Medellín,Colombia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6May2016 Accepted19September2016 Availableonline5November2016

Keywords:

Antifungalagents Pharmacology Pharmacodynamics Pharmacokinetics Candidiasis Aspergillosis

a

b

s

t

r

a

c

t

The currentincrementofinvasive fungalinfectionsandthe availabilityofnew broad-spectrum antifungal agents has increased the use of these agents by non-expert practitioners,withoutanimpactonmortality.Toimproveefficacywhileminimizing pre-scriptionerrorsandtoreducethehighmonetarycosttothehealthsystems,theprinciples ofpharmacokinetics(PK)andpharmacodynamics(PD)arenecessary.Asystematicreview ofthePDofantifungalsagentswasperformedaimingatthepracticingphysicianwithout expertiseinthisfield.Theinitialsectionofthisreviewfocusesonthegeneralconceptsof antimicrobialPD.Invitrostudies,fungalsusceptibilityandantifungalserumconcentrations arerelatedwithdifferentdosesanddosingschedules,determiningthePDindicesandthe magnituderequiredtoobtainaspecificoutcome.HereinthePDofthemostusedantifungal drugclassesinLatinAmerica(polyenes,azoles,andechinocandins)isdiscussed.

©2016SociedadeBrasileiradeInfectologia.PublishedbyElsevierEditoraLtda.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

Introduction

Invasivefungalinfections arecurrentlyanimportantcause ofmorbidityandmortality,especiallyinimmunosuppressed patientsandthoseadmittedinintensivecareunits.1,2Candida spp.arethemostfrequentetiologicalagentoffungal infec-tionsinhumans,rankingfourthamongtheetiologicagents ofbloodstreaminfectionsintheUnitedStates,witha mortal-itysimilartosepticshock.InLatinAmerica,ahigherincidence

Correspondingauthor.

E-mailaddress:omar.vesga@udea.edu.co(O.Vesga).

ofcandidemiahasbeenreportedcomparedtocountriesofthe northernhemisphere.3Additionally,thediversityofclimates and habitatsin Latin America leads toa higher incidence ofendemic mycoses,including histoplasmosis, paracoccid-ioidomycosis,andcoccidioidomycosis.4

In thelast years,theincidenceofhealthcare-associated fungalinfectionshasbeenrising,mainlyofinvasive candidia-sisandaspergillosis.5Therehasalsobeenanincreasedreport ofnon-albicansCandidainfections,whichdisplayreduced sus-ceptibilitytoantifungaldrugs.6Finally,thenumberofpatients

http://dx.doi.org/10.1016/j.bjid.2016.09.009

(2)

withprofound immunosuppressionsecondarytothe treat-mentofhematologicmalignanciesandorgantransplantation isgrowing,and ithasbeenassociatedwiththeincreaseof invasivefungalinfectionsduetoseveralgeneraofmoldsthat representformidablediagnosticandtherapeuticchallenges.7 Despitetheavailabilityofeffectiveantifungaldrugs, mortal-ity dueto fungal infections remains high,8 afact that has promptedthesearch fornewproductsandabetter under-standing ofthe pharmacologyof theseagents to optimize therapy.

ThereareadditionalcomponentsinLatinAmericatothe “host-fungi-drug”triadthatmayalterthepharmacodynamics (PD)withunknownimpactonresistance.Foreconomicand politicalreasons,genericsareextensivelyuseddespitetheir unproven therapeuticequivalence and,in somecases, the treatmentmustbestoppedduetoshortageinsupply. More-over,thepharmacokinetics(PK)/PDknowledgehasnotbeen extensivelyintroducedinthecurriculumofmedicalschools andrelatedclinicalmedicaleducationactivitiesarelimited, mainlybecausePKandPDintegrationsmaybeseenas com-plexandnotpractical.Inconsequence,theadvancementson thePDofantifungalhavenotbeenimplementedasinother regionsoftheworld.

Methods

Aliteraturesearch wasperformedinthePubMed/MEDLINE databaselookingforclinicaltrials,journalarticlesorreviews availableinfull-text,writteninSpanishorEnglishlanguages,

published from January 1962 to July 2015, including the keywords: pharmacodynamics (PD), pharmacokinetics (PK), antifungals,candidiasis,andaspergillosis.Papersabout anti-fungaltherapyco-authoredbytheexpertinthefieldDavidR. Andes,were alsosearched.Outof140papersidentifiedthe authorsselectedtherelevantpapersaboutinvitro,invivo,and clinicalPDofantifungalagents,mainlyemphasizingonthe PK/PDconcepts;tobuildapracticalreviewforgeneral physi-cians,especiallyindevelopingcountries.Thereferencesofthe selectedpaperswerealsousediftheauthorsconsideredthem relevantforthereview.

Review

Generalconceptsofantimicrobialpharmacodynamics

The study of the PK and PD properties of any antimicro-bial isbased on the exposure-response relationshipof the drug andthe infectingpathogen.9 Thisrelationshipcanbe modeled (Fig. 1) byintegrating a PK parameter (e.g., max-imal concentration or Cmax, and area under the curve or AUC)andaPDparameterrelatedwiththeresponseexpected againsttheinfectingmicroorganism(i.e.,minimalinhibitory concentration or MIC). Theknowledge derived from these integrationshasfacilitatedthedesignofoptimaldrug regi-mensandpotentiallyreducetoxicityandthedevelopmentof resistance.10

Classically,PKstudiesareaboutassessingabsorption, dis-tribution,metabolism,andeliminationofdrugs.Theaimof

The aim is to determine the time-concentration profile in different fluids

describing the process of absorption,

distribution, metabolism and elimination of drugs.

The objective is to define the relation between drug dose or concentration and the response or effect. In

anti-infective pharmacology includes the study of

the drug action against the microorgainisms.

f

T

>MIC

f

C

max

/MIC

f

AUC/MIC

AUC Cmax EHL Cl Vd Commonly

obtained parameters

Emax

ED50

MIC

PK study

PD study

PK/PD

intex

(3)

PKistodeterminethetime-concentrationdrugprofilein dif-ferentfluidsandthedegreeofpenetrationtodifferentorgans, becausethedrugeffectisexpectedtocorrelatewiththe con-centrationatthesiteoftheinfection.Onceadrugisinsideof thehumanbody,itsmovementbetweencompartmentsand fluidsdependson factors suchas the fractionofunbound drug.Forthisreason,inadditiontothetotaldrug concentra-tion,forPKstudiesitisnecessarytodeterminethedegreeof proteinbindingasonlyunbounddrugexertspharmacological activity.11

PDstudies,ontheotherhand,havetodowiththe rela-tionbetweenthedrugconcentrationatsiteofactionandthe responseoreffect.Inanti-infectivepharmacology,PDstudies integratethesusceptibilityofthemicroorganisms(measured bytheMICs)withtheantimicrobialexposure(basedonthe PKdata)andtheobservedeffectorresponse.Withthis infor-mationitispossibletoestimatePDindices(orPK/PDindex) relatedtoefficacy,as wellas theirlevel necessaryfor spe-cifictherapeuticgoals.Forantifungaldrugs,threePDindices havebeen described: (i) the fractionofthe dosing interval thefreedrugconcentrationisabovetheMIC(fT>MIC);(ii)the ratiooftheareaundertheconcentration-timecurveandthe MIC(fAUC/MIC);and(iii)theratioofthemaximum concen-trationorpeakandtheMIC(fCmax/MIC).Duringthelast15 years,theseindiceshavebeenusedtodesignoptimal anti-fungal dosing regimens with known probability of success alongawiderangeofMICandalsotoestablishsusceptibility breakpoints.12,13

ToelucidatethePK/PDindexforeachantifungal,invitro

and in vivostudies are necessary. Theprocess begins with

in vitro susceptibility testing to determine the MIC under reproducible conditions,14 followed by a PK study to esti-mate the populationparameters (clearance and volume of distribution). Thefinal stepisa dose-responseexperiment torelateexposurewithantimicrobialeffectusingdrug frac-tionation,thatis,testing thesame doseinmultipledosing schedules(e.g. q1h,q3h, q6h, q8h, q12h,and q24h).Atthe end,the threeindicesmentionedbefore(fT>MIC, fCmax/MIC and fAUC/MIC) are plotted against the effect todetermine whichindexexhibitsthe bestcorrelationwithefficacy and toestimate the level required toachieve a particular end-point (for instance, to obtain 50% of maximal efficacy or 90%survival).Thus,fordrugsdrivenbythefCmax/MICindex (concentration-dependent),thedosingstrategyistouselarge doses with infrequent intervals, whereas for fT>MIC drugs (time-dependent)theoptimalregimenwouldbesmallerbut morefrequentdosesorevenextendedorcontinuousinfusion. InthecaseofdrugsdrivenbyfAUC/MIC,thekeyfactoristhe totalamountofdrugadministeredin24h,independentlyof thedosingscheduleused.

AnotherkeyfactortodeterminethePDindicesisthe per-sistenteffect,i.e.,thecapacityofadrugtosuppressthegrowth ofthefungusafterthecompoundisfullyremovedfromthe medium(thepost-antifungaleffectorPAFE),orafterthe con-centrationfallsbelowtheMIC(sub-MICPAFE).15Drugsdriven byfCmax/MICandfAUC/MICexhibitprolongedPAFEwhilstthe

fT>MICdrivenonesusuallydisplayshortornoPAFE.The dura-tionofthePAFEdependsonthetypeofaction(fungicidalor fungistatic),thedrugconcentrationandthepathogenbeing treated.For example,theechinocandinsare fungicidaland

exhibitlongPAFEagainstCandidaspp.,whilefungistaticand devoidofPAFEagainstAspergillusfumigatus.16

The systemic antifungal classes currently available are polyenes, triazoles, echinocandins, and flucytosine. For all of them, the PK/PD indices have been determined both

in vitroand in vivo,17–21 and the resultsconfirmed by clini-calstudies(Table1),demonstratingthatdoseoptimizationto attainPDtargetsleadstohigherclinicalefficacy.22,23Dueto limitedavailabilityofflucytosineindevelopingcountries,the presentreviewwillfocusonthePDofpolyenes,triazoles,and echinocandins.

Polyenes

ThisantifungalclassincludesamphotericinBdeoxycholate (AMBd)andthelipidformulations:lipidcomplex(AMBlc), col-loidaldispersion(AMBcd),andliposomal(AMBl).

The mechanism of action requires its binding to the ergosterol in the fungal membrane, altering the cellular permeability and leading to cell death.All formulations of AMBdisplayaconcentration-dependenteffectwithprolonged PAFE,andthedrivingPK/PDindexisthefCmax/MIC.15,16,19,24

Dose fractionation studies with the neutropenic mouse disseminatedcandidiasis(NMDC)model,confirmedthatthe fungicidalefficacyofAMBdcorrelatedwithlarge,infrequent doses;forinstance,dosingAMBdevery72h(q72h)achieved maximalefficacywithdoses5–7timeslowerthanq6horq12h schedules.19Forfungistaticandmaximallyfungicidaleffects, theCmax/MICwere2–4and10,respectively.Similarly,butin themurinemodelofinvasivepulmonaryaspergillosis,q72h dosingschedulesalsoledtoalargerreductioninthefungal burdenandlongersurvivalofinfectedanimalsincomparison withq8horq24h;inthismodel, theCmax/MICrequiredfor maximalefficacywas2.4.25

IntheNMDCmodel,AMBdwas4.3-to5.9-foldmorepotent than AMBlc and AMBl ina mg/kgbasis.26 Similarly,in the neutropenic-rabbit modelofinvasivepulmonary aspergillo-sis,near-maximalantifungalactivitywasevidentwithAMBd at1mg/kg/dayandAMBlcandAMBlat5mg/kg/day.27Thus,to achievetheneededCmax/MICwithlipidformulationsin clin-icalpractice,thedailydoseshouldbealmost5-timeshigher thanthedoseofAMBd.Inoppositiontothenarrow therapeu-ticindexofAMBd,thelipidformulationsaresignificantlyless toxicinrelationtothedoseofAMBd,specificallyintermsof electrolyticimbalance,azotemia,renaltubularacidosis, ane-mia,andarrhythmias.28

RegardingthePKofpolyenes,theconcentration-time pro-file of amphotericin is nonlinear but there are important differencesbetweenAMBdandlipidformulations.29AMBdis extensivelydistributedtotissuessuchasliver,kidneys,spleen and,insmallquantities(<1%),toheartandbrain,but clear-ance(Cl) from these sitesisso slow(38±15mL/h/kg)as it takesmorethanoneweektoclearasingledose.Additionally, ithasavolumeofdistribution(Vd)of5±3L/kgandtheprotein bindingisveryhigh(>95%).30,31 AMBlevelsincerebrospinal fluidandvitreousarenulltominimal,thereforeintrathecalor intravitrealadministrationisneededinselectedcases.

(4)

Table1–SummaryofthePK/PDindicesandtheirrequiredmagnitudeforefficacywithantifungaldrugsand recommendedgoalsfortherapeuticdrugmonitoring(TDM).

Antifungalclass Drug PK/PDindex drivingthe

efficacy

Targettoattain Preferred dose

TDMgoal (trough con-centrationsin

mg/L)[79]

References

Polyenes

AMB deoxycholate

fCmax/MIC

≥10 0.4–1mg/kgIV

q24h

Not

recommended

18,27

AMBlipid complex

≥50 5mg/kgIVq24h Not

recommended 25

AMBliposomal ≥50 3–5mg/kgIV

q24h

Not

recommended 25

AMBcolloidal dispersion

≥50 4mg/kgIVq24h Not

recommended 25

Triazoles

Itraconazole

fAUC/MIC

Notdetermined 200mgPOq24h 0.5–1(measured

duringthefirst 5daysof therapyand regularlyafter)

54

Fluconazole 13–50 400–800mg/day

PO/IVfor systemic infections; 1200–2000mg/day PO/IVfor cryptococcal meningitis. Dosingcanbe scheduledq12h orq24h

Notused. 12,13,39,44

Voriconazole 11–52(candidiasis)

80–100(aspergillosis)

200mgPOq12h 1–5(measured

duringthefirst 5daysof therapyand regularlyafter)

17

Posaconazole 6–27(candidiasis)

20(aspergillosis)

200–600mgPO q24h

>0.7 (prophylaxis) >1(established infection)

16,60

Isavuconazonium sulfate(prodrug)

34 Loadingdose

372mgq8h×6 doses,then 372mgIVq24h

Unknown 45

Echinocandins

Anidulafungin fCmax/MIC

(or

fAUC/MIC)

1(or10–20) Loadingdose

200mgIV,then 100mgIVq24h

Notused 20

Micafungin 1(or7.5–30) 150mgIVq24h Notused 74

Caspofungin 1(or10–20) Loadingdose

70mgIV,then 50mgIVq24h

Notused 69

molecules,itdisplaysthehighestVd(131±8L/kg)andfastest Cl(426±189mL/h/kg)ofallformulations.Incontrast,AMBl has the lowest Vd (0.11±0.08L/kg) and Cl (11±6mL/h/kg) amongamphotericinformulations,whileAMBcdhasasimilar

Vdbutfasterclearance(117mL/h/kg)thanAMBd.Additionally, aslipidformsaccumulatemoreinthemononuclear phago-cyticsystemand10-timeslessinthekidneys,theyareless frequentlyassociatedwithnephrotoxicitythanAMBd.33

Amongthelipidformulations,AMBlisthesmallest, uni-lamellarmolecule(60–70nm vs.1600–11,000nm forAMBlc), achievingthehighestCmax(83±35mg/L)afterasingledose,34 butalsodisplayingthehighestproteinbinding.However,the

smallsizeofAMBlfacilitatesslightlyhigherconcentrationsin centralnervoussystemcomparedtootherlipidformulations. Infact,inthecentralnervoussystemmodelofcandidiasis, onlyAMBlandAMBdsterilizedthebraintissue,whereasthe otherlipidformulationsdidnot,34andonlyAMB

dandAMBl reacheddetectablecerebrospinalfluidconcentrations,witha transferraterangingfrom0.02%to0.92%.35

(5)

generallyadvocatedforAMBandtherearenowidelyaccepted drugexposuretargets.However,theoptimaltargetattainment hasbeendefinedforAMBdaswellasAMBl.APK/PDstudyin ninechildrenwithfungalinfectiontreatedwithAMBlfound that,whileaCmax/MIC=40±13producedapartialresponse, fullresponseneededittobe67.9±17(p=0.021).36Considering thatAMBdisapproximately5×morepotentthanAMBl,these resultsareconsistentwiththereportedvalueofCmax/MICof 10formaximalefficacyofAMBd.

Cornelly et al. conducted a multicenter randomized double-blindstudyinpatientswithprobableordemonstrated moldinvasiveinfections.Theirstudyaimedtooptimizethe

Cmax/MICwithAMBlcomparinga3mg/kgvs.a10mg/kgdose basedonapreviousworkthatshowedthatthelatterreaches

Cmax>100mg/L.Nosignificantdifferenceswerefoundinthe globalclinicalresponse(50%vs.46%)orsurvivalafter12weeks (71%vs.58%),buttherewasahigherincidenceofrenaltoxicity (16%vs.30%).37Theabsenceofclinicalbenefitofthehigher dosecanbeexplainedbythefactthatat3mg/kgthegoalofthe PK/PDindexrequiredformaximalefficacyhasalreadybeen reached,andhigherdosesonlyleadtoincreasedtoxicity.30 Finally, a999-patient simulation basedinthe neutropenic-rabbitmodelofinvasivepulmonaryaspergillosisshowedthat 3mg/kg/dayofAMBlor1mg/kg/dayofAMBdwaspredictedto resultinnear-maximalantifungalactivityandsuppressionof biomarkers.27TheoptimaldoseofAMB

lcandAMBcdhasnot beenasclearlyestablishedastheAMBdandAMBl.

Triazoles

Thesefungistatic drugsactblocking the synthesisof ergo-sterolmainly byinhibiting the cytochrome P450 dependent 14-␣demethylase(CYP51A1),whichconvertslanosterolinto ergosterol.38,39Thesedrugsareactuallytime-dependent,but theyalsoexhibitprolongedPAFE,thereforethePDindex driv-ingefficacyisthefAUC/MIC.13,15,17,18,24,40

Fluconazoleabsorptionfrom thegastrointestinaltract is almostcompleteandunaffectedbygastricacidityorfood,is poorlymetabolized,andbioavailabilityisnear100%.Its elim-inationhalf-liferanges from25to30h,itexhibitsminimal proteinbinding(12%),andisexcretedmainlybythekidneys. The Cmax obtained aftera 100mgoral dose was 2mg/L.41 Asfluconazoleisa smallmolecule (MW=309) actively dis-tributedintobodyfluids(Vd=46±8L),thelevelsattainedin cerebrospinalfluid(oreveninbrainparenchyma)atsteady stateare≥50%oftheconcentrationobservedinplasma.Due tothisPKproperty,fluconazoleisawell-acceptedalternative therapyforcryptococcal(athighdosesof1200–2000mg/day) andCandidameningoencephalitis.Itraconazole,bycontrast,is alargemolecule(MW=705)highlyboundtoproteins, exhibit-ingacerebrospinalfluid/plasmaconcentrationratioof≤0.1242 thatpreventitsuseinfungalCNSinfections.

Regarding fluconazole, Louieet al. demonstrated inthe murinemodelofsystemiccandidiasisthattheeffectofthis drugonthefungal burdenwasthesamewhen administer-ing asingledose or dividingit intwo or four injections.40 However,itshouldbenotedthatprolongedperiodsof expo-sure below the MIC might favor resistance of C. albicans

againstfluconazole.43,44Multiplestudiesinvivowith flucona-zole against several species of Candida along a wide MIC

rangehaveconclusivelyshownthatthefAUC/MICnecessary toreach50%ofthemaximalefficacy(ED50)isbetween12.5and 50.12,13,40WedeterminedintheNMDCmodelthattwovastly differentstrainsofC.albicans(MIC0.25and4mg/L)required

fAUC/MICof25–38toattaintheED50.45

Therelationshipbetweenfluconazoledose,theMICofthe infectingagent,andthe outcomeinpatientswith mucocu-taneouscandidiasisandcandidemiahasbeenaddressedin severalpapers.12,22,23Rexetal.publishedtwodecadesagothat theclinicalefficacyoffluconazolebegantodiminishwithMIC above8mg/L,buttheydidnotrunaPK/PDanalysis.22Later, Rodriguez-Tudelaetal.studied126patientswithcandidemia and 110withpharyngeal candidiasisfinding thatdose/MIC ratios ofatleast 100(corresponding to fAUC/MIC=79) pre-dicted curefor93%ofthe subjects.22 In theLatin America Invasive Mycosis Network, the MIC90 for blood-isolated C.

albicans,C.parapsilosis,andC.tropicaliswere≤1mg/L3;asthose threestrainsrepresent82%ofcases,nomorethan400mg/day offluconazoleshouldbenecessarytotreatmostofpatients.

With the other triazoles, similar fAUC/MIC ratios have been foundagainstseveralCandidaspp.17,18,46 Forexample, voriconazoleandposaconazolerequirerespectivelyfAUC/MIC of11–52and6–27toreachtheED50intheNMDCmodel,while isavuconazole(proteinbinding>95%)requiredfAUC/MICof34 toachieve90%survival,quitesimilartoothertriazoles. Phar-macokineticstudiesofvoriconazoleinhumanshaveshown 58% proteinbindingand nonlinear saturablekinetics, with theAUCincreasinginahigherproportionthanthedose.At dosesof200mgPOq12hor3mg/kgIVq12h,thefAUCis20.47 ConsideringthatthetargetforED50 isfAUC/MIC around20 (range11–50),onecouldinferthatclinicalsuccesswouldbe attainedwithstrainswithMICupto1mg/L.Thisagreeswith thesusceptibilitybreakpointdefinedbyCLSI,highlightingthe relevance ofthe PK/PDapproach.48 AllCandidaspecies iso-lated inthe LatinAmerica InvasiveMycosisNetworkhada MIC≤0.5mg/L.

The pharmacodynamics of voriconazole has also been studiedinthedisseminatedaspergillosismodel(inducedby intravenous inoculation).49 The fAUC/MIC requiredfor 50% survival(ED50)wasaround12,whilefor100%survival(Emax) it went up to80–100. Regarding posaconazole,Lepaket al. assessed its pharmacodynamics againstAspergillus spp. in thepulmonaryinvasiveaspergillosismodel(inducedbynasal instillation),50findingthatthefAUC/MICnecessarytoachieve the ED50was 1.8,butatleast10wasrequiredtoreach the

Emax. Howardet al. published similar results,51 and Conte etal.foundinastudyofpulmonarytransplantpatients52that posaconazoleconcentrationwas50timeshigherinalveolar cellsthaninserumorepithelialliningfluid.Theseresults sug-gestthatthePK/PDprofileofposaconazoleisfavorableforthe treatmentofpulmonaryaspergillosis.

(6)

onthesedata,arandomizedclinicalstudywascarriedoutto assesstheimpactofTDMofvoriconazolein110patientswith invasivefungal infections. Thetrialshowed that TDMwas associatedwithhigherefficacy(81%vs.57%,p=0.04)andlower drugdiscontinuationduetotoxicity(4% vs.17%,p=0.02).54 These results supportthe recent recommendations bythe BritishSocietyforMedicalMycologyindicatingTDMforall patientsreceivingvoriconazole.Thegoal istoreachtrough levels(Cmin)between1and 4–6mg/Lor,ideally, aCmin/MIC ratioof2–5.55

Posaconazoleischaracterizedbyalonghalf-life (approxi-mately30h),saturableabsorptionat800mg/day,highprotein binding(98%),andalongtimetoreachsteadystate concen-trations(10days).56Itisusuallyadministeredasasuspension twiceaday, sothe concentration-timecurve isalmost flat withverysimilarpeaksandtroughs.Among67patientswith refractoryinvasiveaspergillosis thatreceived posaconazole and underwent TDM, it was found that those with peak (Cmax)andaverageconcentrations(Cavg)of0.14and0.13mg/L, respectively,onlyhad24%response.Incontrast,inpatients withCmax andCavg of1.48 and1.25mg/L,75%hada favor-ableresponse.57Theseresultssupporttherecommendation oftroughlevels>1mg/Lforpatientswithestablished infec-tionsand0.7mg/Lforprophylaxis.55ThePKofposaconazole alsoexhibitshighbetween-subjectvariabilityinpatientswith hematologicmalignancies,58anotherreasonforTDM.Tothe best ofour knowledge, thereare noclinical studies corre-latingthefAUC/MIC ofposaconazolewithclinicaloutcome, but considering that 800mg per day yields fAUC around 0.30–0.44,52,59 afAUC/MICnear3canbeattainedwithMICs upto0.125mg/L,theEUCASTsusceptibilitybreakpointforA. fumigatus.60Toimprovebioavailabilityandreduce between-subjectvariability inpatients, adelayed-release(DR) tablet formulationwasdeveloped.Atadoseof300mgonceaday (three100mgDRtablets),90%ofpatientsachieved posacona-zoleserumconcentrationsgreaterthan700ng/mL,compared with58% patientsreceiving theoralsuspension. Acid sup-pressiondidnotaffectposaconazolelevelsintheDRtablet cohort.61

Echinocandins

Thesearelargelipoproteinswithnegligibleoral bioavailabil-ity,extensiveproteinbinding(>95%),lackofrenalclearance, andnopenetrationtocerebrospinalfluid.Theirunique mech-anismof action(inhibition of1,3-␤-glucan synthase), high

in vivoefficacy,and safety profile,has increasedits use as treatmentforinvasivecandidiasisandaspergillosis.Thethree approvedagentsarecaspofungin,anidulafungin, and mica-fungin.

Beingthenewergroupofantifungals,echinocandinshave been studied thoroughlyfrom a PK/PDperspective.62 They are fungicidal against Candidaspp. and fungistatic against

Aspergillusspp.ThePDindexthatbestdrivetheiractionis thefCmax/MIC,displayingprolongedPAFE.21,63–65However,in theNMDCmodel,thefAUC/MICratioisalsoastrongpredictor ofefficacy,presumablyduetotheprolongedtissue distribu-tion ofthesecompoundsincluding the kidneys,wherethe antifungaleffectismeasured inthis model. Dose fraction-ationstudies haveshownthat thedose requiredtoreduce

thefungalburdenby1log10 is4-foldlowerwhenthedrugs areadministeredoncedaily.21,62Ofnote,aparadoxicaleffect consistinginareducedfungicidalefficacyagainstCandidaspp. hasbeenobservedinvitroatconcentrationsabovetheMIC.66 Sucheffectresultsofcompensatoryresponsesto1,3-␤-glucan synthesisanddisappearswhenhumanserumisadded, indi-catingthatitisnotlikelytoimpactthetreatmentofpatients withcandidemia.67

ThemagnitudeofPDindicesbound tomaximal efficacy in animalmodels ofinvasivecandidiasis isafCmax/MICof 1 or a fAUC/MIC between 10 and 20 for anidulafungin,21 micafungin,62 and caspofungin.Considering thatthe usual dose of anidulafungin (200mg loading dose followed by 100mg q24h) is associated with fCmax=1.15mg/L and

fAUC=1.12mghL−1,68thePDtargetwillbeattainedagainst strains withMIC≤0.125mg/L. Recentepidemiological stud-ies indicate that the MIC90 ofanidulafungin is<0.125mg/L formanyCandidaspeciesexceptingC.parapsilosis,C. guillier-mondii,C.lusitaniaeandC.famata.69AninvivoPDstudyfound thatthefAUC/MICtobefungistaticagainstC.parapsilosisand

C.glabratawas7,incontrastto20againstC.albicans.70These datasupporttheCLSIsusceptibilitybreakpointof0.25mg/L for C.albicans, C.tropicalis, and C. krusei, and 2mg/L forC. parapsilosis.71

The majority of clinical trials with echinocandins have focusedontheevaluationofclinicalefficacy72,73andits rela-tiontotheMIC.74Regardingmicafungin,aPK/PDanalysisof datafrom 493patientsfoundthat afAUC/MICbetween7.5 and30wasassociatedwith98%microbiologicalsuccess, com-paredto85%whentheindexwas<7.5.75Finally,inpatients withC.parapsilosisinfection,afAUC/MIC>0.71wasrelatedto 100%microbiologicalsuccesscomparedwith82%inpatients withvalues<0.71.ThisisafurtherdemonstrationthatC. para-psilosis requires a10-fold lesser fAUC/MIC, in line with its highersusceptibilitybreakpoint.

Finally,inpediatricpatients,dosingadjustmentis neces-saryformostantifungaldrugstoobtainthesameexposure achieved in adults. Also, differences are known in drug metabolismandclearance,andthemagnitudeofthePK/PD indices requires more studies in that specific population. Fungalinfectionsinchildrencomparedtoadultsmayaffect organsandsystemsdifferently(e.g.CNSinfectionduring can-didemiaisfrequentinchildren).Arecentreviewonpediatric pharmacologyofantifungalagentsisavailable.76

Conclusion

and

future

perspectives

(7)

toxicity,amelioratingthedevelopmentofresistanceand cut-tingcosts,ascorroboratedbyclinicaltrials.78Thisknowledge canbeappliedtoeachpatientinanyclinicalsetting(Table1), althoughTDMisnecessarytoassurethatthemagnitudeof the PK/PDindices required formaximal efficacy are effec-tivelyachieved.Thisprocesswould introduceanadditional expenditurerelatedtothequantificationofdrugsin special-izedlaboratories,whichcouldbeoffsetbythemuchgreater economicandsocialbenefitsofoptimizedtherapy.79

Author’s

contribution

JMG made the search of literature, reviewed the papers included,andwrotethefirstdraftofthemanuscript.CAR,MA andAZreviewedtheliterature,madecriticismtothearticle andapprovedthefinalversion.OVreviewedandeditedthe finaltext.

Conflicts

of

interest

Gonzalez, Agudelo and Vesga have no conflicts ofinterest to declare. Rodriguez has received honorary for unrelated lecturesfromRocheandAmgen.Zuluagahasreceived hon-orary for unrelated lectures from Allergan, Amgen, Lilly, Mundipharma,NovoNordisk,Pfizer,RocheandSanofi.None ofthesecompaniesoranyotherpharmaceuticalcompanywas involvedinthedesign,execution,orpublicationofthisstudy.

Acknowledgments

FundingforthisprojectcamefromtheUniversidadde Antio-quia(UdeA)andSistemaGeneralRegalíasofColombia(BPIN: 2013000100183).Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,orpreparationof themanuscript.

r

e

f

e

r

e

n

c

e

s

1. AzieN,NeofytosD,PfallerM,Meier-KriescheHU,QuanSP, HornD.ThePATH(ProspectiveAntifungalTherapy) Alliance(R)registryandinvasivefungalinfections:update 2012.DiagnMicrobiolInfectDis.2012;73:293–300.

2. TrickWE,FridkinSK,EdwardsJR,HajjehRA,GaynesRP, NationalNosocomialInfectionsSurveillanceSystemH. Seculartrendofhospital-acquiredcandidemiaamong intensivecareunitpatientsintheUnitedStatesduring 1989–1999.ClinInfectDis.2002;35:627–30.

3. NucciM,Queiroz-TellesF,Alvarado-MatuteT,etal. EpidemiologyofcandidemiainLatinAmerica:a laboratory-basedsurvey.PLOSONE.2013;8:e59373.

4. ColomboAL,TobonA,RestrepoA,Queiroz-TellesF,NucciM. EpidemiologyofendemicsystemicfungalinfectionsinLatin America.MedMycol.2011;49:785–98.

5. AlangadenGJ.Nosocomialfungalinfections:epidemiology, infectioncontrol,andprevention.InfectDisClinNAm. 2011;25:201–25.

6. PfallerMA,AndesDR,DiekemaDJ,etal.Epidemiologyand outcomesofinvasivecandidiasisduetonon-albicansspecies ofCandidain2,496patients:datafromtheProspective

AntifungalTherapy(PATH)registry2004–2008.PLOSONE. 2014;9:e101510.

7.PappasPG,AlexanderBD,AndesDR,etal.Invasivefungal infectionsamongorgantransplantrecipients:resultsofthe Transplant-AssociatedInfectionSurveillanceNetwork (TRANSNET).ClinInfectDis.2010;50:1101–11.

8.KriengkauykiatJ,ItoJI,DadwalSS.Epidemiologyand treatmentapproachesinmanagementofinvasivefungal infections.ClinEpidemiol.2011;3:175–91.

9.CraigWA.Pharmacokinetic/pharmacodynamicparameters: rationaleforantibacterialdosingofmiceandmen.ClinInfect Dis.1998;26:1–10,quiz1-2.

10.DrusanoGL.Pharmacokineticsandpharmacodynamicsof antimicrobials.ClinInfectDis.2007;45Suppl.1:S89–95.

11.CraigWA,KuninCM.Significanceofserumproteinandtissue bindingofantimicrobialagents.AnnuRevMed.

1976;27:287–300.

12.RexJH,PfallerMA,GalgianiJN,etal.Developmentof interpretivebreakpointsforantifungalsusceptibilitytesting: conceptualframeworkandanalysisofinvitro-invivo correlationdataforfluconazole,itraconazole,andcandida infections.SubcommitteeonAntifungalSusceptibility TestingoftheNationalCommitteeforClinicalLaboratory Standards.ClinInfectDis.1997;24:235–47.

13.AndesD,vanOgtropM.Characterizationandquantitationof thepharmacodynamicsoffluconazoleinaneutropenic murinedisseminatedcandidiasisinfectionmodel. AntimicrobAgentsChemother.1999;43:2116–20.

14.CLSI.Referencemethodforbrothdilutionantifungal susceptibilitytestingofyeasts.M27-A3.Wayne,PA:Clinical andLaboratoryStandardInstitute;2008.

15.TurnidgeJD,GudmundssonS,VogelmanB,CraigWA.The postantibioticeffectofantifungalagentsagainstcommon pathogenicyeasts.JAntimicrobChemother.1994;34: 83–92.

16.ManavathuEK,RameshMS,BaskaranI,GanesanLT,

ChandrasekarPH.Acomparativestudyofthepost-antifungal effect(PAFE)ofamphotericinB,triazolesandechinocandins onAspergillusfumigatusandCandidaalbicans.JAntimicrob Chemother.2004;53:386–9.

17.AndesD,MarchilloK,ConklinR,etal.Pharmacodynamicsof anewtriazole,posaconazole,inamurinemodelof

disseminatedcandidiasis.AntimicrobAgentsChemother. 2004;48:137–42.

18.AndesD,MarchilloK,StamstadT,ConklinR.Invivo pharmacokineticsandpharmacodynamicsofanewtriazole, voriconazole,inamurinecandidiasismodel.Antimicrob AgentsChemother.2003;47:3165–9.

19.AndesD,StamstedT,ConklinR.Pharmacodynamicsof amphotericinBinaneutropenic-mouse

disseminated-candidiasismodel.AntimicrobAgents Chemother.2001;45:922–6.

20.LouieA,DezielM,LiuW,DrusanoMF,GumboT,DrusanoGL. Pharmacodynamicsofcaspofungininamurinemodelof systemiccandidiasis:importanceofpersistenceof caspofunginintissuestounderstandingdrugactivity. AntimicrobAgentsChemother.2005;49:5058–68.

21.AndesD,DiekemaDJ,PfallerMA,etal.Invivo

pharmacodynamiccharacterizationofanidulafunginina neutropenicmurinecandidiasismodel.AntimicrobAgents Chemother.2008;52:539–50.

22.Rodriguez-TudelaJL,AlmiranteB,Rodriguez-PardoD,etal. CorrelationoftheMICanddose/MICratiooffluconazoleto thetherapeuticresponseofpatientswithmucosal

candidiasisandcandidemia.AntimicrobAgentsChemother. 2007;51:3599–604.

(8)

inpatientswithcandidemia.AntimicrobAgentsChemother. 2008;52:3022–8.

24.ErnstEJ,KlepserME,PfallerMA.Postantifungaleffectsof echinocandin,azole,andpolyeneantifungalagentsagainst

CandidaalbicansandCryptococcusneoformans.Antimicrob AgentsChemother.2000;44:1108–11.

25.WiederholdNP,TamVH,ChiJ,PrinceRA,KontoyiannisDP, LewisRE.PharmacodynamicactivityofamphotericinB deoxycholateisassociatedwithpeakplasmaconcentrations inaneutropenicmurinemodelofinvasivepulmonary aspergillosis.AntimicrobAgentsChemother.2006;50: 469–73.

26.AndesD,SafdarN,MarchilloK,ConklinR.

Pharmacokinetic-pharmacodynamiccomparisonof amphotericinB(AMB)andtwolipid-associatedAMB preparations,liposomalAMBandAMBlipidcomplex,in murinecandidiasismodels.AntimicrobAgentsChemother. 2006;50:674–84.

27.Al-NakeebZ,PetraitisV,GoodwinJ,PetraitieneR,WalshTJ, HopeWW.PharmacodynamicsofamphotericinB

deoxycholate,amphotericinBlipidcomplex,andliposomal amphotericinBagainstAspergillusfumigatus.Antimicrob AgentsChemother.2015;59:2735–45.

28.GallisHA.AmphotericinB:acommentaryonitsroleasan antifungalagentandasacomparativeagentinclinicaltrials. ClinInfectDis.1996;22Suppl.2:S145–7.

29.AtkinsonAJJr,BennettJE.AmphotericinBpharmacokinetics inhumans.AntimicrobAgentsChemother.1978;13:271–6.

30.BekerskyI,FieldingRM,DresslerDE,LeeJW,BuellDN,Walsh TJ.PlasmaproteinbindingofamphotericinBand

pharmacokineticsofboundversusunboundamphotericinB afteradministrationofintravenousliposomalamphotericinB (AmBisome)andamphotericinBdeoxycholate.Antimicrob AgentsChemother.2002;46:834–40.

31.BekerskyI,FieldingRM,DresslerDE,LeeJW,BuellDN,Walsh TJ.Pharmacokinetics,excretion,andmassbalanceof liposomalamphotericinB(AmBisome)andamphotericinB deoxycholateinhumans.AntimicrobAgentsChemother. 2002;46:828–33.

32.AdedoyinA,BernardoJF,SwensonCE,etal.Pharmacokinetic profileofABELCET(amphotericinBlipidcomplexinjection): combinedexperiencefromphaseIandphaseIIstudies. AntimicrobAgentsChemother.1997;41:2201–8.

33.Wong-BeringerA,JacobsRA,GuglielmoBJ.Lipidformulations ofamphotericinB:clinicalefficacyandtoxicities.ClinInfect Dis.1998;27:603–18.

34.GrollAH,GiriN,PetraitisV,etal.Comparativeefficacyand distributionoflipidformulationsofamphotericinBin experimentalCandidaalbicansinfectionofthecentralnervous system.JInfectDis.2000;182:274–82.

35.StrengerV,MeinitzerA,DonnererJ,etal.AmphotericinB transfertoCSFfollowingintravenousadministrationof liposomalamphotericinB.JAntimicrobChemother. 2014;69:2522–6.

36.HongY,ShawPJ,NathCE,etal.Populationpharmacokinetics ofliposomalamphotericinBinpediatricpatientswith malignantdiseases.AntimicrobAgentsChemother. 2006;50:935–42.

37.CornelyOA,MaertensJ,BresnikM,etal.Liposomal

amphotericinBasinitialtherapyforinvasivemoldinfection: arandomizedtrialcomparingahigh-loadingdoseregimen withstandarddosing(AmBiLoadtrial).ClinInfectDis. 2007;44:1289–97.

38.SanatiH,BelangerP,FrattiR,GhannoumM.Anewtriazole, voriconazole(UK-109,496),blockssterolbiosynthesisin

CandidaalbicansandCandidakrusei.AntimicrobAgents Chemother.1997;41:2492–6.

39.HofH.Anew,broad-spectrumazoleantifungal:posaconazole –mechanismsofactionandresistance,spectrumofactivity. Mycoses.2006;49Suppl.1:2–6.

40.LouieA,DrusanoGL,BanerjeeP,etal.Pharmacodynamicsof fluconazoleinamurinemodelofsystemiccandidiasis. AntimicrobAgentsChemother.1998;42:1105–9.

41.DebruyneD.Clinicalpharmacokineticsoffluconazolein superficialandsystemicmycoses.ClinPharmacokinet. 1997;33:52–77.

42.KethireddyS,AndesD.CNSpharmacokineticsofantifungal agents.ExpertOpinDrugMetabToxicol.2007;3:573–81.

43.AndesD,ForrestA,LepakA,NettJ,MarchilloK,LincolnL. Impactofantimicrobialdosingregimenonevolutionofdrug resistanceinvivo:fluconazoleandCandidaalbicans. AntimicrobAgentsChemother.2006;50:2374–83.

44.AndesD,LepakA,NettJ,LincolnL,MarchilloK.Invivo fluconazolepharmacodynamicsandresistancedevelopment inapreviouslysusceptibleCandidaalbicanspopulation examinedbymicrobiologicandtranscriptionalprofiling. AntimicrobAgentsChemother.2006;50:2384–94.

45.GonzalezJM,AgudeloM,LeivaLM,RodriguezCA,VesgaO, editors.StandardizationofamurinemodelofCandidaalbicans

infectiontostudytherapeuticequivalence(TE)offluconazole (FCZ)generics.InterscienceConferenceonAntimicrobial AgentsandChemotherapy,AmericanSocietyfor Microbiology;2012.

46.WarnPA,SharpA,ParmarA,MajithiyaJ,DenningDW,Hope WW.Pharmacokineticsandpharmacodynamicsofanovel triazole,isavuconazole:mathematicalmodeling,importance oftissueconcentrations,andimpactofimmunestatuson antifungaleffect.AntimicrobAgentsChemother. 2009;53:3453–61.

47.PurkinsL,WoodN,GhahramaniP,GreenhalghK,AllenMJ, KleinermansD.Pharmacokineticsandsafetyofvoriconazole followingintravenous-tooral-doseescalationregimens. AntimicrobAgentsChemother.2002;46:2546–53.

48.CLSI.Referencemethodforbrothdilutionantifungal susceptibilitytestingofyeasts.M27-S4.Wayne,PA:Clinical andLaboratoryStandardInstitute;2012.

49.MavridouE,BruggemannRJ,MelchersWJ,VerweijPE,Mouton JW.Impactofcyp51Amutationsonthepharmacokineticand pharmacodynamicpropertiesofvoriconazoleinamurine modelofdisseminatedaspergillosis.AntimicrobAgents Chemother.2010;54:4758–64.

50.LepakAJ,MarchilloK,VanheckerJ,AndesDR.Posaconazole pharmacodynamictargetdeterminationagainstwild-type andCyp51mutantisolatesofAspergillusfumigatusinan invivomodelofinvasivepulmonaryaspergillosis.Antimicrob AgentsChemother.2013;57:579–85.

51.HowardSJ,LestnerJM,SharpA,etal.Pharmacokineticsand pharmacodynamicsofposaconazoleforinvasivepulmonary aspergillosis:clinicalimplicationsforantifungaltherapy.J InfectDis.2011;203:1324–32.

52.ConteJEJr,DeVoeC,LittleE,GoldenJA.Steady-state

intrapulmonarypharmacokineticsandpharmacodynamicsof posaconazoleinlungtransplantrecipients.Antimicrob AgentsChemother.2010;54:3609–13.

53.PascualA,CalandraT,BolayS,BuclinT,BilleJ,MarchettiO. Voriconazoletherapeuticdrugmonitoringinpatientswith invasivemycosesimprovesefficacyandsafetyoutcomes.Clin InfectDis.2008;46:201–11.

54.ParkWB,KimNH,KimKH,etal.Theeffectoftherapeutic drugmonitoringonsafetyandefficacyofvoriconazolein invasivefungalinfections:arandomizedcontrolledtrial.Clin InfectDis.2012;55:1080–7.

(9)

agents:guidelinesfromtheBritishSocietyforMedical Mycology.JAntimicrobChemother.2014;69:1162–76.

56.CourtneyR,PaiS,LaughlinM,LimJ,BatraV. Pharmacokinetics,safety,andtolerabilityoforal

posaconazoleadministeredinsingleandmultipledosesin healthyadults.AntimicrobAgentsChemother.

2003;47:2788–95.

57.WalshTJ,RaadI,PattersonTF,etal.Treatmentofinvasive aspergillosiswithposaconazoleinpatientswhoare refractorytoorintolerantofconventionaltherapy:an externallycontrolledtrial.ClinInfectDis.2007;44: 2–12.

58.DoltonMJ,BruggemannRJ,BurgerDM,McLachlanAJ. Understandingvariabilityinposaconazoleexposureusingan integratedpopulationpharmacokineticanalysis.Antimicrob AgentsChemother.2014;58:6879–85.

59.UllmannAJ,CornelyOA,BurchardtA,etal.Pharmacokinetics, safety,andefficacyofposaconazoleinpatientswith

persistentfebrileneutropeniaorrefractoryinvasivefungal infection.AntimicrobAgentsChemother.2006;50: 658–66.

60.ArendrupMC,Cuenca-EstrellaM,Lass-FlorlC,HopeWW, EuropeanCommitteeonAntimicrobialSusceptibilityTesting SubcommitteeonAntifungalSusceptibilityT.EUCAST technicalnoteonAspergillusandamphotericinB, itraconazole,andposaconazole.ClinMicrobiolInfect. 2012;18:E248–50.

61.DuraniU,ToshPK,BarretoJN,EstesLL,JannettoPJ,TandeAJ. Retrospectivecomparisonofposaconazolelevelsinpatients takingthedelayed-releasetabletversustheoralsuspension. AntimicrobAgentsChemother.2015;59:4914–8.

62.AndesDR,DiekemaDJ,PfallerMA,MarchilloK,BohrmuellerJ. Invivopharmacodynamictargetinvestigationformicafungin againstCandidaalbicansandC.glabratainaneutropenic murinecandidiasismodel.AntimicrobAgentsChemother. 2008;52:3497–503.

63.WiederholdNP,KontoyiannisDP,ChiJ,PrinceRA,TamVH, LewisRE.Pharmacodynamicsofcaspofungininamurine modelofinvasivepulmonaryaspergillosis:evidenceof concentration-dependentactivity.JInfectDis. 2004;190:1464–71.

64.LewisRE,AlbertND,KontoyiannisDP.Comparisonofthe dose-dependentactivityandparadoxicaleffectof

caspofunginandmicafungininaneutropenicmurinemodel ofinvasivepulmonaryaspergillosis.JAntimicrobChemother. 2008;61:1140–4.

65.GumboT,DrusanoGL,LiuW,etal.Anidulafungin pharmacokineticsandmicrobialresponseinneutropenic micewithdisseminatedcandidiasis.AntimicrobAgents Chemother.2006;50:3695–700.

66.StevensDA,EspirituM,ParmarR.Paradoxicaleffectof caspofungin:reducedactivityagainstCandidaalbicansathigh drugconcentrations.AntimicrobAgentsChemother. 2004;48:3407–11.

67.ShieldsRK,NguyenMH,DuC,PressE,ChengS,ClancyCJ. ParadoxicaleffectofcaspofunginagainstCandida

bloodstreamisolatesismediatedbymultiplepathwaysbut eliminatedinhumanserum.AntimicrobAgentsChemother. 2011;55:2641–7.

68.LeitnerJM,MeyerB,FuhrmannV,etal.Multiple-dose pharmacokineticsofanidulafunginduringcontinuous venovenoushaemofiltration.JAntimicrobChemother. 2011;66:880–4.

69.PfallerMA,BoykenL,HollisRJ,etal.Invitrosusceptibilityof invasiveisolatesofCandidaspp.toanidulafungin,

caspofungin,andmicafungin:sixyearsofglobalsurveillance. JClinMicrobiol.2008;46:150–6.

70.AndesD,DiekemaDJ,PfallerMA,BohrmullerJ,MarchilloK, LepakA.Invivocomparisonofthepharmacodynamictargets forechinocandindrugsagainstCandidaspecies.Antimicrob AgentsChemother.2010;54:2497–506.

71.CLSI.ClinicalbreakpointsforCandidaandtheechinocandins. Subcommitteeonantifungalsusceptibilitytests.Wayne,PA: ClinicalandLaboratoryStandardInstitute;2010.

72.ReboliAC,RotsteinC,PappasPG,etal.Anidulafunginversus fluconazoleforinvasivecandidiasis.NEnglJMed.

2007;356:2472–82.

73.KuseER,ChetchotisakdP,daCunhaCA,etal.Micafungin versusliposomalamphotericinBforcandidaemiaand invasivecandidosis:aphaseIIIrandomiseddouble-blind trial.Lancet.2007;369:1519–27.

74.PfallerMA,DiekemaDJ,Ostrosky-ZeichnerL,etal. CorrelationofMICwithoutcomeforCandidaspeciestested againstcaspofungin,anidulafungin,andmicafungin:analysis andproposalforinterpretiveMICbreakpoints.JClin

Microbiol.2008;46:2620–9.

75.AndesD,AmbrosePG,HammelJP,etal.Useof

pharmacokinetic-pharmacodynamicanalysestooptimize therapywiththesystemicantifungalmicafunginforinvasive candidiasisorcandidemia.AntimicrobAgentsChemother. 2011;55:2113–21.

76.AutmizguineJ,GuptillJT,Cohen-WolkowiezM,BenjaminDK Jr,CapparelliEV.Pharmacokineticsandpharmacodynamics ofantifungalsinchildren:clinicalimplications.Drugs. 2014;74:891–909.

77.NucciM,Thompson-MoyaL,Guzman-BlancoM,etal. Recommendationsforthemanagementofcandidemiain adultsinLatinAmerica.LatinAmericaInvasiveMycosis Network.RevIberoamMicol.2013;30:179–88.

78.NicolauDP,FreemanCD,BelliveauPP,NightingaleCH,Ross JW,QuintilianiR.Experiencewithaonce-daily

aminoglycosideprogramadministeredto2,184adult patients.AntimicrobAgentsChemother.1995;39:650–5.

Imagem

Fig. 1 – Pharmacokinetics (PK), pharmacodynamics (PD) and PK/PD integration. Pharmacokinetic parameters
Table 1 – Summary of the PK/PD indices and their required magnitude for efficacy with antifungal drugs and recommended goals for therapeutic drug monitoring (TDM).

Referências

Documentos relacionados

The chemical stability of voriconazole was determined as infusion solutions in 0.9% sodium chloride and 5% dextrose, stored in PVC bags over 21 days, maintained at 4-7 and 19-24 ºC,

Safety and efficacy of a testosterone patch for the treatment of hypoactive sexual desire disorder in surgically menopausal women: A randomized, placebo controlled trial. Arch

A randomized controlled trial for the effect of passive stretching on measures of hamstring extensibility, passive stiffness, strength, and stretch tolerance.. Journal of Science

(2019) propõem o framework EiF (Elastic Intelligent Fog), cuja arquitetura geral é representada na figura 10. Esta plataforma utiliza redes neurais profundas para filtrar

This double-blind, randomized, placebo-controlled clinical trial is the irst study to evaluate the toxicology and safety of tincture of O. alata in patients with

Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial..

Infantis (TAUNAY et al., 1996), sorotipos esses também isolados de suínos em criações estudadas (WEISS et al., 2002; MICHAEL et al., 2002; OLIVEIRA et al., 2002), o que caracteriza

Efficacy and safety of Golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Carmona L, Abasolo L, Descalzo