• Nenhum resultado encontrado

Genetics of host-parasite interactions: towards a comprehensive dissection of Drosophila resistance to viral infection

N/A
N/A
Protected

Academic year: 2021

Share "Genetics of host-parasite interactions: towards a comprehensive dissection of Drosophila resistance to viral infection"

Copied!
6
0
0

Texto

(1)

Genetics  of  host-­‐parasite  interactions:  towards  a  more  comprehensive  dissection  of  Drosophila  

1  

resistance  to  viral  infection  

2  

Sara  Magalhães1,*  and  Élio  Sucena2,3  

3  

1-­‐   cE3c:  Centre  for  Ecology,  Evolution  and  Environmental  Changes,  Faculdade  de  Ciências,   4  

Universidade  de  Lisboa,  Campo  Grande,  1749-­‐016  Lisboa,  Portugal.   5  

*snmagalhaes@fc.ul.pt   6  

2  –  Instituto  Gulbenkian  de  Ciências,  Apartado  14,  2780-­‐901  Oeiras,  Portugal.   7  

3  –  Universidade  de  Lisboa,  Faculdade  de  Ciências,  Departamento  de  Biologia  Animal,  edifício   8  

C2,  Campo  Grande,  1749-­‐016  Lisboa,  Portugal.   9  

  10  

One  of  the  major  challenges  in  Evolutionary  Biology  is  to  unravel  the  genetic  basis  of  adaptation.  

11  

This  issue  has  been  gaining  momentum  in  recent  years  with  the  accelerated  development  of  novel  

12  

genetic  and  genomic  techniques  and  resources.  In  this  issue  of  Molecular  Ecology,  Cogni  et  al.  

13  

(2016)  address  the  genetic  basis  of  resistance  to  two  viruses  in  Drosophila  melanogaster  using  a  

14  

panel  of  recombinant  inbred  lines  with  unprecedented  resolution  allowing  detection  of  rare  alleles  

15  

and/or  alleles  of  small  effect.  The  study  confirms  the  role  of  previously-­‐identified  genes  of  major  

16  

effect,  and  adds  novel  regions  with  minor  effect  to  the  genetic  basis  of  Drosophila  resistance  to  

17  

the  Drosophila  C  virus  (DCV)  or  the  Sigma  virus.  Additional  analyses  reveal  the  absence  of  cross-­‐

18  

resistance  and  of  epistasis  between  the  various  genomic  regions.  This  detailed  information  on  the  

19  

genetic  architecture  of  host  resistance  constitutes  a  crucial  step  towards  the  understanding  of  

20  

both  the  physiology  of  anti-­‐viral  immunity  and  the  evolution  of  host-­‐parasite  interactions.  

21  

It  has  been  argued  that  identifying  the  genetic  basis  of  adaptation  may  add  little  to  the   22  

understanding  of  some  evolutionary  phenomena  (Rausher  &  Delph  2015).  Indeed,  even  in  research   23  

areas  where  the  genetic  architecture  of  adaptation  is  relevant,  the  identification  of  the  particular   24  

genes  involved  may  not  be  essential.  For  example,  the  genetics  of  host-­‐parasite  interactions  may  be   25  

(2)

captured  by  a  matching-­‐allele  model,  in  which  specific  parasite  and  host  genotypes  can  only  infect   26  

and  resist,  respectively,  antagonists  with  a  particular  (matching)  allele.  Alternatively,  it  may  follow  a   27  

gene-­‐for-­‐gene  model,  where  some  parasites  infect  a  subset  of  hosts  whilst  others  infect  the  whole   28  

range  of  host  genotypes.  Distinguishing  between  these  alternatives  is  important  because  only  under   29  

the  matching  allele  model  is  selection  for  increased  recombination  expected  (Agrawal  &  Lively   30  

2002).  Importantly,  it  was  recently  found  that  the  interaction  between  Daphnia  magna  hosts   31  

infected  by  Pasteuria  ramosa  is  consistent  with  a  matching  allele  model  (Luijckx  et  al.  2013).   32  

However,  the  identification  of  the  specific  alleles  involved  in  the  interaction  was  not  necessary  for   33  

this  compelling  result.   34  

Still,  some  features  of  the  genetics  of  host-­‐parasite  interactions  are  highly  relevant  to  understand   35  

their  evolution.  For  example,  the  number  of  genes  coding  for  host  resistance  impacts  on  the  degree   36  

of  maladaptation  of  parasites  in  a  heterogeneous  landscape  (Ridenhour  &  Nuismer  2007).  One  of   37  

the  systems  with  more  information  concerning  the  genetics  of  host  resistance  is  that  of  Drosophila   38  

and  its  parasites.  Indeed,  several  studies  have  identified  genes  or  genome  regions  responsible  for   39  

variation  in  survival  upon  bacterial  (e.g.,  (Sleiman  et  al.  2015)  and  viral  infections  (e.g.,  (Magwire  et   40  

al.  2012;  Martins  et  al.  2014).  In  the  latter  case,  alleles  of  major  effect  have  been  recurrently  

41  

identified  to  confer  resistance  to  DCV  (Pastrel;  (Magwire  et  al.  2012;  Martins  et  al.  2014)  and  to  the   42  

Sigma  virus  (ref(2)P  and  CHKov1;  (Bangham  et  al.  2007;  Magwire  et  al.  2011).  However,  candidate   43  

alleles  of  minor  effect  (CG16998,  UbcE2H;  (Martins  et  al.  2014)  and  rare  alleles  of  large  effect  (Ge-­‐1;   44  

(Cao  et  al.  2016)  have  been  identified  in  some  studies,  but  not  in  others.  These  different  outcomes   45  

may  arise  because  standing  genetic  variation  in  these  loci  is  absent  from  some  of  the  initial   46  

populations,  different  approaches  have  intrinsically  distinct  outcomes  (association  studies  vs   47  

experimental  evolution),  or  studies  differ  in  their  degree  of  resolution.   48  

In  this  issue  of  Molecular  Ecology,  Cogni  et  al.  (2016)  add  significantly  to  the  understanding  of  the   49  

genetic  basis  of  resistance  to  viruses  in  Drosophila.  The  authors  use  the  Drosophila  Synthetic   50  

(3)

Population  Resource  (DSPR)  panel  (http://wfitch.bio.uci.edu/~dspr/;  (Long  et  al.  2014))  to  identify   51  

the  genes  involved  in  Drosophila  differential  survival  to  DCV  and  Sigma  virus.  This  resource  is   52  

composed  of  1700  recombinant  inbred  lines  that  are  formed  from  the  interbreeding  of  two  sets  of  8   53  

fully-­‐sequenced  inbred  founder  lines  from  distinct  geographic  locations  (one  of  the  lines  being   54  

repeated  in  the  two  panels).  This  resource  allows  a  much  finer  mapping  resolution  of  quantitative   55  

trait  loci  (QTL),  enabling  detection  of  rare  alleles  present  in  the  original  set  and  of  alleles  of  small   56  

effect  (Long  et  al.  2014).  Using  this  panel,  the  authors  confirm  the  role  of  Pastrel  and  ref(2)P  in   57  

conferring  resistance  to  DCV  and  to  Sigma  virus,  respectively.  These  genes  had  already  been   58  

identified  using  the  DGRP  panel  (Bangham  et  al.  2007;  Magwire  et  al.  2012)  and  an  evolve-­‐and-­‐ 59  

resequence  methodology  (Martins  et  al.  2014).  Importantly,  they  also  find  additional  regions   60  

contributing  to  these  responses,  namely  one  new  locus  involved  in  resistance  to  DCV  and  five  extra   61  

QTLs  involved  in  fighting  Sigma  virus.  This  more  complete  and  complex  landscape  provides  a  basis   62  

for  90%  of  the  response  against  DCV  and  43%  for  Sigma  virus.  Interestingly,  previously-­‐found  rare   63  

and  small-­‐effect  alleles  were  not  detected.  Given  the  level  of  resolution  now  achieved,  it  is  likely  that   64  

the  lines  from  which  this  panel  was  generated  did  not  contain  the  relevant  allelic  variation  at  those   65  

loci.  Be  it  as  it  may,  the  finer  grain  analysis  here  provided,  certainly  brings  to  light  novel  candidates   66  

involved  in  the  physiological  response  deployed  against  viral  infections.  Future  validation  of  these   67  

candidates  will  certainly  add  important  new  elements  to  the  mechanistic  understanding  of  anti-­‐viral   68  

immune  responses.   69  

Another  important  conclusion  of  this  study  is  the  absence  of  cross-­‐resistance  and  of  epistasis   70  

among  QTLs  involved  in  the  response  to  the  same  virus,  which  is  an  important  component  of   71  

theoretical  predictions  concerning  the  evolutionary  outcome  of  host-­‐parasite  interactions  (e.g.,   72  

(Fenton  &  Brockhurst  2007).  Additional  analyses,  however,  point  to  the  existence  of  yet  another  QTL   73  

that  is  not  directly  involved  in  conferring  resistance  but  that  modifies  the  effect  of  one  of  the  QTLs   74  

affecting  resistance  to  the  sigma  virus.  Further  studies  will  help  understanding  whether  this  mild   75  

(4)

epistasis  is  a  general  feature  of  the  host-­‐parasite  interaction  described  here  or  a  result  that  is   76  

specific  to  the  panel  of  inbred  lines  used.     77  

  We  still  do  not  know  whether  alleles  from  genes  identified  through  these  association  studies   78  

are  those  that  will  increase  in  frequency  during  the  adaptation  process.  Indeed,  the  genetic   79  

variance–covariance  matrix  (the  G-­‐matrix)  is  likely  to  evolve  even  within  short  time  frames,   80  

especially  given  that,  as  shown  by  this  study,  more  genes  are  involved  in  host  resistance  than   81  

previously  thought,  and  this  will  affect  the  evolutionary  trajectory  of  hosts  and  parasites  (Gilman  et   82  

al.  2012).  Moreover,  the  genetic  architecture  of  host  resistance  will  interact  with  that  of  parasite  

83  

virulence,  and  generate  evolutionary  dynamics  that  cannot  be  captured  by  the  analysis  of  one  of  the   84  

players  alone.  Therefore,  the  genetic  diversity  for  parasite  resistance  identified  in  the  host   85  

population  at  a  given  time  may  or  may  not  contribute  to  the  evolutionary  process.  Given  the   86  

potential  importance  of  the  findings  presented  by  Cogni  et  al.  (2016)  for  the  evolution  of  host-­‐ 87  

parasite  interactions,  further  research  on  this  topic  can  directly  test  if  the  genes  identified   88  

participate  in  the  adaptation  process,  for  example  via  experimental  (co)evolution  studies,  coupled   89  

with  functional  validations.     90  

  91  

Reference  list  

92  

Agrawal  A,    Lively  CM  (2002)  Infection  genetics:  gene-­‐for-­‐gene  versus  matching-­‐alleles  models  and   93  

all  points  in  between.  Evolutionary  Ecology  Research  4,  79-­‐90.   94  

Bangham  J,  Obbard  DJ,  Kim  KW,  Haddrill  PR,    Jiggins  FM  (2007)  The  age  and  evolution  of  an  antiviral   95  

resistance  mutation  in  Drosophila  melanogaster.  Proceedings  of  the  Royal  Society  B-­‐Biological   96  

Sciences  274,  2027-­‐2034.  

97  

Cao  C,  Magwire  MM,  Bayer  F,    Jiggins  FM  (2016)  A  Polymorphism  in  the  Processing  Body  Component   98  

Ge-­‐1  Controls  Resistance  to  a  Naturally  Occurring  Rhabdovirus  in  Drosophila.  Plos  Pathogens  12.   99  

(5)

Fenton  A,    Brockhurst  MA  (2007)  Epistatic  Interactions  Alter  Dynamics  of  Multilocus  Gene-­‐for-­‐Gene   100  

Coevolution.  Plos  One  2.   101  

Gilman  RT,  Nuismer  SL,    Jhwueng  DC  (2012)  Coevolution  in  multidimensional  trait  space  favours   102  

escape  from  parasites  and  pathogens.  Nature  483,  328-­‐330.   103  

Long  AD,  Macdonald  SJ,    King  EG  (2014)  Dissecting  complex  traits  using  the  Drosophila  Synthetic   104  

Population  Resource.  Trends  in  Genetics  30,  488-­‐495.   105  

Luijckx  P,  Fienberg  H,  Duneau  D,    Ebert  D  (2013)  A  Matching-­‐Allele  Model  Explains  Host  Resistance  to   106  

Parasites.  Current  Biology  23,  1085-­‐1088.   107  

Magwire  M,  Bayer  F,  Webster  C,  Cao  C,    Jiggins  F  (2011)  Successive  increases  in  the  resistance  of   108  

Drosophila  to  viral  infection  through  a  transposon  insertion  followed  by  a  Duplication.  Plos  Genetics   109  

7.  

110  

Magwire  MM,  Fabian  DK,  Schweyen  H,  et  al.  (2012)  Genome-­‐Wide  Association  Studies  Reveal  a   111  

Simple  Genetic  Basis  of  Resistance  to  Naturally  Coevolving  Viruses  in  Drosophila  melanogaster.  Plos   112  

Genetics  8.  

113  

Martins  NE,  Faria  VG,  Nolte  V,  et  al.  (2014)  Host  adaptation  to  viruses  relies  on  few  genes  with   114  

different  cross-­‐resistance  properties.  Proceedings  of  the  National  Academy  of  Sciences  USA  111,   115  

5938-­‐5943.   116  

Rausher  MD,    Delph  LF  (2015)  Commentary:  When  does  understanding  phenotypic  evolution  require   117  

identification  of  the  underlying  genes?  Evolution  69,  1655-­‐1664.   118  

Ridenhour  BJ,    Nuismer  SL  (2007)  Polygenic  traits  and  parasite  local  adaptation.  Evolution  61,  368-­‐ 119  

376.   120  

Sleiman  MSB,  Osman  D,  Massouras  A,  et  al.  (2015)  Genetic,  molecular  and  physiological  basis  of   121  

variation  in  Drosophila  gut  immunocompetence.  Nature  Communications  6.   122  

  123  

   

(6)

Figure  1   125  

  126  

et al. 2014). The authors confirm the role of Pastrel and ref (2)P in conferring resistance to DCV and to sigma virus, respectively. These genes had already been identified using the DGRP panel (Banghamet al. 2007; Magwire et al. 2012) and an evolve-and-resequence methodology (Martinset al. 2014). Importantly, they also find additional regions con-tributing to these responses, namely one new locus involved in resistance to DCV and five extra QTLs involved in fighting sigma virus. This more complete and complex landscape provides a basis for 90% of the response against DCV and 43% for sigma virus. Interest-ingly, previously-found rare and small-effect alleles were not detected. Given the level of resolution now achieved, it is likely that the lines from which this panel was generated did not contain the relevant allelic variation at those loci. Be it as it may, the finer grain analysis here provided cer-tainly brings to light novel candidates involved in the physiological response deployed against viral infections. Future validation of these candidates will certainly add important new elements to the mechanistic understanding of antiviral immune responses.

Another important conclusion of this study is the absence of cross-resistance and of epistasis among QTLs involved in the response to the same virus, which is an important component of theoretical predictions concerning the evolutionary outcome of host–parasite interactions (e.g. Fenton & Brockhurst 2007). Additional analyses, however, point to the existence of yet another QTL that is not directly involved in conferring resistance but that modifies the effect of one of the QTLs affecting resistance to the sigma virus. Further studies will help understanding whether this mild epistasis is a general feature of the host– parasite interaction described here or a result that is speci-fic to the panel of inbred lines used.

We still do not know whether alleles from genes identi-fied through these association studies are those that will increase in frequency during the adaptation process. Indeed, the genetic variance–covariance matrix (the G-matrix) is likely to evolve even within short time frames, especially given that, as shown by this study, more genes are involved in host resistance than previously thought, and this will affect the evolutionary trajectory of hosts and parasites (Gilmanet al. 2012). Moreover, the genetic archi-tecture of host resistance will interact with that of parasite

virulence and generate evolutionary dynamics that cannot be captured by the analysis of one of the players alone. Therefore, the genetic diversity for parasite resistance iden-tified in the host population at a given time may or may not contribute to the evolutionary process. Given the potential importance of the findings presented by Cogni et al. (2016) for the evolution of host–parasite interactions, further research on this topic can directly test whether the genes identified participate in the adaptation process, for example via experimental (co)evolution studies, coupled with functional validations.

References

Agrawal A, Lively CM (2002) Infection genetics: gene-for-gene ver-sus matching-alleles models and all points in between. Evolution-ary Ecology Research, 4, 79–90.

Bangham J, Obbard DJ, Kim KW, Haddrill PR, Jiggins FM (2007) The age and evolution of an antiviral resistance mutation in Dro-sophila melanogaster. Proceedings of the Royal Society B-Biological Sciences, 274, 2027–2034.

Cao C, Magwire MM, Bayer F, Jiggins FM (2016) A polymorphism in the processing body component Ge-1 controls resistance to a naturally occurring rhabdovirus inDrosophila. Plos Pathogens, 12, e1005387.

Cogni R, Cao C, Day JP, Bridson C, Jiggins FM (2016) The genetic architecture of resistance to virus infection in Drosophila. Mole-cular Ecology, 25, 5228–5241.

Fenton A, Brockhurst MA (2007) Epistatic interactions alter dynam-ics of multilocus gene-for-gene coevolution.PLoS One, 2, e1156. Gilman RT, Nuismer SL, Jhwueng DC (2012) Coevolution in

multi-dimensional trait space favours escape from parasites and patho-gens.Nature, 483, 328–330.

Long AD, Macdonald SJ, King EG (2014) Dissecting complex traits using the Drosophila Synthetic Population Resource. Trends in Genetics, 30, 488–495.

Luijckx P, Fienberg H, Duneau D, Ebert D (2013) A matching-allele model explains host resistance to parasites.Current Biology, 23, 1085–1088.

Magwire M, Bayer F, Webster C, Cao C, Jiggins F (2011) Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a duplication. Plos Genetics, 7, e1002337.

Magwire MM, Fabian DK, Schweyen Het al. (2012) Genome-wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster. Plos Genetics, 8, e1003057.

(A) (B) Fig. 1 Drosophila melanogaster (A;

pho-tograph credit: Darren Obbard) and an electron microscopy image of purified Drosophila C virus (DCV) (B; pho-tograph credit: Estelle Santiago and Jean-Luc Imler).

© 2016 John Wiley & Sons Ltd

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

FRANCISCO MIGUEL ARAÚJO é licenciado em História (2003) e mestre em História da Educação (2008) pela Faculdade de Letras da Universidade do Porto, frequenta o 3.º ciclo de estudos

24. O Estado exportador de capitais pode regulamentar a liquidação dos investimentos de seus nacionais em território estrangeiro, mas a competência para a sua efetivação

(1984) analisando povoamentos de Eucalyptus saligna, aos 8 e 9 anos de idade, respectivamente, verificaram que em média 85% da biomassa aérea encontrava- se no fuste (madeira

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Dos objectivos traçados no nosso trabalho, verificamos que da análise quantitativa da transição das Lux GAAP para as IFRS nas diferentes rubricas, bem como nos

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and