• Nenhum resultado encontrado

Polycyclic aromatic hydrocarbons at fire stations: firefighters’exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose

N/A
N/A
Protected

Academic year: 2021

Share "Polycyclic aromatic hydrocarbons at fire stations: firefighters’exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hazardous

Materials

j ou rn a l h om epa ge :w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

Polycyclic

aromatic

hydrocarbons

at

fire

stations:

firefighters’

exposure

monitoring

and

biomonitoring,

and

assessment

of

the

contribution

to

total

internal

dose

Marta

Oliveira

a,b

,

Klara

Slezakova

a,b

,

Maria

José

Alves

c

,

Adília

Fernandes

c

,

João

Paulo

Teixeira

d,e

,

Cristina

Delerue-Matos

a

,

Maria

do

Carmo

Pereira

b

,

Simone

Morais

a,∗

aREQUIMTE-LAQV,InstitutoSuperiordeEngenharia,InstitutoPolitécnicodoPorto,R.Dr.AntónioBernardinodeAlmeida431,4200-072Porto,Portugal bLEPABE,DepartamentodeEngenhariaQuímica,FaculdadedeEngenharia,UniversidadedoPorto,R.Dr.RobertoFrias,4200-465Porto,Portugal cEscolaSuperiordeSaúde,InstitutoPolitécnicodeBraganc¸a,AvenidaD.AfonsoV,5300-121,Braganc¸a,Portugal

dInstitutoNacionaldeSaúdePública,DepartamentodeSaúdeAmbiental,RuaAlexandreHerculano321,4000-055Porto,Portugal eUniversidadedoPorto,InstitutodeSaúdePública,RuadasTaipas135,4050-600Porto,Portugal

h

i

g

h

l

i

g

h

t

s

•FirefightersexposuretoPAHswasassessedbypersonalmonitoringandbiomonitoring.

•AirbornePAHswith2–3ringswerethemostabundantatallfirestations.

•1-hydroxynaphthaleneand1-hydroxyacenaphthenewerethepredominantmetabolites.

•NaphthalenecontributedthemosttocarcinogenicPAHsinmajorityoffirehouses.

•SignificantcorrelationswerefoundamongurinaryOH-PAHexcretionandinhaledPAHs.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30December2015 Receivedinrevisedform1March2016 Accepted5March2016

Availableonline8March2016 Keywords:

Firefighters Exposure

Polycyclicaromatichydrocarbons(PAHs) Monohydroxyl-PAHs(OH-PAHs) 1-hydroxypyrene

a

b

s

t

r

a

c

t

Thisworkcharacterizeslevelsofeighteenpolycyclicaromatichydrocarbons(PAHs)inthebreathingair zoneoffirefightersduringtheirregularworkshiftateightPortuguesefirestations,andthefirefighters’ totalinternaldosebysixurinarymonohydroxylmetabolites(OH-PAHs).TotalPAHs(PAHs) concentra-tionsvariedwidely(46.4–428ng/m3),mainlyduetositespecificity(urban/rural)andcharacteristics(age

andlayout)ofbuildings.AirbornePAHswith2–3ringswerethemostabundant(63.9–95.7%PAHs). Similarly,urinary1-hydroxynaphthaleneand1-hydroxyacenaphthenewerethepredominant metabo-lites(66–96%OH-PAHs).NaphthalenecontributedthemosttocarcinogenicPAHs(39.4–78.1%)in majorityoffirehouses;benzo[a]pyrene,themarkerofcarcinogenicPAHs,accountedwith1.5–10%. Statis-ticallypositivesignificantcorrelations(r≥0.733,p≤0.025)wereobservedbetweenPAHsandurinary OH-PAHsforfirefightersoffourfirestationssuggestingthat,atthesesites,indoorairwastheirmajor exposuresourceofPAHs.Firefighter’spersonalexposuretoPAHsatPortuguesefirestationswerewell belowtheexistentoccupationalexposurelimits.Also,thequantifiedconcentrationsofpost-shift uri-nary1-hydroxypyreneinallfirefighterswereclearlylowerthanthebenchmarklevel(0.5␮mol/mol) recommendedbytheAmericanConferenceofGovernmentalIndustrialHygienists.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Firefighting,alongwithconstruction,mining,andagriculture,

ranksamong themost dangerousprofessions, withits

occupa-tionalexposurebeingregardedaspossiblecarcinogentohumans

∗ Correspondingauthor.

E-mailaddress:sbm@isep.ipp.pt(S.Morais).

bytheInternationalAgencyforResearchonCancer(IARC)andthe

USNationalInstituteforOccupationalSafetyandHealth(NIOSH)

[1,2].Firefightingisamongthemosthazardousyettheleast

stud-iedoccupationsinterms ofexposures andtheirrelationshipto

occupationaldiseases.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous

compounds that are released during the incomplete

combus-tion or pyrolysis of organic material. PAHs are well known

for their cytotoxic and mutagenic properties [3,4], with some

http://dx.doi.org/10.1016/j.jhazmat.2016.03.012

(2)

of them being recognized as endocrine disrupting

chemi-cals [5]; USEPA listed 16 priority PAHs [6]. PAHs possess an

undeniable role in the induction of human carcinogenesis [7],

especially if benzo[a]pyrene (known human carcinogenic) and

benz[a]anthracene, benzo[b]fluoranthene, benzo[j]fluoranthene,

benzo[k]fluoranthene, chrysene, indeno[1,2,3-cd]pyrene, and

naphthalene (possible human carcinogens; [4,8] are present.

Dibenzo[a,l]pyrene and dibenz[a,h]anthracene have been also

under scrutinybecause theyare regarded as probable

carcino-gens tohumans due totheir highercarcinogenic potency than

benzo[a]pyrene [9–12]. Electrophilic compounds such as PAHs

playakeyroleinenvironmentalcancerandsomerecentevidences

associate their role in cardiovascular disease [13]. Firefighters’

occupationalexposurehasbeenassociatedwithexcessmorbidity

and mortality withcardiovascular disease being considered as

theleading causeof deathinapproximately 45%of firefighters

andamajorcauseoftheirmorbidity[14–16].Asaconsequence

firefighters’ occupational exposure to PAHs may promote the

developmentoraggravationofcardiovascularillnesses.Firesare

themajorcontributortooccupationalexposuretoPAHs[17–20].

Otherrelevantsourcesincludemotor-vehicleexhaust(especially

diesel), industrial emissions, residential and commercial

heat-ingwithwood,coal,orotherbiomassfuels,and tobaccosmoke

[21–23].Despitesomeavailableinformationregardingfirefighters’

occupationalexposuretoPAHsduringlivefirecombatactivities

in Australia [20] and USA [17–19,23–27], firefighters may also

be exposed to PAHs when they are at fire stations. Recently

some studies revealed that chemical contaminants from fires

weretrackedbacktofirestationsviafirevehiclesandprincipally

throughfirefighters’personal equipmentssuchasboots,gloves,

and turnout gear [18,20,28–31]. Only two studies were found

regarding firefighters’ occupational exposure to PAHs at fire

stations [23,32],both performed in USA.No information exists

concerningothercountries,even thoughtheavailableexposure

datamaynotbedirectlyapplicable.

Biologicalmonitoringis animportanttool in theprevention

of occupational diseases related to those exposed chemicals

on a regular basis, particularly when multi-route exposure

(inhalation, dermal, ingestion) or abnormal exposure takes

place. 1-hydroxypyrene (1OHPy) is the most widely used

bio-logical indicator of internal dose of PAHs exposure [33,34];

3-hydroxibenzo[a]pyrene (3OHBaP) is the main metabolite

of the known human carcinogenic benzo[a]pyrene.

Acenaph-thene, fluorene, and phenanthrene are common PAHs in

different matrices [10,35,36] and their major urinary

metabo-lites are1-hydroxylacenaphthene(1OHAce), 2-hydroxylfluorene

(2OHFlu), and 1-hydroxyphenanthrene (1OHPhen),

respec-tively. Regarding naphthalene there are more than thirty

Table1

ConcentrationsofPM2.5-boundPAHs(mediana;min-max;ng/m3)inthebreathingairzoneoffirefightersatthefirestations(MirandadoDouro(MRD),TorreDonaChama

(TDC),Sendim(SDM),Mirandela(MDL),TorredeMoncorvo(TMC),Vinhais(VNH),Braganc¸a(BRG),andFreixodeEspadaàCinta(FEC)).

Compound Firestation

MRD TDC SDM MDL TMC VNH BRG FEC Naphthalene 12.2 (8.51–15.1) 6.67 (5.61−6.99) 7.95 (6.04−10.3) 11.5 (10.9−13.5) 4.95 (4.27−8.74) 7.19 (5.95−8.53) 9.21 (4.23−13.0) 35.5 (33.4−38.6) Acenaphthylene 110 (75.6−208) 24.0a 56.4 (27.8−86.9) 125** (24.0−198) 24.0a 43.9*** (24.0−89.1) 27.2*** (24.0−111) 199 (60.3−352) Acenaphthene 88.5 (56.1−111) 2.48** (1.62−4.26) 18.7 (18.4−20.8) 97.3** (1.62−121) 10.3 (9.11−16.2) 1.62a 8.54*** (1.62−18.2) 4.33*** (1.62−8.02) Fluorene 1.05 (0.540−1.49) 0.272*** (0.272−0.588) 0.272a 1.86 (1.62−3.53) 0.446** (0.272−0.528) 0.272a 0.272*** (0.272−0.450) 6.73 (3.13−9.94) Phenanthrene 6.07 (3.74−7.27) 4.08 (3.71−5.97) 2.88 (2.76−3.00) 9.45 (6.83−9.88) 3.99 (3.39−4.42) 4.32 (3.42−5.01) 3.63 (2.97−4.84) 28.5 (21.0−35.9) Anthracene 0.223a 0.223*** (0.223−0.364) 0.223a 0.223*** (0.223−1.59) 0.223a 0.223*** (0.223−0.657) 0.223a 0.636 (0.601−0.675) Fluoranthene 0.351*** (0.351−0.603) 0.351*** (0.351−0.592) 0.351a 1.50 (0.968−2.16) 0.351*** (0.351−0.589) 0.596** (0.351−1.02) 0.351*** (0.351−0.631) 1.88*** (0.351−3.88) Pyrene 1.24** (0.292−1.34) 0.292a 0.292a 2.28 (1.76−2.77) 0.473** (0.292−0.755) 0.582** (0.292−1.09) 0.292a 3.41 (2.01−4.92) Benz[a]anthracene 0.205a 0.205a 0.205a 0.205*** (0.205−0.866) 0.205a 0.205*** (0.205−0.452) 0.205*** (0.205−0.324) 0.446*** (0.205−0.824) Chrysene 0.145*** (0.145−0.358) 0.145a 0.145a 0.145*** (0.145−2.01) 0.365** (0.145−0.475) 0.196*** (0.145−0.743) 0.145a 2.41 (2.01−3.08) Benzo[b+j]fluoranthene 0.844a 0.844a 0.844a 0.844*** (0.844−3.55) 0.844a 2.31** (0.844−3.51) 0.844a 24.5 (15.5−33.9) Benzo[k]fluoranthene 0.238** (0.134−0.642) 0.134a 0.134a 0.134*** (0.134−0.412) 0.134a 0.399** (0.134−0.594) 0.134a 3.84 (2.50−5.15) Benzo[a]pyrene 0.277*** (0.277−1.02) 0.277*** (0.277−0.398) 0.277a 0.277*** (0.277−1.24) 0.277a 1.22** (0.277−2.45) 0.277a 15.1 (9.76−20.5) Dibenzo[a,l]pyrene 0.671a 0.671a 0.671a 0.671a 0.671a 0.671a 0.671a 0.671a Dibenz[a,h]anthracene 3.97** (0.499−13.9) 0.499*** (0.499−1.66) 0.499a 0.767** (0.499−3.63) 0.499a 5.85** (0.499−9.96) 0.499a 51.1 (38.1−65.5) Benzo[ghi]perylene 3.09** (0.355−4.48) 5.08 (2.66−6.78) 1.66 (1.44−1.88) 3.80 (2.86−11.8) 3.17 (1.98−4.00) 4.83 (3.06−8.53) 2.29 (1.55−4.18) 32.9 (27.9−40.8) Indeno[1,2,3-cd]pyrene 0.185*** (0.185−1.18) 0.185a 0.185a 0.185a 0.185a 0.185a 0.185a 17.6 (13.9−23.3) PAHs 229 (200−296) 46.4 (44.0−49.4) 91.7 (64.5−124) 256 (77.6−352) 51.1 (48.8−57.5) 74.6 (44.4−125) 55.0 (49.8−137) 428 (250−631) PAHscarc 20.8 (15.8−26.0) 9.82 (8.57−11.1) 10.9 (9.00−13.3) 16.8 (13.9−23.9) 8.24 (7.45−11.7) 19.6 (9.43−23.6) 12.2 (7.19−16.1) 150 (122−186) Note:Detectionfrequencyofeachcompoundwas100%unlessotherwiseindicate.

*80%detectionfrequency<100%. **60%detectionfrequency<80%. ***15%detection.frequency<60%.

(3)

Table 2 Monohydroxyl-PAH concentrations (median #; min-max; ␮ mol/mol creatinine) measured in firefighters urine samples from different fire stations (Miranda do Douro (MRD), Torre Dona Chama (TDC), Sendim (SDM), Mirandela (MDL), Torre de Moncorvo (TMC), Vinhais (VNH), Braganc ¸a (BRG), and Freixo de Espada à Cinta (FEC)). Compound * Fire station MRD TDC SDM MDL TMC VNH BRG FEC 1OHNaph + 1OHAce 1.39 0.823–1.60 0.138 # 0.138 − 1.50 1.48 0.731 − 2.25 0.887 0.722 − 2.31 0.707 0.231 − 5.32 1.63 # 0.138 − 8.06 0.650 0.458 − 1.90 3.59 3.26 − 4.14 2OHFlu 0.147 4.40 × 10 − 2− 0.150 5.23 × 10 − 2 2.42 × 10 − 2− 0.152 1.39 × 10 − 2 9.58 × 10 − 3− 2.01 × 10 − 2 0.182 6.95 × 10 − 2− 0.212 4.40 × 10 − 2 3.40 × 10 − 2− 8.75 × 10 − 2 3.58 × 10 − 2 # 5.66 × 10 − 4− 0.134 9.35 × 10 − 2 4.71 × 10 − 2− 0.170 5.86 × 10 − 2 5.32 × 10 − 2− 6.61 × 10 − 2 1OHPhen 4.10 × 10 − 2 6.71 × 10 − 3–0.211 4.17 × 10 − 2 1.65 × 10 − 2− 7.62 × 10 − 2 1.21 × 10 − 2 1.04 × 10 − 2− 1.28 × 10 − 2 7.44 × 10 − 2 4.22 × 10 − 2− 0.103 1.41 × 10 − 2 9.67 × 10 − 3− 2.86 × 10 − 2 3.93 × 10 − 2 3.05 × 10 − 2− 4.54 × 10 − 2 8.38 × 10 − 2 7.07 × 10 − 2− 0.120 3.10 × 10 − 2 1.87 × 10 − 2− 4.33 × 10 − 2 1OHPy 3.59 × 10 − 2 9.23 × 10 − 3− 0.131 2.67 × 10 − 2 1.12 × 10 − 2− 4.10 × 10 − 2 1.35 × 10 − 2 # 1.06 × 10 − 3− 2.79 × 10 − 2 0.146 1.99 × 10 − 2− 0.166 2.10 × 10 − 2 6.07 × 10 − 3− 2.68 × 10 − 2 1.73 × 10 − 2 7.67 × 10 − 3− 4.36 × 10 − 2 5.18 × 10 − 2 3.09 × 10 − 2− 9.91 × 10 − 2 2.70 × 10 − 2 2.35 × 10 − 2− 3.13 × 10 − 2  OH-PAHs 1.61 0.889 − 1.88 0.259 0.133 − 1.56 1.52 0.780 − 2.28 1.29 0.979 − 2.62 0.786 0.281 − 5.42 1.79 0.198 − 8.13 0.879 0.737 − 2.20 3.71 3.37 − 4.27 *1OHNaph + 1OHAce: 1-hydroxynaphthalene + 1-hydroxyacenaphthene; 2OHFlu: 2-hydroxyfluorene; 1OHPHen: 1-hydroxyphenanthrene; 1OHPy: 1-hydroxypyrene. # When the urine concentration was below the LOD, the value of the respective LOD/ √ 2 was used [50] .

identified metabolites, being 1-hydroxynaphthalene(1OHNaph)

and2-hydroxynaphthalenethemainbiomarkersofoccupational

exposuretonaphthalene [37].Only fourstudieswere foundin

the literature concerning firefighters’ biological monitoring to

PAHs.Amongthem,twocharacterizedexclusively1OHPylevels

[27,38],whiletheothertwoassessedtheurinarylevelsof1OHPy

and1OHNaph[31],andtheconcentrations of1OHPyand three

hydroxyphenanthrenemetabolites[39],respectively.In orderto

evaluatefirefighters’workplaceconditionsonacontinuousbasis,

emphasisshouldbeplaced onenvironmentalmonitoring,

com-plementedbybiological monitoring.No studywasfoundabout

firefighters’occupational exposuretoPAHs thatsimultaneously

assessedenvironmentalexposurelevelsat firestations andthe

urinary levels of one or more PAH metabolites. Furthermore,

urinary 1OHAce, 2OHFlu, and 3OHB[a]P were never measured

beforeinfirefighters.

Thus,thepresentstudyaimstoassessthelevelsof18PAHs(16

USEPApriorityPAHs,dibenzo[a,l]pyrene,andbenzo[j]fluoranthene

recommended by EU [40]) in the breathing air zone of

firefighters’duringtheirworkshiftatPortuguesefirestations,and

thefirefighters’totalinternaldosebysixbiomarkersofexposure

(1OHNaph,1OHAce,2OHFlu,1OHPhen,1OHPy,and3OHB[a]P)in

urine samples.Thecontributionof personalairborneindividual

(naphthalene, acenaphthene, naphthalene+acenaphthene,

fluo-rene,phenanthrene,pyrene)andPAHsexposuretorespective

individual (1OHNaph+1OHAce, 2OHFlu, 1OHPhen, and 1OHPy)

andOH-PAHsexcretioninurinewasexploredforthefirsttime

infirefighters.

2. MaterialsandMethods

2.1. Characterizationofthesamplingsites

PortugalisoneofthefiveSouthernEuropeancountriesthatare

themostaffectedbyforestfireseveryyear[41],beingtheNorth

andCentreregionsthemostdisturbedareas[42].In2014the

dis-trictofBraganc¸a,inthesub-regionofAltoTrás-os-Montes,(north

ofPortugal),wasthethirdPortuguesedistrictwithahigher

inci-denceofburntarea[42].Thisregionischaracterizedbytypically

hotandverydrysummerswithabsolutemaximumtemperatures

exceedingthe30◦C;wintersareusuallylongandcoldwithabsolute

minimumtemperaturesreachingvaluesbelow0◦C.Samplingwas

performedateightdifferentfirestations:MirandadoDouro(MRD),

TorreDonaChama(TDC),Sendim(SDM),Mirandela(MDL),Torre

deMoncorvo(TMC),Vinhais(VNH),Braganc¸a(BRG),andFreixode

EspadaàCinta(FEC)(Fig.1).Twopairsoffirestations,namelyMDL

andTDC,aswellasMRDandSDMwere22–23kmawayfromeach

other.ThefirestationsFEC,MDL,and MRDwerelocatedinthe

urbancenterofthecity,nearcommercialshopsandbusyroads,

whilethefirehousesTMCandTDCweresituatedinvillages.FEC,

MDL,andMRDwereconstructedbefore1984whiletheotherfire

stationswereconstructedand/orrestoredafter2007.AtFEC,MDL

andMRD,thetruckbaywherefirefighters’andemergencyvehicles

wereparkedonhaddirectaccesstotheoperationalcontrolcenter

andsocialroomwherefirefightersspendmostoftheirtime(Fig.1S

(a),SupplementaryMaterial).Thedoorthatseparatedthesetwo

microenvironmentswasfrequentlyopened.AtfirestationsTDC,

SDM,TMC,VNH,andBRG,thecontrolcenterandsocialroomwere

indirectly(throughcorridorsandwithsomedivisions;Fig.1S(b),

SupplementaryMaterial)connectedwiththetruckbay.

Informationonoutdoormeteorologicalconditions,namely

tem-perature,relativehumidity,windspeed,precipitation,andsolar

radiationduringthesamplingcampaignswereretrievedfromthe

localmeteorologicalstation(Table1S,Supplementarymaterial).

(4)

aero-Fig.1.GeographicallocationofthemonitoredfirestationsinthedistrictofBraganc¸a.

dynamicdiameterof10␮m(PM10)and2.5␮m(PM2.5),nitrogen

monoxide(NO),dioxide(NO2)andoxides(NOx),sulphurdioxide

(SO2),andozone(O3)werealsomonitoredfromthe

meteorologi-calstationduringthesamplingcampaign(Table1S,Supplementary

material).

2.2. Personalairandurinesampling

Thestudypopulationconsistedofeightunitsofprofessional

firefighters servingat six municipalcities(Fig.1). Astructured

questionnaireadaptedfromvalidatedquestionnaire[43]wasfilled

by each firefighter. The questionnaire collectedinformation on

gender,age,numberofyearsasfirefighter(Table2S,

Supplemen-tary material),and factors reported tobe associated with PAH

exposures,namelysmokinghabits,andthemostconsumedmeals

(boiled,roasted,andgrilled)duringthefivedaysbeforeurine

col-lection.Subjectswereexcludedfromthestudyiftheyparticipated

infirefightingactivitieswithinfivedayspriorthesampling

cam-paignsandiftheywereexposedtotobaccosmoke.Basedonthe

informationcollectedthroughtheindividualquestionnaires,PAHs

intakethroughfoodingestionwasconsiderednotsignificant.All

participantsreadandsignedinformedconsentformsapprovedby

theEthicCommitteeofUniversityofPorto.

Personalexposuresweremonitoredduringa periodof

fifty-fourdays(JuneandJuly2014)infirefightersthatwerenotdirectly

involvedinfirefightingactivities.Ateachfirestation,airsampling

campaignsof18selectedPAHsinPM2.5wereperformedonasingle

day(6individualsatSDMandFEC;9atMRD,MDLandTMC;12at

TDC,VNHandBRG)andoveracontinuous4-hperiodofaregular

workshiftinsidethefirestation;duplicatesamplesper

individ-ualwerecollected.Duringthesamplingcampaignfirefighterswere

encouragedtomovefreelyatthefirestationasinanormal

work-ingday.Airsamplingwasdonebypersonalconstantflowsamplers

(Gilian,modelsGilAir3andProValue3;Sensidyne,USA)thatwere

placedatthewaistofeachfirefighterinawaythatcouldnotdisturb

theregularactivities;anairflowrateof2L/minwasused.Theinlets

werepositionedatthebreadingzoneoffirefighters.Airsamples

werecollectedonpolytetrafluoroethylenemembranefilterswith

polymethylpentenesupportring(2␮mporosity,Ø47mm,SKCLtd.,

UnitedKingdom).PM2.5massesweredeterminedgravimetrically

accordingto[44].Afterthesampling,filterswerestoredinafreezer

(–20◦C)beforechemicalanalysis.

Aspoturinesamplewascollectedattheendofthefirefighter

workshiftinsterilized50mLpolycarbonatecontainers.Samples

werefrozenat −20◦Cuntil analysis.Samplingcampaigns were

performedintriplicate.

Duringsamplecollection,aresearcherwaspresenttokeepa

recordofpotentialsourceactivitiesandventilationsystemstatus

(doorand windowpositions).Potentialsources ofPAHsineach

firestationwerealsocollected.Itwasobservedthatduring

sam-plingcampaigns,therewerealwaysvehicles(arriving,parking,or

leaving)onthetruckbay;smokingisnotallowedatfirestations.

2.3. PAHsandOH-PAHschromatographicanalysis

Extractionandquantification ofPAHsfromPM2.5 filters,and

OH-PAHsfromurinesampleswereperformedbypreviously

vali-datedanalyticalprocedures[45–47].PAHsandOH-PAHsextracts

wereanalysedusingaShimadzuLCsystem(Shimadzu

Corpora-tion, Kyoto,Japan) equipped withphotodiode array (PAD) and

fluorescence(FLD)detectorsonline.Separationofthecompounds

wasperformedin aC18 column(CC150/4Nucleosil 100–5C18

PAH, 150×4.0mm;5␮m particlesize; Macherey–Nagel,Duren,

Germany) maintained at room temperature (20±1◦C).

Fluo-rescencewavelength programmingwas usedtoperform better

sensitivityandminimalinterference.Eachcompoundwasdetected

atitsoptimumexcitation/emissionwavelengthpair:260/315nm

(naphthalene, acenaphthene and fluorene), 260/366nm

(phenanthrene), 260/430nm (anthracene, fluoranthene,

pyrene, benz[a]anthracene, chrysene, benzo[b+j]fluoranthene,

benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene,

(5)

0% 20% 40% 60% 80% 100% PAHs distrib utio n MRD TDC SDM MDL TMC VNH BRG FEC Fire station

5 and more rings 4-rings 2-3 rings

Fig.2.PAHsdistributionaccordingtothenumberofaromaticringsatdifferentfirestations(MirandadoDouro(MRD),TorreDonaChama(TDC),Sendim(SDM),Mirandela (MDL),TorredeMoncorvo(TMC),Vinhais(VNH),Braganc¸a(BRG),andFreixodeEspadaàCinta(FEC)).

(indeno[1,2,3–cd]pyrene) for PAHs, and 232/337nm (1OHNapt

and 1OHAce), 265/335nm (2OHFlu), 263/363nm (1OHPhen),

242/388nm(1OHPy), and308/432nm(3OHB[a]P)for OH-PAHs.

ThePAHacenaphthylene,whichshowslimitedfluorescence,was

analysedat254nminPAD.

CalibrationswithPAHsandOH-PAHsmixedstandards,using

atleast6calibrationpoints,wereperformedinacetonitrileand

methanol, respectively. Calibration curves were linearly fitted

with correlation coefficients always higher than 0.9979. RSD

values ranged from 1.8% (dibenzo[a,l]pyrene) to 9.1%

(naph-thalene) for PAHs extraction from filters. Regarding urinary

OH-PAHs,RSD values varied between1.3% (1OHNaph+1OHAce

and2OHFlu) to8.1% (1OHNaph+1OHAce,2OHFlu, and1OHPy).

Limits of detection (LODs) and quantification (LOQs) were

cal-culated as the minimum detectable amount of analyte with a

signal-to-noiseratioof3:1and10:1,respectively[48].ForPAHs,

LODsbetween1.0pg/m3 (foranthracene, benzo[k]fluoranthene,

chrysene, benz[a]anthracene, phenanthrene and

indeno[1,2,3-cd]pyrene) and 148pg/m3 (foracenaphthylene) were obtained,

withcorrespondingLOQsintherange3.4–492pg/m3.Regarding

OH-PAHs,LODsrangedbetween0.0008␮g/Lurine(for2OHFlu)

to0.195␮g/Lurine(for1OHNaph+1OHAce),whiletherespective

LOQsvariedfrom0.0028␮g/Lurineto0.650␮g/Lurine.

AllOH-PAHconcentrationswerenormalizedbyurinary

creati-nine(mol/mol).Urinarycreatininemeasurementswereperformed

accordingtotheJaffecolorimetricmethod[49].

Analyticalblanksandstandardswereanalyseddailyand

regu-larly.Eachanalysiswasperformedatleastintriplicate.

2.4. Statisticalanalysis

StatisticalanalysiswasperformedusingSPSS(IBMSPSS

Statis-tics20).PAHsandOH-PAHsmedianvalueswerecomparedthrough

thenonparametric Mann−Whitney Utest, since normal

distri-butionwasnotobservedbyKolmogorov-SmirnovwithLilliefors

correctionandShapiro−Wilk’stests.Whentheconcentrationwas

belowtheLOD,thevalueoftherespectiveLOD/√2wasused[50].

Statisticalsignificancewasdefinedasp≤0.05.Spearman

correla-tioncoefficientswerecalculatedtoexaminetherelationbetween

airborneindividualandtotalPAHconcentrationswithfirefighters’

urinaryindividualandtotalOH-PAHsforeachfirestation.

3. ResultsandDiscussion

3.1. Personalexposuremonitoring

Theconcentrations of individualand total PAHs (PAHs)in

thebreathingairzoneoffirefightersworkingateachfirestation

are presentedin Table 1.Among the18 PAHs considered,

ace-naphthylene wasthe mostabundant compound (exceptin the

environmentalexposuresoftheruralsitesofTMCandTDCwhere

itwasnotdetected)withconcentrationsrepresenting46.4%(at

FEC)to61.5%(atSDM)ofPAHs.Acenaphthyleneisacomponent

ofcrude oil, coaltar, tobaccosmokeand a productof

combus-tion which maybe produced and released tothe environment

during fires [20,30,51]; emissions from wood combustion

con-tainmoreacenaphthylenethanotherPAHs[52].Forworkersat

MRD,SDM,MDL,TMC,andBRGfirehouses,theothermost

abun-dantPAHswere,bydescendingorder,acenaphthene,naphthalene,

andphenanthrenewithcontributionsrangingfrom15.5(BRG)to

38.6%(MRD), 4.48(MDL)to16.8% (BRG),and from2.65(MRD)

to7.82%(TMC),respectively.Togetherwithacenaphthylene,these

fourPM2.5-boundPAHsrepresented84.6–95.0%ofPAHsforthose

firestations.InthebreathingairzoneoffirefightersfromFECand

VNH,dibenz[a,h]anthracenewasrespectivelythesecondandthird

predominantPAH, accounting with11.9% and 7.84% ofPAHs.

Dibenz[a,h]anthraceneconcentrationsinworkersfromthe

remain-ingsixfirestationsrepresentedonly0.30–1.73%ofPAHs.The

prevalenceof this compound indicatesa higher influencefrom

light-dutygasolinevehicleemissions[53]inthesurroundingareas

ofFECandVNHfirestations.GloballyPM2.5-boundPAHswith2–3

aromaticrings(naphthalene,acenaphthylene,andacenaphthene)

represented 63.9%(FEC) to 95.7% (MDL)of PAHs; 4 aromatic

ringcompounds(anthracene,fluoranthene,andpyrene)accounted

with0.79%(MRD)to2.05%(TMC)and5ormorearomaticringPAHs

correspondedto2.74%(MDL)to34.7%(FEC)ofPAHs(Fig.2).Itis

worthtomentionthatlighterPAHsusuallypredominateinthegas

phase[10,36]suggestingthatthedeterminedpersonalexposures

maybeunderestimated.OverallairbornePAHprofilesobtainedat

FECandVNHexhibitedthehighestcontributionsoftheheavier

molecularweightcompounds(themosthazardous),whilethoseat

MRD,SDMandMDLpresentedthelowest.Asageneralrule,PAHs

toxicityincreasesasthenumberofringsincreases(withthe

excep-tionofnaphthalene,2-ringscompoundthatisclassifiedaspossible

humancarcinogen;[8]).

GlobalmeanPAHsvariedwidely.Thehighesttotalmedian

content of PAHs was found, by descending order, in the

breathing air zone of firefighters from FEC» MDL>MRD»

SDM>VNH>BRG>TMC≈TDC, withlevels at FEC(428ng/m3)2

(256ng/m3,MDL)to9(46.4ng/m3,TDC)timessignificantlyhigher

(p≤0.036)thanattheotherfirehouses.IndoorPAHlevels,and

per-sonalexposure,dependonactivitiesconducted,occupancyrates,

physicalcharacteristicsof buildings(permeability,particle

size-specificdifference),sitespecificity,ventilationhabits,seasonand

meteorology.Theobserveddifferencesmaybemainlyattributedto

(6)

Fig.3. PAHsdistributionofa)totalcarcinogenicPAHs(PAHscar)amongthe18PAHsunderstudy(PAHs)ateachfirestation;b)individualcarcinogenicPAHsamongthe

differentfirestations(MirandadoDouro(MRD),TorreDonaChama(TDC),Sendim(SDM),Mirandela(MDL),TorredeMoncorvo(TMC),Vinhais(VNH),Braganc¸a(BRG),and FreixodeEspadaàCinta(FEC)).

twofirehouseslocatedatruralareaswithlow trafficinfluences

(TMCandTDC)presentedthelowestlevelsofPAHsinthebreathing

airzoneoffirefighters(Table1),followedbythosesituatedinurban

sitesbutconstructedand/orrestoredmorerecently(BGR,VNHand

SDM).Vehiculartrafficemissionsareoneofthemajorsourcesof

PAHsinurbanareas[54].Inaddition,theageofabuildingreflects

itsconditionand affectspenetrationofoutdoorPAH

concentra-tionstoindoorair.Theolderabuilding,thegreaterwillbethe

impactofoutdoorsourcesowingtohigherairexchangethrough

suchroutesaspoorlyfittingwindowsanddoors[55].Theurban

location(nearbusyroads),buildingage(constructedbefore1984)

andlay-outofFEC,MDL,andMRDcontributedsignificantlytothe

elevatedfirefighters’environmentalexposureatthesefirehouses.

ThetruckbayatFEC,MDLandMRDwasphysicallyseparatedfrom

theoperationalcontrolcenterandsocial room(where

firefight-ersspendmostoftheirtime)onlybyadoor(thatwasfrequently

opened).Moreover,thedeterminedlevelsatthesethreestations

werehigherthanthosereported(30.5–126.5ng/m3)fortwosites

locatedintheoutskirtsofthecityofPortothatisamore

urban-izedareaandhasmuchhighertrafficdensitythanBraganc¸adistrict

(MetropolitanAreaofPortohas2042km2with1.7millioncitizens,

whileBraganc¸adistricthasanareaof6608km2with139344

citi-zens);Portodistrictcorrespondstothenearestgeographicalregion

(Fig.1)thatwaspreviouslycharacterizedintermsofatmospheric

PAHlevels[56].

Moredetailedanalysiswasperformedconcerningthe

carcino-genicPAHs(PAHscar;Table1).Theinter-firestationscomparison

of the content of PAHscar in the breathing air zone of

fire-fighterswasFEC»MRD≈VNH>MDL>BRG≈SDM≈TDC≈TMC.In

accordance with thePAH levels,workers from FECexhibited

significantly higher (p≤0.002) PAHscar (Fig. 3a). Globally the

compoundthatcontributedthemosttoPAHscar was

naphtha-lene(39.4%atVNHto78.1%atMDL),exceptforfirefightersfrom

FECfirehouse. For thatfire station,dibenz[a,h]anthracene(with

atoxicityequivalentfactor5timeshigherthanbenzo[a]pyrene;

[9]wasthepredominantPAHaccountingwith33.8%ofPAHscar,

followedbynaphthalene(23.5%)(Fig.3b).Inaddition,firefighters

workingatVNHfirehousealsopresentedarelevantcontribution

of dibenz[a,h]anthracene (32.1% of PAHscar) in their

breath-ingair zone;for theothersites,values varied from4.1%(BRG)

to 21.1% (MRD) of PAHscar. The maximum concentrations of

benzo[a]pyrene,the PAHsmarker ofcarcinogenicity, accounted

with10%atFEC,6.7%atVNH,1.5–3.4%ofPAHscarfortheother

firehouses(Fig.3b).Furthermore,itisimportanttomentionthat

the median concentrations of benzo[a]pyrene of FEC

firefight-ersexceeded10to20timestheexistentlimitvalueof1ng/m3

(annualmeantotalcontentinPM10fraction)forambientair[40].

Dibenzo[a,l]pyrene, which carcinogenic potency has been

esti-matedtobeapproximately100timesthatofbenzo[a]pyrene[9],

presented concentrations lowerthan 0.671ng/m3 (0.44–8.2% of

(7)

TDC 66% 16% 11% 7% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy MRD 85% 7% 5% 3% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy SDM 96% 1% 1% 2% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy MDL 76% 12% 5% 7% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy TMC 88% 8% 2% 2% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy VNH 87% 3% 7% 3% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy BRG 75% 10% 9% 6% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy FEC 96% 2% 1% 1% 1OHNapt+1OHAce 2OHFlu 1OHPhen 1OHPy

Fig. 4. Distribution of monohydroxyl-PAHs (1OHNaph+1OHAce: 1-hydroxynaphthalene+1-hydroxyacenaphthene; 2OHFlu: 2-hydroxyfluorene; 1OHPHen: 1-hydroxyphenanthrene;1OHPy:1-hydroxypyrene)intheurinesamplesoffirefightersatdifferentfirestations(MirandadoDouro(MRD),TorreDonaChama(TDC),Sendim (SDM),Mirandela(MDL),TorredeMoncorvo(TMC),Vinhais(VNH),Braganc¸a(BRG),andFreixodeEspadaàCinta(FEC)).

FirefighterspersonalexposuretoPAHsatPortuguesefire

sta-tionswerewellbelowtheexistentPAHsoccupationalexposure

limits proposed by the American Conference of Governmental

IndustrialHygienists(ACGIH),theNIOSHandtheUSOccupational

SafetyandHealthAdministration(OSHA)(Table3S,Supplementary

material).

Studiesregardingfirefighters’occupationalexposuretoPAHs

atfirestationsare veryscarce[23,32];noneinEuropean

facili-ties.Moreover,comparisonbetweenvariousstudiesishampered

bydifferent designs(analysed particulate fractionor/and

num-berofdeterminedPAHs).Shenandcoworkers[32]collecteddust

samplesfromvacuumcleanerbagsusedtoroutinelycleantwenty

Americanfirehouses.MediantotalPAHsconcentrationindustwas

4124ng/g.Amongthe10compoundsunderstudy,pyrenewasthe

predominantPAHmeasuredinthesedustsamples,followed,in

decreasingorder,bybenzo[ghi]perylene,fluorantheneand

chry-sene.Baxterandcolleagues[23]conductedanairmonitoringstudy

inthreedifferentenvironments,includinginthefiretruckbayand

equipmentstoragearea,thekitchen/commonarea,andthe

sleep-ingquartersoftwoAmericanfirestations[23].Surprisingly,out

of16quantifiedPAHs,onlynaphthalene(at9.22–9.24␮g/m3)was

(8)

truckbayofonefirehouse.Medianconcentrationsofnaphthalene

(4.95atTMCto12.2ng/m3atMRD,Table1)inthebreathingairzone

ofPortuguesefirefighterswerelowerthanthosereportedlevels

[23].Furthermore,somerecentstudies[20,30]havereportedthat

aquantifiabledepositionofPAHsoutsideandinsidefirefighters’

ensembles(helmets,gloves,hoods,andturnoutgear)occurswhich

maysignificantlycontributetototalPAHsbodyburden.Further

researchisrequiredtoinvestigatethisaspect.

3.2. Biomonitoring

Biomonitoringoffirefightersisaneffectiveassessmenttoolto

understandtotalexposures,especiallytocompoundssuchasPAHs

thatarenotabsorbedexclusivelybyinhalation,butalsothrough

dermalcontactandfoodingestion[18–20].Medianconcentrations

ofindividualandtotalOH-PAHs(OH-PAHs)intheurinesamples

offirefightersarepresentedinTable2.UrinaryOH-PAHlevelswere

normalizedbythecreatininelevelsofeachfirefighter.Globally

cre-atinineconcentrationsintheurineoffirefightersrangedbetween

0.82 to2.74g/L, beingwithinthe acceptedcreatininerange for

healthypeople(>0.3and<3g/L)[57].SincePAHsareubiquitous

pollutants, each participatingfirefighterwas requestedto fill a

questionnaireregardingtheexistenceofpossibleexposuretoPAHs

outsidetheoccupationalenvironment.Onlynon-smoking

firefight-erswithdietaryexclusiveofbarbecueanddeep-friedfoodswithin

fivedaysbeforeurinesamplescollectionwereconsidered.Thus,

itwasassumedthatfirefightershadsimilar(non-significant)

lev-elsofPAHsexposurethroughfoodconsumptionandthattobacco

smokecontributionwasnegligible.Still,theassessmentoftobacco

biomarkerdata,andtheuseofpre-exposureurinesamples,would

beprecioustovalidatetheseassumptions.Knowledgeofthe

elim-inationkineticsoftheurinaryOH-PAHsisessentialtodefinethe

urine sampling strategy. Limited studies regarding elimination

kineticsofOH-PAHsinhumansareavailable:half-lifeofurinary

1OHPyexcretionratesvariesbetween6to35hafterinhalation

exposure[58,59]and 4.4[60]to12h[61]afteringestion

expo-sure;half-liferangingfrom3.3to6.2hfor1OHNaph,2.3to4.0h

for2OHFlu,and4.3to6.1hfor1-OHPhenwerealsoreportedfor

ingestionexposure[37].1OHNaph+1OHAceweredetectedinmore

than87%ofsamples,2-OHFluand1OHPypresenteddetectionrates

above96%and1OHPhenwasdetectedinallurinesamples.In

agree-mentwithsomepreviousstudies,urinary3OHB[a]P(metabolite

ofthePAHmarkerofcarcinogenicity)presentednullorverylow

detectionrates[37,62,63].Somestudieswithanimalsrevealedthat

urinaryconcentrationsof3OHB[a]Prepresentonly0.1–0.2%ofthe

benzo[a]pyrenedose,duetoacomplexmetabolismthatproduces

severaldifferentmetaboliteswhicharemainlyexcretedinfeces

[64].

Overalltheinter-comparisonofurinaryOH-PAHsof

firefight-ersfromfirestations:FEC»VNH>MRD≈SDM>MDL>BRG>TMC»

TDC,followedthesametrendasthecontentofairbornePAHs

withtheexceptionofworkersfromVNHandMDLthatexchanged

position.Accordingly,urinaryOH-PAHsinindividualsfromFEC

weresignificantlyelevated(p≤0.002)(2(MRD)to14(TDC)times

higher)than at other firehouses.The concentrations of urinary

OH-PAHsinfirefighterswereinverselyrelatedtothesizeof

com-pounds,i.e.,thehigherthemolecularweightthelowerthedetected

OH-PAH concentrations (Table 2). Urinary 1OHNaph+1OHAce

wereby far thepredominant compounds accounting with66%

(TDC)to96%ofOH-PAHs(FEC,SDM),beingfollowedby2OHFlu

(1%atSDMto16%atTDC),1OHPhen(1%atSDMandFECto11%

atTDC),and1OHPy(1%atFECto7%atTDC)(Fig.4).This

distri-butionprofilefollowsthesamepatternasthePAHsdistribution

inthebreathingairzoneoffirefighterswhileworkingatfire

sta-tions(Table1);airbornePAHswithtwoandthreearomaticrings

werethemostabundantonesinallfirestations(63.9%atFECto

95.7%ofPAHsatMDL,Fig.2).Urinary1OHNaph+1OHAce

con-centrationsweresignificantlydifferent(p≤0.002)fromtheother

metabolitesfor all groups of individuals (Table2). Themedian

concentrationsofurinary1OHPyinPortuguesefirefightersranged

between1.36×10−2 (SDM)to0.146(MDL)␮mol/molcreatinine

(Table2).Nowadays,measurementsofurinary1OHPyareroutinely

appliedtocontrolindustrialexposuretoPAHsincokeovensand

primaryaluminumproductionandtocontrolexposureof

profes-sionalswhen handlingcoal tarderived products[34]. Although

noreferencestandardguidelinesareestablishedforurinary

OH-PAHs,Jongeneelen[33,34]proposedano-biologicaleffectlevelof

1.4␮mol/molcreatinineof1-hydroxypyreneinurineofexposed

workers,i.e.thelowestreportedlevelatwhichnogenotoxiceffects

werefound.InadditiontheBiologicalExposureIndexCommittee

ofACGIHstatedthatthepresenceofurinary1OHPyabovea

bench-marklevelofabout1␮g/L(0.5␮mol/mol)indicatesoccupational

exposure to PAHs, since very few non-occupationally exposed

persons, smokers or non-smokers, will excrete this amount of

1OHPy[65].ACGIHalsorecommendsthatthebenchmarkshould

beconsideredasapost-shiftlevel.Thequantifiedconcentrations

of post-shifturinary 1OHPy infirefighters fromallfire stations

werewellbelowthoserecommendedvalues.Thisobservationis

importantsincefirefightersparticipatingatfirefightingactivities

areheavilyexposedtoPAHs[18–20]andthusmaypresenthigh

backgroundlevelsof1OHPy.

Regardingcharacterizationoffirefighters’exposure,1OHPyand

1OHNaph are the more investigated metabolites [27,31,38,39].

The comparison ofthedetected levelswithpreviousreports is

extremelydifficultsince,inthemajorityofthestudies,

concen-trationsarenotadequatelynormalizedwiththepersonalurinary

creatininelevels.Creatinineiseliminatedfromthehumanbodyat

aconstantrate,andthusiswidelyusedtominimizethevariability

ofparameterssuchasindividualfluidintake,bodytemperature,

physicalexerciseandambienttemperature,whichchangesfrom

persontoperson.Still,urinary1OHPyconcentrationsinPortuguese

firefighters(overallrange:0.078–3.28nmol/L)wereslightlyhigher

thanlevelsfoundinfirefightersbeforetheirparticipationingas

simulators(0.6–1.2nmol/L)butlowerthanconcentrationsat

div-ingsimulatorfires(0.6–9.2nmol/L)[32].Inaddition1OHPylevels

weresimilarwiththelevelsreportedinfirefightersbeforetheir

participationinprescribedpileburns(<0.01–0.56␮g/L[27])but

slightly higher than theconcentrations observedin thecontrol

groupoffirefightersthatwerepresentattheWorldTradeCenter

Collapsein2001(157ng/Linthisstudyversus62.5ng/L[39]).Only

twostudiesreportedconcentrationsofothermetabolites,namely

severalOHPhen[39]and1OHNaph[31]compoundsamong

fire-fighter’surine.Urinary1OHPhenlevelsweresimilarwiththose

observedinthecontrolgroupoffirefighters(170ng/Linthisstudy

versus158ng/L[39]).Infirefighters,urinary1OHAce,2OHFlu,and

3OHB[a]Pwereneverassessedbefore.UrinaryOH-PAHsexcretion

infirefightersduringtheirregularworkatfirestationswaslower

thanlevelsreportedforotherindustrialworkerswithknownPAHs

exposure[63,66–70].

3.3. CorrelationsbetweenairbornePAHsandurinaryOH-PAHs

The possible contribution of airborne individual

(naph-thalene, acenaphthene, naphthalene+acenaphthene, fluorene,

phenanthrene,and pyrene)andPAHs torespective individual

(1OHNaph+1OHAce, 2OHFlu,1OHPhen, and 1OHPy)and

OH-PAHsexcretioninthepost-shifturine wasestimated.Moderate

tostrongcorrelationswereobservedbetweenPAHsandurinary

OH-PAHs(ranging fromr=0.367,p=0.332atTMCtor=0.886,

p=0.019at FEC)for firefightersfromsixfire stations(FEC, BRG,

MDL, MRD, TDC, TMC); statistical significance was reachedfor

(9)

BRG(r=0.839,p=0.001)andFEC(r=0.886,p=0.019)whichwere

threeofthefirehouseswherethehighestenvironmentalexposure

weredetected(Table1).

Thesefindingsareinagreementwiththosedescribedforcoke

ovenworkers(r=0.680,p≤0.01betweenPAHsof15compounds

and OH-PAHs of 10 metabolites) [61]. The positive

correla-tionsconfirmthatOH-PAHexcretionincreaseswithanincreasing

exposureof PAHs at fire stations. It seems that, atthese sites,

firefighters had fire stationindoor air as theirmajor exposure

source of PAHs. Also, PAHs correlated well with 1OHPy, the

biomarkerofPAHsexposure,forindividualsfromMRD(r=0.703,

p=0.035),SDM(r=0.941,p=0.005),MDL(r=0.262,p=0.531)and

VNH(r=0.944,p≤0.001).Theseurbansitesareinthelistofthe

5firehouseswhereenvironmentalPAHsexposurewerethe

high-est(FEC»MDL>MRD»SDM>VNH>BRG>TMC≈TDC;Table1);the

onlyobservedexceptionwasFEC.Theseresultssuggestthat1OHPy

maybeasuitable biological indicatorofinternal doseof

expo-suretothosePAHsthatareemittedbythepredominantsource.

Thesecorrelations arehigher thanthose reportedincoke oven

workers(r=0.456,p<0.01;[63])butsimilarwiththerelationships

described in workersemployed in coke production, production

ofgraphite electrodes, special carbon products, and production

ofrefractorymaterials(r=0.717,p<0.01)[70].Othersignificant

relationshipswerereachedbetweennaphthalene+acenaphthene

withurinary1OHNaph+1OHAceforfirefightersatMDL(r=0.833,

p=0.010),fluoreneand2OHFluatFEC(r=0.771,p=0.072)andBRG

(r=0.736,p=0.006),phenanthreneand1OHPhenatFEC(r=0.971,

p=0.001);andpyrenewith1OHPyatTMC(r=0.878,p=0.002)and

VNH(r=0.745,p=0.005).Yamanoetal.[63]andRossbachetal.

[70]alsoreportedmoderatetostrongcorrelationsbetweenurinary

metaboliteconcentrationandpersonalexposuretotherespective

PAH.

Globallytheseresultssuggest thatairbornePAHsatfire

sta-tionsmaycontributetofirefighters’totalPAHsbodyburden;the

influenceismoreevidentinfirefightersexposedtothehighest

lev-els.Stilltheexistenceofothersignificantcommonsources(food,

homeairand/oroutdoorair)cannotbediscarded.Naphthaleneand

acenaphthenearethemorevolatilecompoundsandmostoftheir

environmentallevelsenterinthehumanbodymainlythroughair.

Fluorene,phenanthreneandpyreneareabsorbedthroughthe

res-piratorytractbutalsobythegastrointestinaltracts, andbythe

skin.

4. Conclusions

Thisworkcharacterizedfirefighters´ıexposuretoPAHsduring

theirworkshiftateightPortuguesefirestationsbypersonal

expo-suremonitoringandbiomonitoring.Overall,PM2.5-boundPAH

concentrationsrangedfrom46.4–428ng/m3,with2–3aromatic

ringsaccountingwith63.9–95.7%ofPAHs.PAHswith4–5ormore

aromaticrings correspondedto0.789–2.05% and 2.54–34.7% of

PAHs,respectively.Theobtaineddatahighlightedtheimportance

ofsitespecificityandpoorbuildingconstruction/conservation,as

wellasinappropriatebuildinglayoutonenvironmentalPAH

lev-elsatthestudiedfirestations.Still,firefighter’spersonalexposure

toPAHsatPortuguesefirestationswaswellbelowtheexistent

occupationalexposurelimits.

In accordance with the airborne PAHs profile, urinary

1-hydroxynaphthalene and 1-hydroxyacenaphthene were the

predominant metabolites (66–96% OH-PAHs). Thus, it is

rec-ommendedthattotalbodyburdenofPAHsshouldnotbebased

exclusivelyon1OHPybiomonitoring,asithasbeenperformedin

thelargemajorityofstudies.Inaddition,thecontributionofsome

selectedairborneindividualcompoundsandPAHstorespective

individualandOH-PAHs excretioninthepost-shift urinewas

estimatedforthefirsttimeinfirefighters.Theattainedsignificant

positivecorrelationsforfirefightersfromfourfirestationsindicated

theinfluenceofoccupationalexposureonmetabolitelevels.Results

foralargernumberoffirestations,participantsandnumberof(air

andurine)samplesareneededtodrawmoremeaningfuland

sta-tisticallymoresignificantconclusions.Also,amorecomprehensive

monitoringthatincludesallpossiblesources(food,homeand

out-doorair,etc.)wouldbeprecioustogivemorequantitativesupport

totheimpactofoccupationalexposureonfirefighter’stotalPAHs

internaldose.

Conflictofinterest

Theauthorsdeclarethattherearenoconflictsofinterest.

Statementofnovelty

Thisworkcharacterizedfirefighters’exposuretoPAHsduring

theirworkshiftateightfirestationsbypersonalmonitoring(18

PAHs)andbiomonitoring(sixurinarymetabolites).Onlytwo

stud-ieswerefoundregardingfirefighters’environmentalexposureto

PAHsatfirestations,bothperformedinUSA.Noinformationexists

concerningothercountries. Moreover,nostudywasfoundthat

simultaneouslyassessedairbornePAHexposurelevelsatfire

sta-tionsand urinary levelsof oneor more PAH metabolites. Also,

contributionofpersonalairborneindividualandtotalPAHs

expo-suretorespectiveindividualandtotalOH-PAHsexcretioninurine

wasexploredforthefirsttimeinfirefighters.

Acknowledgments

TheauthorsarethankfulforthecooperationofEscolaSuperior

deSaúdefromInstitutoPolitécnicodeBraganc¸aandtoallfirefighters

involvedinthestudy.ThisworkwassupportedbyEuropeanUnion

(FEDERfundsthroughCOMPETE)andNationalFunds(FCT)through

projectsUID/QUI/50006/2013andUID/EQU/00511/2013-LEPABE,

bytheFCT/MECwithnationalfundsandco-fundedbyFEDERin

thescopeofthe<gn1>P2020</gn1>PartnershipAgreement.

Addi-tionalfinancialsupportwasprovidedbyFCTthroughfellowships

SFRH/BD/80113/2011andSFRH/BPD/65722/2009.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.jhazmat.2016.03.

012.

References

[1]IARCMonographsontheEvaluationofCarcinogenicRiskstoHumans. Painting,firefightingandshiftwork,InternationalAgencyforResearchon Cancer98(2010)Lyon,France.

[2]NIOSHPocketGuidetoChemicalHazards.U.S.DepartmentofHealthand HumanServices,PublicHealthService,CentersforDiseaseControland Prevention,NationalInstituteforOccupationalSafetyandHealth(2007) Cincinnati,Ohio.

[3]IARCMonographsontheEvaluationoftheCarcinogenicRiskstoHumans: Somenon-heterocyclicpolycyclicaromatichydrocarbonsandsomerelated exposures.InternationalAgencyforResearch92(2010)1–853.

[4]IARCMonographsontheEvaluationoftheCarcinogenicRiskstoHumans: naphthalene.Vol.82(2002)Lyon,France:WorldHealthOrganization, InternationalAgencyforResearchonCancer.

[5]WorldHealthOrganization,Stateofthescienceofendocrinedisrupting chemicals2012UnitedNationsEnvironmentProgrammeandtheWorld HealthOrganization(2013)Geneva.

[6]USEnvironmentalProtectionAgency,GuidelinesforCarcinogenRisk Assessment,EPA/630/P-03/001F,USEnvironmentalProtectionAgency2005 Washington,D.C.,[2015-12–19].Availablefrom:

<http://www.epa.gov/raf/publications/pdfs/CANCERGUIDELINESFINAL 3-25-05.pdf>.

(10)

[7]S.S.Franco,A.C.Nardocci,W.M.R.Günther,PAHbiomarkersforhumanhealth riskassessment:areviewofthestate-of-the-art,CadernoSaúdePública24 (2008)569–580.

[8]IARCMonographsontheEvaluationofCarcinogenicRiskstoHumans:Some traditionalherbalmedicines,somemycotoxins,naphthaleneandstyrene InternationalAgencyforResearchonCancer8220021–556.

[9]K.W.Okona-Mensah,J.Battershill,A.Boobis,R.Fielder,Anapproachto investigatingtheimportanceofhighpotencypolycyclicaromatic hydrocarbons(PAHs)intheinductionoflungcancerbyairpollution,Food Chem.Toxicol.43(2005)1103–1116.

[10]M.Oliveira,K.Slezakova,C.Delerue-Matos,M.C.Pereira,S.Morais,Exposure topolycyclicaromatichydrocarbonsandassessmentofpotentialrisksin preschoolchildren,Environ.Sci.Pollut.R.22(2015)13892–13902.

[11]K.Slezakova,D.Castro,C.Delerue-Matos,M.C.Alvim-Ferraz,S.Morais,M.C. Pereira,Impactofvehiculartrafficemissionsonparticulate-boundPAHs: levelsandassociatedhealthrisks,Atmos.Res.127(2013)141–147.

[12]K.Slezakova,J.C.M.Pires,D.Castro,M.C.M.Alvim-Ferraz,C.Delerue-Matos,S. Morais,M.C.Pereira,PAHairpollutionataPortugueseurbanarea: Carcinogenicrisksandsourcesidentification,Environ.Sci.Pollut.Res.20 (2013)3932–3945.

[13]J.Lewtas,Airpollutioncombustionemissions:characterizationofcausative agentsandmechanismsassociatedwithcancer,reproductive,and cardiovasculareffects,Mutat.Res.637(2007)95–133.

[14]D.M.Gaughan,C.A.Piacitelli,B.T.Chen,B.F.Law,M.A.Virji,N.T.Edwards, etal.,Exposuresandcross-shiftlungfunctiondeclinesinwildland firefighters,J.Occup.Environ.Hyg.11(2014)591–603.

[15]D.M.Gaughan,P.D.Siegel,M.D.Hughes,C.-Y.Chang,B.F.Law,C.R.Campbell, etal.,Arterialstiffness,oxidativestress,andsmokeexposureinwildland firefighters,Am.J.Ind.Med.57(2014)748–756.

[16]E.S.Soteriades,D.L.Smith,A.J.Tsismenakis,D.M.Baur,S.N.Kales,

CardiovasculardiseaseinUSfirefighters-asystematicreview,Cardiol.Rev.19 (4)(2011)202–215.

[17]T.F.Booze,T.E.Reinhardt,S.J.Quiring,R.D.Ottmar,Ascreening-level assessmentofthehealthrisksofchronicsmokeexposureforwildland firefighters,J.Occup.Environ.Hyg.1(2004)296–305.

[18]K.W.Fent,J.Eisenberg,D.Evans,D.Sammons,S.Robertson,C.Striley,etal., Evaluationofdermalexposuretopolycyclicaromatichydrocarbonsinfire fighters,HealthHazardEvaluationReportNo2010-0156-3196,UnitedStates DepartmentofHealthandHumanServices,CentersforDiseaseControland Prevention(2013)NationalInstituteforOccupationalSafetyandHealth. (2013).

[19]K.W.Fent,J.Eisenberg,J.Snawder,D.Sammons,J.D.Pleil,M.A.Stiegel,etal., SystemicexposuretoPAHsandbenzeneinfirefighterssuppressingcontrolled structurefires,Ann.Occup.Hyg.58(7)(2014)830–845.

[20]K.M.Kirk,M.B.Logan,Firefightinginstructors’exposurestopolycyclic aromatichydrocarbonsduringlivefiretrainingscenarios,J.Occup.Environ. Hyg.12(2015)227–234.

[21]B.Wei,K.U.Alwis,Z.Li,L.Wang,L.Valentin-Blasini,C.S.Sosnoff,Y.Xia,K.P. Conway,B.C.Blount,UrinaryconcentrationsofPAHandVOCmetabolitesin marijuanausers,Environ.Int.88(2016)1–8.

[22]K.-H.Kim,S.A.Jahan,E.Kabir,R.J.C.Brown,Areviewofairbornepolycyclic aromatichydrocarbons(PAHs)andtheirhumanhealtheffects,Environ.Int. 60(2013)71–80.

[23]C.T.Baxter,J.D.Hoffman,M.J.Knipp,T.Reponen,E.N.Haynes,Exposureof firefighterstoparticulatesandpolycyclicaromatichydrocarbons,J.Occup. Environ.Hyg.11(2014)D85–D91.

[24]D.M.Bolstad-Johnson,J.L.Burgess,C.D.Crutchfield,S.Storment,R.Gerkin,J.R. Wilson,Characterizationoffirefighterexposuresduringfireoverhaul,AIHAJ 61(5)(2000)636–641.

[25]K.W.Fent,D.E.Evans,Assessingtherisktofirefightersfromchemicalvapors andgasesduringvehiclefiresuppression,J.Environ.Monit.13(2011) 536–543.

[26]J.D.Pleil,M.A.Stiegel,K.W.Fent,Exploratorybreathanalysisforassessing toxicdermalexposuresoffirefightersduringsuppressionofstructuralburns, J.BreathRes8(2014)037107.

[27]M.S.Robinson,T.R.Anthony,S.R.Littau,P.Herckes,X.Nelson,G.S.Poplin, etal.,OccupationalPAHexposuresduringprescribedpileburns,Ann.Occup. Hyg.52(6)(2008)497–508.

[28]B.M.Alexander,C.T.Baxter,Plasticizercontaminationoffirefighterpersonal protectiveclothing−apotentialfactorinincreasedhealthrisksinfirefighters, J.Occup.Environ.Hyg.11(2014)D43–D48.

[29]T.Z.Fabian,J.L.Borgerson,P.D.Gandhi,C.T.Baxter,C.S.Ross,J.E.Lockey,etal., Characterizationoffirefightersmokeexposure,FireTechnol.50(2014) 993–1019.

[30]K.M.Kirk,M.B.Logan,Structuralfirefightingensembles:accumulationand off-gassingofcombustionproducts,J.Occup.Environ.Hyg.12(2015) 376–383.

[31]J.Laitinen,M.Mäkelä,J.Mikkola,I.Huttu,Firefightingtrainers’exposureto carcinogenicagentsinsmokedivingsimulators,Toxicol.Lett.192(2010) 61–65.

[32]B.Shen,T.P.Whitehead,S.McNeel,F.R.Brown,J.Dhaliwal,R.Das,etal.,High levelsofpolybrominateddiphenylethersinvacuumcleanerdustfrom CaliforniaFireStations,Environ.Sci.Technol.49(2015)4988–4994.

[33]F.J.Jongeneelen,Benchmarkguidelineforurinary1-hydroxypyreneas biomarkerofoccupationalexposuretopolycyclicaromatichydrocarbons, Ann.Occup.Hyg.45(2001)3–13.

[34]F.J.Jongeneelen,Aguidancevalueof1-hydroxypyreneinurineinviewof acceptableoccupationalexposuretopolycyclicaromatichydrocarbons, Toxicol.Lett.231(2014)239–248.

[35]F.Gomes,M.Oliveira,M.J.Ramalhosa,C.Delerue-Matos,S.Morais,Polycyclic aromatichydrocarbonsincommercialsquidsfromdifferentgeographical origins:Levelsandrisksforhumanconsumption,FoodChem.Toxicol.59 (2013)46–54.

[36]M.Oliveira,K.Slezakova,C.Delerue-Matos,M.C.Pereira,S.Morais,Polycyclic aromatichydrocarbons:levelsandphasedistributionsinpreschool environments,IndoorAir25(2015)557–568.

[37]Z.Li,L.Romanoff,S.Bartell,E.N.Pittman,D.A.Trinidad,M.McClean,etal., Excretionprofilesandhalf-livesoftenurinarypolycyclicaromatic

hydrocarbonmetabolitesafterdietaryexposure,Chem.Res.Toxicol.25(2012) 1452–1461.

[38]C.Caux,C.O’Brien,C.Viau,Determinationoffirefighterexposuretopolycyclic aromatichydrocarbonsandbenzeneduringfirefightingusingmeasurement ofbiologicalindicators,AppliedOccupationalandEnvironmentalHygiene17 (5)(2002)379–386.

[39]P.Edelman,J.Osterloh,J.Pirkle,S.P.Caudill,J.Grainger,R.Jones,etal., BiomonitoringofchemicalexposureamongNewYorkCityfirefighters respondingtotheWorldTradeCenterfireandcollapse,Environ.Health Perspect.111(2003)1906–1911.

[40]DirectiveoftheEuropeanParliamentandoftheCouncilrelatingtoarsenic, cadmium,mercury,nickelandpolycyclicaromatichydrocarbonsinambient airDirective2004/107/ECOff.J.Eur.Union.,L2320053–16.

[41]JointResearchCentreTechnicalReports,ForestfiresinEurope,MiddleEast andNorthAfrica2014JointreportofJRCandDirectorate-General Environment(2015)Luxembourg.

[42]InstitutodaConservac¸ãodaNaturezaedasFlorestas,ProvisonalReportof ForestFires−2014,DepartamentodeGestãodeáreasClassificadas,Públicase deProtecc¸ãoFlorestal2014Portugal.

[43]WorldHealthOrganization,WorldHealthSurveyB−Individual

Questionnaire,WorldHealthOrganizationEvidenceandInformationPolicy. (2002)[2015-11–09]Availablefrom:

http://www.who.int/healthinfo/survey/whslongindividuala.pdf.

[44]K.Slezakova,D.Castro,C.Delerue-Matos,S.Morais,M.C.Pereira,Levelsand risksofparticulate-boundPAHsinindoorairinfluencedbytobaccosmoke:A fieldmeasurement,Environ.Sci.Pollut.Res.21(2014)4492–4501.

[45]D.Castro,K.Slezakova,M.T.Oliva-Teles,C.Delerue-Matos,M.C.Alvim-Ferraz, S.Morais,M.C.Pereira,Analysisofpolycyclicaromatichydrocarbonsin atmosphericparticulatesamplesbymicrowave–assistedextractionand liquidchromatography,J.Sep.Sci.32(2009)501–510.

[46]D.Castro,K.Slezakova,C.Delerue–Matos,M.Alvim–Ferraz,S.Morais,M.C. Pereira,Polycyclicaromatichydrocarbonsingasandparticulatephasesof indoorenvironmentinfluencedbytobaccosmoke:levels,phasedistribution andhealthrisks,Atmos.Environ.45(2011)1799–1808.

[47]T.Chetiyanukornkul,A.Toriba,T.Kameda,N.Tang,K.Hayakawa, Simultaneousdeterminationofurinaryhydroxylatedmetabolitesof naphthalenefluorene,phenanthreneandpyreneasmultiplebiomarkersof exposuretopolycyclicaromatichydrocarbons,Anal.Bioanal.Chem.386 (2006)712–718.

[48]J.N.Miller,J.C.Miller,StatisticsforAnalyticalChemistry,PearsonEducation Ltd,Harlow.(2000).

[49]A.S.Kanagasabapathy,S.Kumari,Guidelinesonstandardoperating proceduresforclinicalchemistry,WorldHealthOrganization,RegionalOffice forSouth-EastAsia,NewDelhi(2000)25–28.

[50]R.W.Hornung,L.D.Reed,Estimationofaverageconcentrationinthepresence ofnondetectablevalues,Appl.Occup.Environ.Hyg.5(1990)46–51.

[51]T.-C.Lin,F.-H.Chang,J.-H.Hsieh,H.-R.Chao,M.-R.Chao,Characteristicsof polycyclicaromatichydrocarbonsandtotalsuspendedparticulateinindoor andoutdooratmosphereofaTaiwanesetemple,A,JournalofHazardous Materials5(2002)1–12.

[52]J.Perwak,MByrne,S.Coonsetal.Anexposureandriskassessmentfor benzo[u]pyreneandotherpolycyclicaromatichydrocarbons.VolumeIV. Benzo[u]pyrene,acenaphthylene,benz[a]anthracene,benzo[b]fluoranthene, benzo[k]fluroanthene,benzo[g,h,i]perylene,chrysene,dibenz[u,

h]anthracene,andindeno[l,2,3-c,a]pyrene(1982)Washington,D.C.:US EnvironmentalProtectionAgency,OfficeofWaterRegulationsandStandards. EPA440/4-85-020-V4.

[53]K.Ravindra,R.Sokhi,R.V.Grieken,Atmosphericpolycyclicaromatic hydrocarbons:sourceattribution,emissionfactorsandregulation,Atmos. Environ.42(2008)2895–2921.

[54]K.Slezakova,D.Castro,C.Delerue-Matos,M.C.Alvim-Ferraz,S.Morais,M.C. Pereira,Impactofvehiculartrafficemissionsonparticulate-boundPAHs: Levelsandassociatedhealthrisks,Atmos.Res.127(2013)141–147.

[55]WorldHealthOrganization,Guidelinesforindoorairquality:selected pollutants,WorldHealthOrganizationRegionalOfficeforEurope,2010 Copenhagen,Denmark.

[56]M.Albuquerque,M.Coutinho,C.Borrego,Long-termmonitoringandseasonal analysisofpolycyclicaromatichydrocarbons(PAHs)measuredoveradecade intheambientairofPortoPortugal,Sci,TotalEnviron.543(2016)439–448.

[57]WorldHealthOrganization,BiologicalMonitoringofChemicalexposurein Workplace-guidelines,WorldHealthOrganization1996Geneva.

[58]S.Brzeznicki,M.Jakubowski,B.Czerski,Eliminationof1-hydroxypyreneafter humanvolunteerexposuretopolycyclicaromatichydrocarbons,Int.Arch. Occup.Environ.Health70(1997)257–260.

(11)

[59]F.J.Jongeneelen,F.E.VanLeeuwen,S.Oosterink,R.B.Anzion,L.F.vanDer,R.P. Bos,H.G.vanVeen,Ambientandbiologicalmonitoringofcokeovenworkers: determinantsoftheinternaldoseofpolycyclicaromatichydrocarbons,Br.J. Ind.Med.47(1990)454–461.

[60]T.J.Buckley,P.J.Lioy,Anexaminationofthetimecoursefromhumandietary exposuretopolycyclicaromatichydrocarbonstourinaryeliminationof 1-hydroxypyrene,Br.J.Ind.Med.49(1992)113–124.

[61]C.Viau,G.Carrier,A.Vyskocil,C.Dodd,Urinaryexcretionkineticsof 1-hydroxypyreneinvolunteersexposedtopyrenebytheoralanddermal route,Sci.TotalEnviron.163(1995)179–186.

[62]J.Gündel,K.H.Schaller,J.Angerer,Occupationalexposuretopolycyclic aromatichydrocarbonsinafireproofstoneproducingplant:biological monitoringof1-hydroxypyrene,1-2-3-and4-hydroxyphenanthrene, 3-hydroxybenz(a)anthraceneand3-hydroxybenzo(a)pyrene,Int.Arch. Occup.Environ.Health73(2000)270–274.

[63]Y.Yamano,K.Hara,M.Ichiba,T.Hanaoka,G.Pan,T.Nakadate,Urinary 1-hydroxypyreneasacomprehensivecarcinogenicbiomarkerofexposureto polycyclicaromatichydrocarbons:across-sectionalstudyofcokeoven workersinchina,Int.Arch.Occup.Environ.Health87(2014)705–713.

[64]C.Marie,M.Bouchard,R.Heredia-Ortiz,C.Viau,A.Maitre,Atoxicokinetic studytoelucidate3-hydroxybenzo(a)pyreneatypicalurinaryexcretion profilefollowingintravenousinjectionofbenzo(a)pyreneinrats,J.Appl. Toxicol.30(2010)402–410.

[65]AmericanConferenceofGovernmentalIndustrialHygienists,Documentation foraRecommendedBEIofPolycyclicAromaticHydrocarbonsAmerican ConferenceofGovernmentalIndustrialHygienists2010Cincinatti,Ohio,USA. [66]D.Barbeau,S.Lutier,V.Bonneterre,R.Persoons,M.Marques,C.Herve,A.

Maitre,Occupationalexposuretopolyciclicaromatichydrocarbons:relations betweenatmosphericmixtures,urinarymetabolitesandsamplingtimes,Int. Arch.Occup.Environ.Health88(2015)1119–1120.

[67]D.Barbeau,R.Persoons,M.Marques,C.Herve,G.Laffitte-Rigaud,A.Maitre, Relevanceofurinary3-hydroxybenzo(a)pyreneand1-hydroxypyreneto assessexposuretocarcinogenicpolycyclicaromatichydrocarbonmixturesin metallurgyworkers,Ann.Occup.Hyg.58(2014)579–590.

[68]C.Gendre,M.Lafontaine,Y.Morele,J.P.Payan,P.Simon,Relationshipbetween urinarylevelsof1-hydroxypyreneand3-hydroxybenz[a]pyreneforworkers exposedtopolycyclicaromatichydrocarbons,PolycyclicAromat.Comp.22 (2002)761–769.

[69]K.Forster,R.Preuss,B.Rossbach,T.Bruning,J.Angerer,P.Simon, 3-Hydroxybenzo[a]pyreneintheurineofworkerswithoccupational exposuretopolycyclicaromatichydrocarbonsindifferentindustries,Occup. Environ.Med.65(2008)224–229.

[70]B.Rossbach,R.Preuss,S.Letzel,H.Drexler,J.Angerer,Biologicalmonitoringof occupationalexposuretopolycyclicaromatichydrocarbons(PAH)by determinationofmonohydroxylatedmetabolitesofphenanthreneand pyreneinurine,Int.Arch.Occup.Environ.Health81(2007)221–229.

Referências

Documentos relacionados

We have already seen how Barthes identifies a new space-time category brought forth by photography, a concept he develops into his notion of the anterior future in Camera

RESULTADOS E DISCUSSÃO Registraram-se diferenças altamente significati- vas (P&lt;0,01) entre os tratamentos utilizados no ex- perimento para os parâmetros: consumo de ração, ganho

9.2 Outras informações Não existe mais nenhuma informação relevante disponível. SECÇÃO 10: Estabilidade

No âmbito do ensino e da aprendizagem de Matemática, essa associação usualmente feita entre o desempenho dos alunos e a formação dos professores é, ainda mais,

Ainda quanto à redução no número de repetições, Simão e colaboradores (2005), realizaram um estudo realizado com homens e mulheres treinados em força, com três séries

Dessa forma, sua participação nesta pesquisa é de suma importância para que o campo científico, a sociedade em geral, o estado e seus servidores tenham a possibilidade

Los principales hallazgos determinaron que la violencia sistémica y directa son un eje transversal tanto en los países de origen como en las principales rutas, ejecutada por

sobre a resolução de equações quadráticas a partir de uma visão geométrica, sendo que o mesmo não apresenta problemas práticos (tais como questões de herança ou astronomia). As