• Nenhum resultado encontrado

Exercicios Solucionados 2

N/A
N/A
Protected

Academic year: 2021

Share "Exercicios Solucionados 2"

Copied!
8
0
0

Texto

(1)

BC-1309: Termodinâmica de Reatores Exercícios Solucionados 2

1. A figura mostra o diagrama simplificado de uma usina nuclear de potência cujo fluido de trabalho é água. A tabela seguinte mostra as vazões mássicas e os estados da água em vários pontos do ciclo.

Ponto m´(kg/s) P, kPa T, 0C h, kJ/kg 1 75,6 7240 Vapor saturado 2 75,6 6900 2765 3 62,874 345 2517 4 310 5 7 2279 6 75,6 7 33 138 7 415 140 8 2,772 35 2459 9 4,662 310 558 10 35 34 142 11 75,6 380 68 285 12 8,064 345 2517 13 75,6 330 14 349 15 4,662 965 139 584 16 75,6 7930 565 17 4,662 965 2593 18 75,6 7580 688 19 1386 7240 277 1220 20 1386 7410 1221 21 1386 7310

Este ciclo envolve diversos aquecedores, nos quais calor é transfererido das correntes de vapor de água, que saem das turbinas a determinadas pressões intermediarias, para a água na fase liquida, que é bombeada do condensador ao tambor de vapor. A taxa de transferência de calor para a água no reator é 157 MW e pode-se admitir que não haja transferência de calor nas turbinas.

a) Admitindo que não haja transferência de calor no separador de umidade, determine a entalpia h4 e o titulo x4.

b) Determine a potência fornecida pela turbina de alta pressão c) Determine a potência fornecida pela turbina de baixa pressão

d) Qual é a razão entre a potência total fornecida pelas duas turbinas e a taxa de transferência de calor transferida para a água do reator:

(2)

Este ciclo envolve diversos aquecedores, nos quais calor é transfererid das correntes de vapor de aguadas correntes de vapor de água, que saem das turbinas a determinadas pressões intermediarias, para a água na fase liquida, que é bombeada do condensador ao tambor de vapor. A taxa de transferência de calor para a água no reator é 157 MW e pode-se admitir que não haja transferência de calor nas turbinas.

a) Admitindo que não haja transferência de calor do separador de umidade, determine a

entalpia h4 e o titulo x4 Separador De Vapor 3 4 9 m´3=62,874 kg/s P3= 345 kPa h3=2517 kJ/kg m´9=4,662 kg/s h9=558 kJ/kg P4=310 kPa Volume de Controle

(3)

Conservação de massa : s kg m m m m m

m&3 = &4 + &9 → &4 = &3 − &9 =62,874−4,662=58,212 / Primeira Lei: kg kJ m h m h m h h m h m h m h m h m s s e e / 2674 212 , 58 558 . 662 , 4 2517 . 874 , 62 9 9 9 3 3 4 9 9 4 4 3 3 = − = − = + = =

& & & & & &

Como P4=310 kPa do CATT, x4=0,9758

b) Determine a potência fornecida pela turbina de alta pressão

Analise: Primeira Lei em Volume de Controle(Q=0)

MW W s kJ x x x x W h m h m h m h m W h m h m W alta alta alta s s e e VC alta 39 , 18 / 18394 2517 064 , 8 2593 662 , 4 2517 874 , 62 2765 6 , 75 ) ( 12 12 17 17 3 3 2 2 = = − − − = − − − = − =

& & & & & & & & & & Turbina Alta Pressão W´ 2 3 17

(4)

c) Determine a potência fornecida pela turbina de baixa pressão

Primeira Lei em Volume de Controle:

MW s kJ W x x x W to por s kg m m m kg kJ h s kg m kg kJ h m kg kJ h s kg m h m h m h m W h m h m W W baixa baixa baixa s s e e alta baixa 89 , 48 / 40889 2459 772 , 2 2279 44 , 55 2674 212 , 58 18394 tan , / 44 , 55 772 , 2 212 , 58 massa, de o conservaçã a usamos m determinar Para / 2459 ; / 772 , 2 / 2279 ?; / 2674 ; / 212 , 58 , 18394 8 4 5 5 8 8 5 5 4 4 5 5 5 5 4 4 4 = = − − + = = − = − = = = = = = = − − = − − = −

& & & & & & & & & & & & & & & & &

d) Qual é a razão entre a potência total fornecida pelas duas turbinas e a taxa de transferência de calor transferida para a água do reator:

) %( 14 , 31 3114 , 0 157 89 , 48 eficiencia Q W = = = = η η &&

e) Determine o titulo do vapor que sai do reator

Primeira lei para volume de controle( entrada 20, saída 21)

0,03452 x obtemos CATT, do , 7310 P pressão a que Desde / 1334 ) 1221 ( 1386 157000 ) ( 21 21 21 21 20 21 = = = → − = → − = kPa kg kJ h h x h h m Q& &

f) Determinar a potência necessária para operar a bomba de alimentação do reator. Da primeira lei em volume de controle( entrada 19, saída 20)

MW s kJ h h m

W&bomba = &( 2019)=1386(1221−1220)=1386 / =1,386 Turbina Baixa Pressão

alta

W&

baixa

W&

VC 4 5 8

(5)

2 ) Um tanque cilíndrico de 2 m de altura e 2 m de diâmetro contêm água a Temperatura de 200C. Inicialmente, o tanque esta cheio, e num determinado instante uma válvula borboleta localizada na base do tanque é aberta, de maneira que a vazão volumétrica de saída seja proporcional ao nível do tanque, de acordo com Qv=0,1L m3/s( L é o nível do tanque no instante t). Calcule o tempo para que o nível do tanque caia para a metade do nível inicial. Faça um gráfico da variação do nível em função do tempo.

Equação da Conservação da Massa:

x T T x T x dt L dL nota t x t x L t L L x dt dL L dt dL to por L Q m L L D V m m m m dt dm T L L V S s s e VC 21 10 2 . 3 2 ln 10 2 . 3 2 ln 10 2 . 3 2 / 1 ln 13 , 0 : ) 10 2 . 3 exp( 2 ) 10 2 . 3 exp( ) 0 ( ) ( 10 2 . 3 1 , 0 : tan 1 , 0 4 ) 2 / ( 2 2 / 1 2 / 1 2 2 / 1 2 0 2 / 2 2 2 2 2 / 1 0 0 = = → = − → − = → − = − = − = → − = → − = = = = = = − = − =       − − − − − −

π ρ ρ π ρ ρπ ρ & & & & L(0)=2 m L(t) D=2 m L=2exp(3,2x10-2 t)

(6)

3) Um conjunto cilindro pistão contém 1 kg de água a 150 kPa e 200C. Uma força externa atua sobre o pistão de modo que a pressão varia linearmente com o volume interno do conjunto. Calor é transferido de um reservatório térmico, que apresenta temperatura igual a 600 0C até que a água atinja o o estado em que a temperatura e a pressão são iguais a 5000C e 1MPa. Determine a transferência de calor nesse processo.

P=av+b( pressão varia linearmente com o volume, V=v, m=1 kg Estado Inicial: P1= 150 kPa, T1=200C(293 K)

Estado Final: P2= 1 MPa, T2=5000C(773 K) Das Tabelas Termodinâmicas:

Estado 1: v1=0,001002 m3/kg; u1=83,93 kJ/kg; s1=0,2965 Estado 2: v2=0,3541 m3/kg; u2=3124 kJ/kg; s2=7,762 kJ/kg Portanto: 150=0,001002a+b 1000=0,3541a+b E portanto a= 2407; b=147,6

Para calcular o trabalho: ( )

2 2 ) ( 2 1 2 1 2 2 2 1 2 1 v v b v v a dv b av Pdv W + −     − = + = =

, e W= 2407x[(0,35412/2)-(0,0010022/2)]+147,6x[0,3541-0,001002]=203,83 kJ (m=1 kg)

Para calcular o calor usamos a primeira lei: Q=∆U+W=(3124-83,93)+203,83=3244 kJ K

4. O radiador automotivo esboçado na figura é alimentado com glicerina a 950C. A temperatura da glicerina na seção de descarga do radiador é 550C. O ar entra no trocador de calor a 200C e sai a 250C. Admitindo que a taxa de transferência de calor no radiador seja igual a 25 kW, calcule a vazão mássica de glicerina no radiador. Determine também a vazão

água

TH=6000C (873 K)

QH W

(7)

volumétrica de ar no radiador. Considere que a pressão no escoamento de ar é uniforme e igual a 100 kPa.

Solução:

Volume de Controle: Radiador(trocador de Calor), Glicerina: Te=950C; Ts=550C

Ar: Te=200C; P= 100 kPa

Primeira Lei da Termodinâmica para Volume de Controle (trocador de Calor)

ar e s ar VC g s g ar s ar g e g ar e ar h h m kW Q h m h m h m h m ) ( 25 ) ( ) ( ) ( ) ( − = = + = + & & & & & &

Para o ar, na entrada Te=200C, P=100 kPa, e do CATT (he)ar=293,6 kJ/kg. Na saída Ts=250C, mesma pressão, e portanto do CATT, (hs)ar=298,6 kJ/kg. Portanto:

s kg m

mar(298,6 293,6) ar 5 /

25= & − → & =

Para a Glicerina:(calor especifico,c=2,42 kJ/KxKg,

= − = → − = − = − ) ( ) ( ) ( s e g VC g g e s g g g e s g VC T T c Q m T T c m h h m Q & & & & &

Para calcular a vazão do ar, V m m s

ar ar ar 4,28 / 169 , 1 5 = 3 = = ρ & &

5. Consideremos o processo de estrangulamento numa válvula de expansão, ou através do tubo capilar, num ciclo de refrigeração por compressão de vapor. Nesse processo, a pressão do refrigerante cai da alta pressão do condensador para a baixa

no evaporador e, durante este processo, uma parte do líquido vaporiza. Seconsiderarmos o processo como adiabático, o título do refrigerante ao entrar no evaporador pode ser calculado. Admitindo que o fluido refrigerante seja amônia, queesta entra na válvula de expansão a 1,5 MPa e a 35ºC e que a pressão, ao deixar a válvula, é de 291 kPa, calcule o título da amônia na saída da válvula de expansão

Solução: Volume de controle: válvula de expansão (W´=0): h1=h2; processo adiabático(Q´=0), Elemento Amônia

(8)

Entrada: P1=1,5 MPa, T1=350C e portanto do CATT h1= 1548 kJ/kg( VAPOR SUPERAQUECIDO)

Saída( Mistura), P2= 291 kPa. Pela tabela B.2.1 tem-se T2=-100C, hl=134,41 kJ/kg, hv=1430,8 kJ/kg

Como h1=h2=(1-x)hl+xhv→1548=(1-x)134,41+1430,8x→x=0,13

6. Durante a operação de carga de uma bateria a corrente elétrica é de 20 A e a tensão E é de 12,8 V. A taxa de transferência de calor da bateria é 10 W. Qual é a Taxa de aumento da energia interna?

7. Um tanque rígido com volume de 0,1 m3 contém nitrogênio a 900 K e 3 MPa. O tanque é então, resfriado até que a temperatura atinja 100 K. Qual é o trabalho realizado e o calor transferido durante o processo?

Solução: Como o tanque é rigido, não há variação de volume e portanto o trabalho é nulo. Para calcular o calor transferido no processo, temos:

Estado 1: T=900 K=626,80C, P=3 MPa, e do CATT, u=691,6 kJ/kg, e v=0,09002m3/kg, e portanto m=V/v=0,1/0,09002=1,11086kg.

Estado 2: T=100K=-173,20C, e o volume especifico é mesmo, portanto do CATT, u=70,41 kJ/kg. E da primeira lei:

Q=m(u2-u1)=1,11086(70,41-691,6)=-690,055 kJ.

8. O fluido contido num tanque é movimentado por um agitador. O trabalho fornecido ao agitador é 5090 kJ. O calor transferido ao tanque é 1500 kJ. Considerando o tanque e o fluido como sistema determine a variação da energia neste sistema.

Solução: Da primeira lei( sem variação da energia cinética e potencial):

kJ

=

)

(

=

ΔE

E

E

=

W

Q

3590

5090

1500

1 2 2 1 2 1

s J = ) ( = dt dU s(watt) J = x = Ei = , = dt dU W W Q / 246 256 10 ∴ / 256 12,8 20 − − − − − − −

Referências

Documentos relacionados

nesta nossa modesta obra O sonho e os sonhos analisa- mos o sono e sua importância para o corpo e sobretudo para a alma que, nas horas de repouso da matéria, liberta-se parcialmente

Segundo Éric Laurent, a psicose ordinária se caracteriza pela não resposta aos significantes-mestres tradicionais, manifestando o fim do poder do Nome-do-Pai como

3.3 o Município tem caminhão da coleta seletiva, sendo orientado a providenciar a contratação direta da associação para o recolhimento dos resíduos recicláveis,

O valor da reputação dos pseudônimos é igual a 0,8 devido aos fal- sos positivos do mecanismo auxiliar, que acabam por fazer com que a reputação mesmo dos usuários que enviam

Mais ainda, disponibiliza um conjunto de recomendações destinadas aos governos e às entidades doadoras, juntamente com entidades parceiras, para assegurar que todas as crianças

Dois lotes, um de alta e um de baixa qualidade fisiológica, para cada uma das variedades de arroz El Paso L144, IRGA 417 e EEA 406, foram analisados utilizando-se os

Quanto aos objetivos específicos da pesquisa, estes são: investigar como os jovens percebem as representações e os significados sobre as relações de poder estabelecidas; conhecer

5 “A Teoria Pura do Direito é uma teoria do Direito positivo – do Direito positivo em geral, não de uma ordem jurídica especial” (KELSEN, Teoria pura do direito, p..