• Nenhum resultado encontrado

Bethe ansatz for the deformed Gaudin model

N/A
N/A
Protected

Academic year: 2021

Share "Bethe ansatz for the deformed Gaudin model"

Copied!
6
0
0

Texto

(1)

doi: 10.3176/proc.2010.4.11 Available online at www.eap.ee/proceedings

Bethe ansatz for the deformed Gaudin model

Petr Kulisha,b, Nenad Manojlovi´cb,c∗, Maxim Samsonovd, and Alexander Stoline a St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia b Grupo de F´ısica Matem´atica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa, Portugal c Departamento de Matem´atica, F. C. T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal d Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

e Department of Mathematical Sciences, University of Gothenburg, SE-41296 Gothenburg, Sweden

Received 30 June 2009, accepted 30 October 2009

Abstract. A deformation of the sl(2) Gaudin model by a Jordanian r-matrix depending on the spectral parameter is constructed. The energy spectrum is preserved and recurrent creation operators are proposed.

Key words: Gaudin models, algebraic Bethe ansatz.

The Gaudin model of the interacting spins on a chain [1] can be considered classically with the variables Sα

n satisfying Poisson brackets or as a quantum system with the generators of the Lie algebra sl(2) and

commutation relations

[Sαm, Sβn] = ıεαβ γSγmδmn.

It is useful as a particularly simple model to develop different approaches within the framework of the quantum inverse scattering method [2] and for some physical application as well.

The treatment of the model using the classical r-matrix [3] permits us to extend the Gaudin model to any semi-simple Lie algebra and to all cases when the antisymmetric r-matrix r(λ , µ) satisfies the classical Yang–Baxter equation. The existence of a set of integrals of motion in involution (an Abelian subalgebra) for the Gaudin model is an easy consequence of the classical Yang–Baxter equation. However, the difficult problem is to find the spectrum and corresponding eigenvectors through the Bethe ansatz. This problem has been solved on the case by case basis. A particular situation appears when the underlying quantum group or classical r-matrix is deformed by a twist transformation. It was shown in [4] that the integrable system is deformed as well. Even in the simple case of the sl(2) Gaudin model deformed by the Jordanian twist [5] the algebraic Bethe ansatz changes, and the eigenvectors are constructed by recurrence creation operators [6]. Here we consider a more complicated deformation given by the classical r-matrix r(λ , µ) with polynomial dependence on the spectral parameter [7,8].

The sl(2)-invariant r-matrix with an extra Jordanian term

rJ(λ − µ) =λ − µc2 +ξ (h ⊗ X+− X+⊗ h) (1) Corresponding author, nmanoj@ualg.pt

(2)

was studied in [5,6]. To write the r-matrix (1), the generators of sl(2) are used [h, X+] = 2X+, [X+, X−] = h, [h, X−] = −2X−,

as well as the Casimir operator c2in the tensor square of the universal enveloping algebra U(sl(2))

c2= h ⊗ h + 2(X+⊗ X−+ X−⊗ X+).

In this paper we consider the r-matrix with an extra term (deformation) depending on the spectral parametersλ and µ

rξ(λ , µ) = c2

λ − µ +ξ (h ⊗ µX

+λ X+⊗ h). (2)

Using the fundamental representation of sl(2), one gets the following 4 × 4 matrix:

rξ(λ , µ) =              1 λ − µ ξ µ ξ λ 0 0 1 λ − µ 2 λ − µ ξ λ 0 2 λ − µ 1 λ − µ ξ µ 0 0 0 1 λ − µ              . (3)

Following the quantum inverse scattering method developed in [9], it is useful to introduce the current algebra generated by L(λ ) = Ã h(λ ) 2X−(λ ) 2X+(λ ) −h(λ ) ! , (4)

subject to the following classical analogue of the RTT-relations of [9]:

[L(λ ) ⊗1,1 ⊗ L(µ)] = −[rξ(λ , µ), L(λ ) ⊗1 + 1 ⊗ L(µ)], where L(λ ) ⊗1 =         h(λ ) 0 2X−(λ ) 0 0 h(λ ) 0 2X−(λ ) 2X+(λ ) 0 −h(λ ) 0 0 2X+(λ ) 0 −h(λ )         , and 1 ⊗ L(µ) = P (L(µ) ⊗ 1)P,

where P is the permutation matrix in C2⊗ C2. Using the explicit form of the r-matrix r

ξ(λ , µ) (3), we get

the following commutation relations:

[h(λ ), h(µ)] = 2ξ (λ X+(λ ) − µX+(µ)), [h(λ ), X+(µ)] = −2X+(λ ) − X+(µ) λ − µ , [h(λ ), X−(µ)] = 2X−(λ ) − X(µ) λ − µ +ξ µh(µ), [X−(λ ), X(µ)] = −ξ (µX(λ ) − λ X(µ)), [X+(λ ), X(µ)] = −h(λ ) − h(µ) λ − µ +ξ µX +(µ), [X+(λ ), X+(µ)] = 0.

(3)

One can see that forξ = 0 the polynomial loop algebra sl(2)[µ] is reproduced. The generating function of integrals of motion is given by

t(λ ) = 1

2Tr(L(λ )

2) = h2(λ ) + 2(X(λ )X+(λ ) + X+(λ )X(λ ))

= h2(λ ) − 2h0(λ ) + 4X(λ )X+(λ ) + 2ξ λ X+(λ ).

Due to (3) the current algebra L(λ ) (4) admits the following local representation:

L0a(λ , za) =     ha λ − za+ξ zaX + a 2X− a λ − za−ξ λ ha 2X+ a λ − za ha λ − za−ξ zaX + a     .

Here h, X±are elements of sl(2), index 0 refers to the auxiliary space C2, and a is the index of the quantum

spaces Va(see [9]). Due to the triangular form of the extra term in (2), L(λ ) (4) has the highest weight vector

v0(la) in Vaof the spin la; in other words,

hav0(la) = lav0(la), Xa+v0(la) = 0.

Again, due to the triangular form of the extra term in (2), ⊗N

a=1Va is also the highest weight representation

of L(λ ) (4) with the highest weight vector Ω = ⊗N

a=1v0(la). In this representation we have

h(λ ) = N

a=1 µ ha λ − za+ξ zaX + a, X+(λ ) = N

a=1 X+ a λ − za, X−(λ ) =

N a=1 µ X− a λ − za− 1 2ξ λ ha. The value of t(λ ) on the highest weight vector Ω is

t(λ )Ω = Λ0(λ )Ω =   Ã N

a=1 la λ − za !2 + 2 N

a=1 la (λ − za)2   Ω =¡ρ2(λ ) − 2ρ0(λ )¢Ω, where h(λ )Ω = N

a=1 µ ha λ − za ¶ Ω =ρ(λ )Ω. In order of obtain the one-magnon eigenstate, it is of interest to notice that

t(λ )X−(µ) = X(µ) µ t(λ ) −4h(λ ) λ − µ + 4ξ λ X +(λ ) ¶ + 4X−(λ )h(µ) λ − µ + 2ξ (µh(λ ) + 1) h(µ) + 2ξ 2µ2X+(µ).

Thus the one-magnon eigenstate is given by X−1)Ω: t(λ )X−(µ1)Ω = Λ1(λ ; µ1)X−(µ1)Ω = µ Λ0(λ ) −λ − µ4ρ(λ ) 1 ¶ X−(µ1)Ω,

(4)

In order to obtain the M-magnon eigenstate, it is necessary to introduce the following operators symmetric with respect to the permutation of the quasi-momenta ~µ = (µ1,µ2, . . . ,µM):

BM(~µ) = X−(µ1)(X−(µ2) +ξ µ2) · · · (X−M) + (M − 1)ξ µM),

B(k)M (~µ) = (X−

1) + kξ µ1)(X−(µ2) + (k + 1)ξ µ2) · · · (X−M) + (k + M − 1)ξ µM)

= B(k−1)M (~µ) + ξ ∑M1 µjB(k)M−1(~µ( j)),

where ~µ( j)= (µ

1,µ2, . . . ,µj−1,µj+1, . . . ,µM) means that the variableµjis absent. We introduce the operator

ˆ

βM(λ ;~µ) = h(λ ) +

µ∈~µ

2 µ − λ, in particular, ˆβ (µ; /0) = h(µ) and we notice that

ˆ βM(λ ;~µ)Ω = βM(λ ;~µ)Ω = Ã ρ(λ ) +

µ∈~µ 2 µ − λ ! Ω.

Consider the two-magnon eigenstate

B2(µ1,µ2)Ω = X−(µ1)(X−(µ2) +ξ µ2)Ω

=1 2 ¡

X−1)X−2) + X−2)X−1) +ξ¡µ2X−1) +µ1X−2)¢¢Ω.

In order to obtain the action of t(λ ) on this state, we calculate the commutator [t(λ ), B21,µ2)]. Calculation is done, having in mind the formulas with the generators X±(λ ), h(λ ) given below which are obtained by

induction. So, for any natural number M we have

X+(λ )BM(~µ) =B(1)M (~µ)X+(λ ) − M

1 B(1)M−1(~µ( j)) Ã ˆ β (λ ;~µ( j)) − ˆβ (µ j;~µ( j)) λ − µj !

16i< j6M 2B(1)(M−1)(λ ∪~µ(i, j)) (λ − µi)(λ − µj) , similarly, h(λ )BM(~µ) = BM(~µ)h(λ ) + 2 M

j=1 BM(λ ∪~µ( j)) − BM(~µ) λ − µjM

j=1 µjB(1)M−1(~µ( j)) ˆβ (µj;~µ( j)), and X−(λ )B(k)M (~µ) = B(k)M(~µ)(X−(λ ) + Mξ λ ) − ξ M

j=1 µjB(k)M(λ ∪~µ( j)) = B(k)M+1(λ ∪~µ) − kξ λ B(k)M(~µ) − ξ M

j=1 µjB(k)M(λ ∪~µ( j)).

(5)

Also, the following formula [h(λ ), B2(λ , µ2)] = 2B02(λ , µ2) + 2B2(λ , λ ) − B2(λ , µ2) λ − µ2 +ξ µ2B(1)1 (λ ) ˆβ (µ2;λ ) + ξ λ B(1)1 (µ2) ˆβ (λ ; µ2), is used to obtain [h(λ ),[h(λ ), B2(µ1,µ2)]] − 2[h0(λ ), B2(µ1,µ2)] = 8B2(µ1,µ2) (λ − µ1)(λ − µ2) 8B2(λ , µ2) (λ − µ1)(λ − µ2) 8B2(λ , µ1) (λ − µ1)(λ − µ2)+ 8B2(λ , λ ) (λ − µ1)(λ − µ2) + 4ξ λ B (1) 1 (λ ) (λ − µ1)(λ − µ2)+ξ µ1 à 4B (1) 1 (λ ) − B(1)1 (µ2) λ − µ2 − 2ξ + ξ µ2 ˆ β (µ2; /0) ! ˆ β (µ1;µ2) +ξ µ2 à 4B (1) 1 (λ ) − B (1) 1 (µ1) λ − µ1 − 2ξ + ξ µ1β (µˆ 1; /0) ! ˆ β (µ2;µ1) + 2ξ2µ2B(1)1 (µ1)(λ X+(λ ) − µ2X+(µ2)) + 2ξ2µ1B(1)1 (µ2)(λ X+(λ ) − µ1X+(µ1)) + 2ξ à B(1)1 (µ1) Ã λ ˆβ (λ ; µ1) −µ2β (µˆ 2;µ1) λ − µ2 ! + B(1)1 (µ2) Ã λ ˆβ (λ ; µ2) −µ1β (µˆ 1;µ2) λ − µ1 !! . Finally, we obtain the action of the transfer matrix t(λ ) on the two-magnon creation operator

t(λ )B2(µ1,µ2) = B2(µ1,µ2) Ã t(λ ) − 2

1 4h(λ ) λ − µj + 8 (λ − µ1)(λ − µ2)+ 8ξ λ X +(λ ) ! +4B2(λ , µ1) λ − µ2 β (µˆ 2;µ1) + 4B2(λ , µ2) λ − µ1 β (µˆ 1;µ2) + 2ξ µ2B(1)11)h(λ ) ˆβ (µ21) + 2ξ µ1B(1)12)h(λ ) ˆβ (µ12) + 4ξ µ2B (1) 1 (λ ) − B(1)1 (µ1) λ − µ1 ˆ β (µ2;µ1) + 4ξ µ1B (1) 1 (λ ) − B(1)1 (µ2) λ − µ2 ˆ β (µ1;µ2) +ξ2µ1µ2( ˆβ (µ2; /0) ˆβ (µ12) + ˆβ (µ1; /0) ˆβ (µ21)) + 2ξ2(µ22B(1)11)X+(µ2) +µ12B(1)12)X+(µ1)) − 2ξ2 1β (µˆ 1;µ2) +µ2β (µˆ 2;µ1)) + 2ξ (B(1)1 (µ1) ˆβ (µ2;µ1) + B(1)1 (µ2) ˆβ (µ1;µ2)).

Thus, the eigenvalue of the two-magnon state is t(λ )B2(~µ)Ω = Λ2(λ ;~µ)B2(~µ)Ω, Λ2(λ ;~µ) = Λ0(λ ) +(λ − µ 8 1)(λ − µ2) 4ρ(λ ) λ − µ1 4ρ(λ ) λ − µ2,

(6)

The comparison with the previous calculations for the sl(2) Gaudin model deformed by the Jordanian r-matrix [6] support our conjecture that the M-magnon eigenstate is given by

BM(~µ)Ω = X−(µ1)(X−(µ2) +ξ µ2) · · · (X−M) + (M − 1)ξ µM)Ω.

The proof by induction is under construction.

Finally, for each rational sl(2)-valued r-matrix we have a corresponding Gaudin model. For future development it is interesting to consider the algebraic Bethe ansatz for deformed Gaudin models related to higher rank Lie algebras. For example, in the case of the Lie algebra sl(3), it may be of interest to consider Gaudin models based on the classification of the rational sl(3)-valued r-matrices given in [7,8]. In particular, in this case there are families of rational r-matrices of the following form:

r(λ , µ) = c2 λ − µ + r,

where r is a constant triangular r-matrix or a polynomial of degree one with values in the Lie algebra sl(3). Also, the papers [10,11] are related to this subject.

ACKNOWLEDGEMENT

The authors are grateful to Prof. T. C. Dorlas for stimulating discussions and kind hospitality at the Dublin Institute for Advanced Studies.

REFERENCES

1. Gaudin, M. La fonction d’onde de Bethe. Masson, Paris, 1983.

2. Sklyanin, E. K. Separation of variables in the Gaudin model. J. Soviet. Math., 1989, 47, 2473–2488.

3. Kulish, P. P. and Sklyanin, E. K. Solution of the Yang–Baxter equation. J. Soviet. Math., 1982, 19, 1596–1620. 4. Kulish, P. P. and Stolin, A. A. Deformed Yangians and integrable models. Czech. J. Phys., 1997, 47, 1207–1212. 5. Kulish, P. P. Twisted sl(2) Gaudin model. PDMI preprint, 2002, 08/2002.

6. Manojlovi´c, N. and Ant´onio, N. C. sl2Gaudin model with Jordanian twist. J. Math. Phys., 2005, 46, 102701, 19 pp. 7. Stolin, A. A. On rational solutions of Yang–Baxter equation for sl(n). Math. Scand., 1991, 69, 57–80.

8. Stolin, A. A. Constant solutions of Yang–Baxter equation for sl(2) and sl(3). Math. Scand., 1991, 69, 81–88.

9. Sklyanin, E. K., Takhtajan, L. A., and Faddeev, L. D. Quantum inverse problem method. Teoret. Mat. Fiz., 1979, 40, 194–220. 10. Khoroshkin, S. M., Stolin, A. A., and Tolstoy, V. N. Deformation of Yangian Y (sl2). Comm. Algebra, 1998, 26, 1041–1055. 11. Khoroshkin, S. M., Stolin, A. A., and Tolstoy, V. N. q-power function over q-commuting variables and deformed XXX and

XXZ chains. Phys. Atomic Nuclei, 1979, 64, 2173–2178.

Bethe eeldus deformeeritud Gaudini mudeli jaoks

Petr Kulish, Nenad Manojlovi´c, Maxim Samsonov ja Alexander Stolin

On konstrueeritud sl(2) Gaudini mudeli deformatsioon Jordani r-maatriksi abil, mis s˜oltub spektraalsest parameetrist. Energiaspekter ei muutu ja on pakutud rekurrentsed tekkeoperaatorid.

Referências

Documentos relacionados

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

É importante notar que estas duas métricas não definem todas as formas de um data center obter melhorias em sua eficiência energética, e sim abrangem como

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Diretoria do Câmpus Avançado Xanxerê Rosângela Gonçalves Padilha Coelho da Cruz.. Chefia do Departamento de Administração do Câmpus Xanxerê Camila

É importante destacar que as práticas de Gestão do Conhecimento (GC) precisam ser vistas pelos gestores como mecanismos para auxiliá-los a alcançar suas metas

h) processo de planejamento estratégico recente; não obstante a existência de iniciativas voltadas para a execução do planejamento, há fragilidades no seu acompanhamento