• Nenhum resultado encontrado

Les deux techniques choisies pour suivre l’évolution de l’aire interfaciale pendant la période d’ouvrabilité sont adaptées à une application sur le système réactif à base de C3A/CaSO4/CaCO3 adjuvanté de PCP. Elles possèdent cependant certains avantages et inconvénients propres résumés dans le tableau suivant :

Tableau 4: Avantages et inconvénients de deux techniques choisies pour mesurer l’étendue de la surface au cours de la période d’ouvrabilité

BET par adsorption de N2 Relaxométrie du proton de l’eau

Avantages

Facilement accessible Ne nécessite pas de modèle

spécifique théorique Mesure directe de la surface

spécifique

Mesure quasi-continue Pas de préparation préalable de

l’échantillon

Vraie notion de surface spécifique

Inconvénients

Mesure point par point (stoppage de l’hydratation et séchage de

l’échantillon)

Préparation préalable de l’échantillon qui ne peut se faire notamment sans déstructuration de

l’ettringite

Dépend de la nature chimique de l’interface à sonder (la réponse étant

dominée par la phase ayant la plus forte relaxivité)

Connaissances des paramètres du modèle d’échange biphasique bulk/surface pour l’analyse des

données

Effet mineur de la présence de PCP adsorbés

Références bibliographiques

[1] J.J. Thomas, H.M. Jennings, A.J. Allen, The surface area of hardened cement paste as measured by various techniques, Concrete Science and Engineering, 1 (1999) 45-64.

[2] H. Jaffel, Caractérisation multi-échelles de matériaux poreux en évolution : cas du plâtre, Thèse de Doctorat, Ecole polytechnique, 2006.

[3] H.M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, 30 (2000) 101-116.

[4] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 54 (1982) 2201- 2218.

[5] V. Baroghel-Bouny, Water vapour sorption experiments on hardened cementitious materials: Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure, Cement and Concrete Research, 37 (2007) 414-437.

[6] I. Odler, The BET-specific surface area of hydrated Portland cement and related materials, Cement and Concrete Research, 33 (2003) 2049-2056.

[7] H. Uchikawa, Hydration of cement and structure formation and properties of cement paste in the presence of organic admixture, in: Conference in tribute to M. Moranville Regourd (Ed.), Sherbrooke (Quebec) CANADA, 1994.

[8] K. Yamada, A summary of important characteristics of cement and superplasticizers, in:

9th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, V.M. Malhotra ed., American Concrete Institute, 2009, pp. 85-95.

[9] S. Mantellato, M. Palacios, R.J. Flatt, Fresh cement pastes – A systematic study on their specific surface area, in: 1st International Conference on the Chemistry of Construction Materials, Gesellschaft Deutscher Chemiker e. V., Berlin, 2013.

[10] K. Yamada, Basics of analytical methods used for the investigation of interaction mechanism between cements and superplasticizers, Cement and Concrete Research, 41 (2011) 793-798.

[11] W.P. Halperin, J.-Y. Jehng, Y.-Q. Song, Application of spin-spin relaxation to measurement of surface area and pore size distributions in a hydrating cement paste, Magnetic Resonance Imaging, 12 (1994) 169-173.

[12] J.P. Korb, NMR and nuclear spin relaxation of cement and concrete materials, Current Opinion in Colloid & Interface Science, 14 (2009) 192-202.

[13] A. Valori, P.J. McDonald, K.L. Scrivener, The morphology of CSH: Lessons from 1H nuclear magnetic resonance relaxometry, Cement and Concrete Research, 49 (2013) 65-81.

[14] P.F. Faure, S. Rodts, Proton NMR relaxation as a probe for setting cement pastes, Magnetic Resonance Imaging, 26 (2008) 1183-1196.

[15] F. Barberon, J.P. Korb, D. Petit, V. Morin, E. Bermejo, Probing the Surface Area of a Cement-Based Material by Nuclear Magnetic Relaxation Dispersion, Physical Review Letters, 90 (2003) 116103.

[16] M. Zajac, Etude des relations entre vitesse d'hydratation, texturation des hydrates et résistance mécanique finale des pâtes et micro-mortiers de ciment portland, Thèse de Doctorat, Université de Bourgogne, 2007.

[17] M. Alesiani, I. Pirazzoli, B. Maraviglia, Factors Affecting Early-Age Hydration of Ordinary Portland Cement Studied by NMR: Fineness, Water-to-Cement Ratio and Curing Temperature, Applied Magnetic Resonance, 32 (2007) 385-394.

[18] M. Alesiani, I. Pirazzoli, B. Maraviglia, F. Canonico, NMR and XRD Study on Calcium Sulfoaluminate Cement, Applied Magnetic Resonance, 35 (2008) 33-41.

[19] J. Greener, H. Peemoeller, C. Choi, R. Holly, E.J. Reardon, C.M. Hansson, M.M. Pintar, Monitoring of Hydration of White Cement Paste with Proton NMR Spin–Spin Relaxation, Journal of the American Ceramic Society, 83 (2000) 623-627.

[20] R. Holly, E.J. Reardon, C.M. Hansson, H. Peemoeller, Proton Spin–Spin Relaxation Study of the Effect of Temperature on White Cement Hydration, Journal of the American Ceramic Society, 90 (2007) 570-577.

[21] L. Miljkovic, D. Lasic, J.C. MacTavish, M.M. Pintar, R. Blinc, G. Lahajnar, NMR studies of hydrating cement: A spin-spin relaxation study of the early hydration stage, Cement and Concrete Research, 18 (1988) 951-956.

[22] R. Holly, H. Peemoeller, M. Zhang, E. Reardon, C.M. Hansson, Magnetic Resonance In Situ Study of Tricalcium Aluminate Hydration in the Presence of Gypsum, Journal of the American Ceramic Society, 89 (2006) 1022-1027.

[23] L. Patural, Modes d'action des éthers de cellulose sur la rétention d'eau des mortiers à l'état frais, Thèse de Doctorat, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2011.

[24] L. Patural, J.-P. Korb, A. Govin, P. Grosseau, B. Ruot, O. Devès, Nuclear magnetic relaxation dispersion investigations of water retention mechanism by cellulose ethers in mortars, Cement and Concrete Research, 42 (2012) 1371-1378.

[25] L. Patural, P. Porion, H. Van Damme, A. Govin, P. Grosseau, B. Ruot, O. Devès, A pulsed field gradient and NMR imaging investigations of the water retention mechanism by cellulose ethers in mortars, Cement and Concrete Research, 40 (2010) 1378-1385.

[26] A. Pop, C. Badea, I. Ardelean, The Effects of Different Superplasticizers and Water-to- Cement Ratios on the Hydration of Gray Cement Using T2-NMR, Applied Magnetic Resonance, 44 (2013) 1223-1234.

[27] J. Zhang, G.W. Scherer, Comparison of methods for arresting hydration of cement, Cement and Concrete Research, 41 (2011) 1024-1036.

[28] S. Mantellato, M. Palacios, R.J. Flatt, Reliable specific surface measurement of fresh cement pastes, in: Bauchemie, Gesellschaft Deutscher Chemiker e. V., Dübendorf, 2012.

[29] R.F. Feldman, J.J. Beaudoin, Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements, Cement and Concrete Research, 21 (1991) 297-308.

[30] A. Figini-Albisetti, L.F. Velasco, J.B. Parra, C.O. Ania, Effect of outgassing temperature on the performance of porous materials, Applied Surface Science, 256 (2010) 5182-5186.

[31] L. Clausen, I. Fabricius, BET Measurements: Outgassing of Minerals, Journal of Colloid and Interface Science, 227 (2000) 7-15.

[32] C. Hall, P. Barnes, A.D. Billimore, A.C. Jupe, X. Turrillas, Thermal decomposition of ettringite Ca6[Al(OH)6]2(SO4)3,26H2O, Journal of the Chemical Society, Faraday Transactions, 92 (1996).

[33] M.R. Hartman, S.K. Brady, R. Berliner, M.S. Conradi, The evolution of structural changes in ettringite during thermal decomposition, Journal of Solid State Chemistry, 179 (2006) 1259-1272.

[34] J. Pourchez, F. Valdivieso, P. Grosseau, R. Guyonnet, B. Guilhot, Kinetic modelling of the thermal decomposition of ettringite into metaettringite, Cement and Concrete Research, 36 (2006) 2054-2060.

[35] Y. Shimada, J.F. Young, Structural changes during thermal dehydration of ettringite, 2001.

[36] Q. Zhou, F.P. Glasser, Thermal stability and decomposition mechanisms of ettringite at

<120°C, Cement and Concrete Research, 31 (2001) 1333-1339.

[37] Q. Zhou, E.E. Lachowski, F.P. Glasser, Metaettringite, a decomposition product of ettringite, Cement and Concrete Research, 34 (2004) 703-710.

Chapitre IV. Etude de l’hydratation, de la