• Nenhum resultado encontrado

CONCLUSION

No documento BIOFUELS FROM ALGAE (páginas 33-36)

The heterocysts, which are specialized in aerobic nitrogen fixation, are the site of the en- zyme nitrogenase, which catalyzes the conversion of nitrogen into ammonia. Nitrogen-fixing cyanobacteria were isolated in soils from various cities in South Asia, India, and Africa.

In that study, 33% of 2,213 soil samples collected in India contained cyanobacteria. Microalgae such asNostoc, Anabaena, Calothrix, Aulosira, and Plectonema were found in soils in India, while Halosiphon, Scytonema and Cylindrospermum were observed in the other regions (Richmond, 1990).

Earthrise,www.earthrise.com(accessed 14.07.12.).

Finkel, T., 2003. A toast to long life. Nature 39, 425–430.

Grima, M.E., Belarbi, E.H., Fernandez, F.G.A., Medina, A.R., Chisti, Y., 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20, 491–515.

Gunaseelan, V.N., 1997. Anaerobic digestio´n of biomass form methane production: a review. Biomass Bioenergy. 13 (1/2), 83–114.

Handler, R., Canter, C., Kalnes, T., Lupton, F., Kholiqov, O., 2012. Evaluation of environmental impacts from microalgae cultivation in open air raceway ponds: Analysis of the prior literature and investigation of wide var- iance in predicted impacts. Algal Research 1, 83–92.

Harun, R., Singh, M., Forde, G., Danquah, M., 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Ren. Sustain. Energy Rev. 14, 1037–1047.

Heasman, M., Diemar, J., O´Connor, W., Sushames, T., Foulkes, I., 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs: a summary. Aquac Res. 31, 637–659.

Henrikson, R., 1994. Microalga Spirulina: Superalimento del futuro. Ediciones S.A. Urano, Barcelona, Spain. ISBN:

84-7953-047-2.

Ho, S., Chen, C., Lee, D., Chang, J., 2011. Perspectives on microalgal CO2-emission mitigation systems: A review.

Biotechnol. Adv. 29, 189–198.

Illman, A.M., Scragg, A.H., Shales, S.W., 2000. Increase inChlorellastrains calorific values when in low nitrogen me- dium. Enzyme Microb. Tech. 27, 631–635.

Jau, M., Yew, S., Toh, P.S.Y., Chong, A.S.C., Chu, W., Phang, S., et al., 2005. Biosynthesis and mobilization of poly (3-hydroxybutyrate) [P(3HB)] bySpirulina platensis. Int. J. Biol. Macromol. 36, 144–151.

Khanna, S., Srivastava, A.K., 2005. Recent advances in microbial polyhydroxyalkanoatos. Process Biochem. 40, 607–619.

Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., et al., 2010. Enhanced CO2fixation and biofuel pro- duction via microalgae: recent developments and future directions. Trends Biotecnol. 28, 371–380.

Kumar, K., Dasgupta, N., Nayak, B., Lindblad, P., Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102, 4945–4953.

Lee, Y., 2001. Microalgal mass culture systems and methods: their limitation and potential. J. Appl. Phycol. 13, 307–315.

Lee, Y.K., Ding, S.Y., Low, C.S., Chang, Y.C., Forday, W.L., Chew, P.C., 1995. Design and performance of ana-type tubular photobioreactor for mass cultivation of microalgae. J. Appl. Phycol. 7, 47–51.

Liang, S., Xueming, L., Chen, F., Chen, Z., 2004. Current microalgal health food R&D activities in China. Hydrobiol.

512, 45–48.

Masojidek, J., Torzillo, G., 2008. Mass cultivation of fresh water microalgae. In: Encyclopedia of ecology, Oxford, UK, pp. 2226–2235.

Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: A review.

Ren. Sustain. Energy Rev. 14, 217–232.

Mollah, M., Morkovsky, P., Gomes, J., Kesmez, M., Parga, J., Cocke, D., 2004. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114, 199–210.

Morais, M.G., Costa, J.A.V., 2007. Biofixation of carbon dioxide bySpirulinasp. andScenedesmus obliquuscultived in a three-stage serial tubular photobioreactor. J. Biotechnol. 129, 439–445.

Morais, M.G., Radmann, E.M., Andrade, M.R., Teixeira, G.G., Brusch, L.R.F., Costa, J.A.V., 2009. Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture 294, 60–64.

Mun˜oz, R., Guieysse, B., 2006. Algal bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 40, 2799–2815.

Norsker, N., Barbosa, M., Vermue, M., Wijffels, R., 2011. Microalgal production – A close look at the economics.

Biotecnol. Adv. 29, 24–27.

Omer, A.M., Fadalla, Y., 2003. Biogas technology in Sudan. Ren. Energy 28, 499–507.

Ono, E., Cuello, J.L., 2003. Selection of optimal microalgae species for CO2sequestration. In: Proceedings of Second Annual Conference on Carbon Sequestration. Alexandria, VA, USA.

Park, J., Graggs, R., Shilton, A., 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour.

Technol. 102, 35–42.

Parry nutraceuticals,www.parrynutraceuticals.com(accessed 15.07.12.).

21

1.16 CONCLUSION

Petracci, M., Bianchi, M., Cavani, C., 2009. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids. Nutrients 1, 111–118.

Pires, J., Alvin-Ferraz, M., Martins, F., Simo˜es, M., 2012. Carbon dioxide capture from flue gases using microalgae:

engineering aspects and biorefinery concept. Ren. Sustain. Energy Rev. 16, 3043–3053.

Richmond, A., 1990. Handbook of microalgal mass culture. CRC Press, Boston, MA, USA.

Richmond, A., 2004. Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd.

Pondicherry, Tamil Nadu, India.

Richmond, A., Cheng-Wu, Z., 2001. Optimization of a flat plate glass reactor for mass production ofNannochloropsis sp. Outdoors. J. Biotechnol. 85, 259–269.

Romano, L., Bellitti, M.R., Nı´colaus, B., Lama, L., Manca, M.C., Pagnotta, E., et al., 2000. Lipid profile: a chemotax- onomic marker for classification of a new cyanobactenum inSpirulinagenus. Phytochemistry 54, 289–294.

Rossi, N., Derouiniot-Chaplain, M., Jaouen, P., Legentilhomme, P., Petit, I., 2008.Arthrospira platensisharvesting with membrane: gouling phenomenon with limiting and critical flux. Bioresour. Technol. 99, 6162–6167.

Rubio, J., Souza, M., Smith, R., 2002. Overview of flotation as a wastewater treatment technique. Miner. Eng. 15, 139–155.

Sharma, L., Singh, A.K., Panda, B., Mallick, N., 2007. Process optimization for poly-b-hydroxybutyrate production in a nitrogen fixing cyanobacterium,Nostoc muscorumusing response surface methodology. Bioresour. Technol 98, 987–993.

Shu, I., Lee, C., 2003. Photobioreactor engineering: design and performance. Biotechnol. Bioprocess Eng. 8, 313–321.

Soletto, D., Binaghi, L., Lodi, A., Carvalho, J., Converti, A., 2005. Batch and fed-batch cultivations ofSpirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243, 217–224.

Spoalore, P., Joannis-Cassn, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. J. Biosci. Bioeng.

101, 87–96.

Uduman, N., Qi, Y., Danquah, M., Dorde, G., Hoadley, A., 2010. Dewatering of microalgal cultures: a major bottlenech to algae-based fuels. J. Renew. Sust. Energ. 2, 012701.

Ugwu, C., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99, 4021–4028.

Vonshak, A., 1997. Spirulina platensis (Arthrospira) physiology, cell-biology and biotechnology. Taylor & Francis, London, U.K. ISBN: 0-7484-0674-3.

Wang, B., Lan, C., 2011. Optimizing the lipid production of the green algaNeochloris oleoabundansusing Box-Behnken experimental design. Can. J. Chem. Eng. 89, 932–939.

Wang, B., Lan, C., Horsman, M., 2012. Closed photobioreactors for production of microalgal biomasses. Biotechnol.

Adv. 30, 904–912.

Westerhoff, P., Hu, Q., Wsparza-Soto, M., Vermaas, W., 2010. Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ. Technol. 31, 523–532.

Wood, B., 1998. Microbiology of fermented food, vol. 2, second ed. Blackie Academic and Professional, London, U.K.

ISBN: 0751402168.

Yousry, N., 2002. Color your customer health with carotenoids.www.hnherbs.com/carotenoids.pdf.

Zaborsky, O., 1999. Marine bioprocess engineering: the missing link to commercialization. J. Biotechnol. 70, 403–408.

Zijffers, J., Janssenm, M., Tramper, J., Wiffels, R., 2008. Design process of an area-efficient photobioreactor. Marine Biotecnol. 10, 404–415.

22 1. AN OPEN POND SYSTEM FOR MICROALGAL CULTIVATION

C H A P T E R

2

Design of Photobioreactors for Algal Cultivation

Hong-Wei Yen

1

, I-Chen Hu

2

, Chun-Yen Chen

3

, and Jo-Shu Chang

4

1Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan

2Far East Bio-Tec Co. Ltd., Taipei, Taiwan, Far East Microalgae Ind Co. Ltd., Ping-Tung, Taiwan

3Center for Bioscience and Biotechnology, National Cheng Kung University Tainan, Taiwan

4Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan

No documento BIOFUELS FROM ALGAE (páginas 33-36)