• Nenhum resultado encontrado

CONCLUSIONS

No documento BIOFUELS FROM ALGAE (páginas 56-60)

References

Aaronson, S., 1973. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. J. Phycol. 9, 111–113.

Belkin, S., Boussiba, S., 1991. Resistance of Spirulina Platensis to ammonia at high pH values. PCPhy 32, 953–958.

Borowitzk, M.A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313–321.

Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y., Richmond, A., 1987. Lipid and Biomass Production by the Halotolerant Microalga Nannochloropsis-Salina. Biomass 12, 37–47.

Briassoulis, D., Panagakis, P., Chionidis, M., Tzenos, D., Lalos, A., Tsinos, C., et al., 2010. An experimental helical- tubular photobioreactor for continuous production ofNannochloropsis sp. Bioresour. Technol. 101, 6768–6777.

Chen, F., 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14, 421–426.

Chen, C.Y., Saratale, G.D., Lee, C.M., Chen, P.C., Chang, J.S., 2008. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int. J. Hydrogen Energy 33, 6878–6885.

Chojnacka, K., Noworyta, A., 2004. Evaluation ofSpirulinasp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Technol 34, 461–465.

Fazeli, M.R., Tofighi, H., Samadi, N., Jamalifar, H., 2006. Effects of salinity on beta-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran. Bioresour. Technol. 97, 2453–2456.

Grobbelaar, J.U., Nedbal, L., Tichy, V., 1996. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal culti- vation. J. Appl. Phycol. 8, 335–343.

Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S., 2011. Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnol. Adv. 29, 189–198.

Hsueh, H.T., Chu, H., Yu, S.T., 2007. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66, 878–886.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621–639.

Jacob, A., Kirst, G.O., Wiencke, C., Lehmann, H., 1991. Physiological-Responses of the Antarctic Green-Alga Prasiola- Crispa Ssp Antarctica to Salinity Stress. J. Plant Physiol. 139, 57–62.

Jacquot, J., 2009. 5 Companies Making Fuel From Algae Now. Popular Mechanics.http://www.popularmechanics.

com/science/energy/biofuel/4333722.

Janssen, M., Bresser, L.d, Baijens, T., Tramper, J., Mur, L.R., Snel, J.F.H., et al., 2000. Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. J. Appl. Phycol 12, 225–237.

Kim, B.W., Chang, K.P., Chang, H.N., 1997. Effect of light source on the microbiological desulfurization in a photobioreactor. Bioprocess Engineering 17, 343–348.

Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102, 4945–4953.

Laws, E.A., Taguchi, S., Hirata, J., Pang, L., 1986. High algal production rates achieved in a shallow outdoor fume.

Biotechnol. Bioeng 28 (2), 191–197.

Liu, W., Au, D.W.T., Anderson, D.M., Lam, P.K.S., Wu, R.S.S., 2007. Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the algaChattonella marina. J. Exp. Mar. Biol. Ecol. 346, 76–86.

Loubie`re, K., Olivo, E., Bougaran, G., Pruvost, J.r.m, Robert, R., Legrand, J., 2009. A New Photobioreactor for Con- tinuous Microalgal Production in Hatcheries Based on External-Loop Airlift and Swirling Flow. Biotechnol.

Bioeng 102, 132–147.

Lv, J.M., Cheng, L.H., Xu, X.H., Zhang, L., Chen, H.L., 2010. Enhanced lipid production ofChlorella vulgarisby ad- justment of cultivation conditions. Bioresour. Technol. 101, 6797–6804.

Mandal, S., Mallick, N., 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl.

Microbiol. Biotechnol. 84, 281–291.

Miller, A.G., Espie, G.S., Canvin, D.T., 1990. Physiological-Aspects of Co2 and Hco3- Transport by Cyanobacteria - a Review. Canadian Journal of Botany-Revue Canadienne De Botanique 68, 1291–1302.

Norsker, N.H., Barbosa, M.J., Vermue¨, M.H., Wijffels, R.H., 2011. Microalgal production — A close look at the eco- nomics. Biotechnol. Adv. 29, 24–27.

Ogbonna, J.C., Tanaka, H., 2000. Light requirement and photosynthetic cell cultivation-Development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol. 12, 207–218.

44 2. DESIGN OF PHOTOBIOREACTORS FOR ALGAL CULTIVATION

Packer, M., 2009. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37, 3428–3437.

Posada, J.A., Rinco´n, L.E., Cardona, C.A., 2012. Design and analysis of biorefineries based on raw glycerol:

Addressing the glycerol problem. Bioresour. Technol. 111, 282–293.

Pulz, O., 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol.

57, 287–293.

Raoof, B., Kaushik, B.D., Prasanna, R., 2006. Formulation of a low-cost medium for mass production of Spirulina.

Biomass and Bioenergy 30, 537–542.

Ren, L.J., Ji, X.J., Huang, H., Qu, L., Feng, Y., Tong, Q.Q., et al., 2010. Development of a stepwise aeration control strat- egy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biotechnol. 87, 1649–1656.

Renaud, S.M., Thinh, L.V., Lambrinidis, G., Parry, D.L., 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211, 195–214.

Sa´nchez, J.F., Ferna´ndez-Sevilla, J.M., Acie´n, F.G., Cero´n, M.C., Pe´rez-Parra, J., Molina-Grima, E., 2008. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl.

Microbiol. Biotechnol. 79, 719–729.

Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., et al., 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relation- ship with starch reserves. BMC Biotechnol. 11.

Singh, R.N., Sharma, S., 2012. Development of suitable photobioreactor for algae production – A review. Renewable and Sustainable Energy Reviews 16, 2347–2353.

Slegers, P.M., Wijffels, R.H., van Straten, G., van Boxtel, A.J.B., 2011. Design scenarios for flat panel photobioreactors.

Appl. Energy 88 (10), 3342–3353.

Suh, I.S., Lee, C.G., 2003. Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering 8, 313–321.

Terry, K.L., 1986. Photosynthesis in Modulated Light - Quantitative Dependence of Photosynthetic Enhancement on Flashing Rate. Biotechnol. Bioeng. 28, 988–995.

Tredici, M.R., Rodolf, L., 2004. Reactor for industrial culture of photosynthetic microorganisms. World Patent WO 2004/074423 A2.

Ugwu, C.U., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99, 4021–4028.

Willson, B., 2009. The Solix AGS system: a low-cost photobioreactor system for production of biofuels from microalgae. IOP Conf. Series: Earth and Environmental Science 6.

Xu, H., Miao, X., Wu, Q., 2006. High quality biodiesel production from a microalgaChlorella protothecoidesby hetero- trophic growth in fermenters. J. Biotechnol. 126, 499–507.

Yoon, J.H., Shin, J.H., Ahn, E.K., Park, T.H., 2008. High cell density culture of Anabaena variabilis with controlled light intensity and nutrient supply. J. Microbiol. Biotechnol. 18, 918–925.

Yoshihiro, S., Takahashi, M., 1995. Growth responses of several diatom species isolated from various environments to temperature. J. Phycol. 31, 880–888.

45

2.6 CONCLUSIONS

Intentionally left as blank

C H A P T E R

3

Metabolic Engineering and Molecular Biotechnology of Microalgae for Fuel

Production

Su-Chiung Fang

Biotechnology Center in Southern Taiwan, Academia Sinica Agricultural Biotechnology Research Center, Academia Sinica

Tainan, Taiwan R.O.C.

No documento BIOFUELS FROM ALGAE (páginas 56-60)