• Nenhum resultado encontrado

INFLUENCE OF GROWTH CONDITIONS AND OF ALLOY COMPOSITION ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE AlxGa1-xAs (0.2 = x = 0.4)

N/A
N/A
Protected

Academic year: 2024

Share "INFLUENCE OF GROWTH CONDITIONS AND OF ALLOY COMPOSITION ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE AlxGa1-xAs (0.2 = x = 0.4)"

Copied!
9
0
0

Texto

(1)

HAL Id: jpa-00222240

https://hal.archives-ouvertes.fr/jpa-00222240

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFLUENCE OF GROWTH CONDITIONS AND OF ALLOY COMPOSITION ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE AlxGa1-xAs (0.2 =

x = 0.4)

H. Künzel, H. Jung, E. Schubert, K. Ploog

To cite this version:

H. Künzel, H. Jung, E. Schubert, K. Ploog. INFLUENCE OF GROWTH CONDITIONS AND OF ALLOY COMPOSITION ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE AlxGa1-xAs (0.2 = x = 0.4). Journal de Physique Colloques, 1982, 43 (C5), pp.C5-175-C5-182.

�10.1051/jphyscol:1982521�. �jpa-00222240�

(2)

JOURNAL DE PHYSIQUE

Co Z Zoque CS, suppl4ment au n '22, Tome 43, ddeembre 1982 page C5-175

INFLUENCE OF GROWTH CONDITIONS AND OF ALLOY COMPOSITION ON ELECTRICAL AND OPTICAL PROPERTIES OF MBE A1xGal,xAs

(0.2 = x = 0 . 4 )

H. Kiinzel, H.

Jung,

E. Schubert and K. Ploog

Max-PZanek-Institut fiir Festkijrperforschung, Stuttgart, F. R. G .

Resume. - Des mesures ti 2K de photoluminescence (PL), e f f e t Hall, admittance e t DLTS ont &t@ u t i l i s e e s pour etudier en d e t a i l l ' i n f l u e n c e des conditions de croissance e t de l a composition de l ' a l l i a g e sur l e s propriet6s electriques e t optiques de couches, nominalement non dopees e t dopees n au silicium, AlxGal-xAs (0,15

<

x

<

0,45), dont l a croissance a et@ real i s e e par epi t a x i e par j e t s mol6culaires (MBE). Sur t a u t l e domai ne de composition etudi6 de 1 'a1 1 iage, 1 ' i n t e n s i t e

PL

observee depend de facon c r i t i q u e de l a tempgrature de croissance. Les principales propri6tes des porteurs minoritaires ne peuvent Otre obtenues que pour des temp6ratures du s u b s t r a t au-delti de 640°C e t une reconstruction de surface lggerement s t a b i l i s e e arsenic (2x4). Des compositions de 1 'a l l i a g e proches de l a t r a n s i t i o n d i r e c t - i n d i r e c t conduisent ti un 61 argissement considerabl e des t r a n s i t i o n s PL. Simul tanement, la separation d'energie des t r a n s i t i o n s e n t r e accepteur associe e t exciton augmente

ii

cause d'un niveau donneur devenu plus profond. Les mesures d'admittance conduisent directement l ' e n e r g i e d ' i o n i s a t i o n du niveau donneur superficiel e t montrent l ' e x i s t e n c e domi- nante d'un pisge ti electrons dans n-AlxGal-xAs:Si, &labor6 par MBE. I1 a e t 6 trouve que l a concentration de ce piege c r o i t de facon consid6rable avec l a proportion d'Al.

Dans n-AlxGal-xAs:Si obtenu par MBE avec x

<

0,25, l a concentration du piege ti elec- trons e s t infgrieure au s e u i l de detection des mesures d'admittance. Des mesures DLTS complementaires montrent que l a concentration du piege 5 electrons pour des a l l i a g e s obtenus par MBE peut maintenant regulierement 6 t r e a j u s t e e au pour cent de l a concentration de dopage desiree.

Abstract. - 2K photoluminescence (PL), Hall e f f e c t , admittance and

DLTS

measure- ments were used t o study i n d e t a i l the influence of growth conditions and of a l l o y composition on the e l e c t r i c a l and optical properties of nominally undoped and of Si-doped n-AlxGal-xAs (0.15

<

x

<

0.45) layers grown by molecular beam epitaxy (HBE).

Over the e n t i r e ranga of a l l o y composition investigated, the observed

PL

i n t e n s i t y depends c r i t i c a l l y on t h e growth temperature. Superior minority c a r r i e r properties can be achieved only a t substrate temperatures above 640% and s l i g h t l y As-stabi- 1 ized (2x4) surface reconstruction. A1 loy compositions close t o t h e direct-in- d i r e c t cross-over lead t o a considerable broadening of the PL t r a n s i t i o n s . Simul- taneously t h e energy separation between the acceptor associated and bound exciton t r a n s i t i o n s increases due t o the deepening of t h e donor level. The admittance measurements d i r e c t l y yielded the bindina energy of t h e shallow donor level and showeq the existence of one dominant electron t r a p i n I4BE n-Al,Gal,,As:Si. The t r a p concentration was found t o increase considerably with enhanced A1 content. In

:!BE

n-Alxl;al-xAs:Si with

x <

0.25, t h e t r a p concentration i s below the detection 1 im i t of the admittance technique. Additional DLTS measurements demonstrate t h a t t h e t r a p concentration i n

:1BE

grown a l l o y material i s routinely on the order of

of the intentional doping concentration.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982521

(3)

JOURNAL DE PHYSIQUE

1. I n t r o d u c t i o n .

-

The method o f molecular beam e p i t a x y (!IBE) makes f e a s i b l e t h e design o f novel e l e c t r i c a l and o p t i c a l devices based on s u p e r l a t t i c e s t r u c t u r e s i n - c l u d i n g mu1 t i p l e quantum w e l l (YObI) l a s e r s /1/ and h i g h e l e c t r o n m o b i l i t y t r a n s i s t o r s (HEMT) /2/. T h i s a r i s e s from t h e h i g h degree o f dimensional, compositional, and doping c o n t r o l i n t h e d i r e c t i o n o f l a y e r growth t h a t has now been achieved by t h i s growth technique down t o submicron dimensions. I n these new devices t h e t e r n a r y a l l o y AlxGal-xAs i s w i d e l y used as a h i g h e r band gap m a t e r i a l w i t h 0 . 1 5 < x < 0 . 3 0 i n HEIlT s t r u c t u r e s and w i t h 0 . 3 < x < 0.4 i n standard double h e t e r o s t r u c t u r e (DH) as w e l l as MQI.1 l a s e r s t r u c t u r e s . For t h i s study we have performed d e t a i l e d low-tempe- r a t u r e photoluminescence (PL), Hal 1 e f f e c t , admittance and DLTS measurements t o evaluate t h e e l e c t r i c a l and o p t i c a l p r o p e r t i e s o f n o m i n a l l y undoped and o f S i - doped n-type AlxGal,xAs (0.15 < x c 0.45) l a y e r s grown by 1BE. The r e s u l t s have been used t o o p t i m i z e t h e growth c o n d i t i o n s f o r t h i s important t e r n a r y a l l o y m a t e r i a l . 2. Experimental.

-

The AlxGal-xAs f i l m s were grown i n a WBE system o f t h e horizon- t a l evaporation t y p e which was equipped w i t h a sample t r a n s f e r device, a r o t a t i n g s u b s t r a t e h o l d e r arid an extended LN2 cryopanel e n c i r c l i n g t h e whcle growth area.

The e p i t a x i a l a l l o y m a t e r i a l w i t h a thickness o f 2

-

3

urn

was deposited w i t h o u t any b u f f e r l a y e r simultaneously onto (100) o r i e n t e d Cr-doped S I and h e a v i l y S i doped nt-GaAs s u b s t r a t e wafers soldered s i d e by s i d e w i t h l i q u i d I n on t h e Mo mounting and t r a n s f e r p l a t e . The temperature o f t h e Ga e f f u s i o n c e l l was k e p t constant r e s u l t i n g i n a growth r a t e o f 1.0 um/hr f o r GaAs when deposited a t 580cC.

The temperatures o f t h e A1 and S i e f f u s i o n c e l l s were s y s t e m a t i c a l l y v a r i e d t o o b t a i n t h e d e s i r e d a l l o y composition and donor concentration. The a r s e n i c f l u x was adjusted t o y i e l d a s l i g h t l y A s - s t a b i l i z e d (2x4) surface r e c o n s t r u c t i o n . The sub- s t r a t e temperature Ts, which v a r i e d from 5520C t o 670% i n d i f f e r e n t growth runs, was c a l i b r a t e d by observino t h e oxygen d e s o r p t i o n from t h e chemically etched and UHV heated s u b s t r a t e s u r f a c e i n t h e RItEED p a t t e r n .

H a l l e f f e c t measurements a t 300 K and 77 K were made on r e c t a n g u l a r shaped samples u s i n g t h e van d e r Pauw technique. Ohmic contacts were formed by c a r e f u l l y a l l o y i n g small I n b a l l s i n t o t h e sample. Nominally undoped AlxGal-xAs l a y e r ~ ~ f x - - ~ , h i b i t p-type c o n d u c t i v i t y and have 300 K n e t c a r r i e r concentrations below 10 cm over t h e e n t i r e composition range studied. I n Si-doped n-type AlxGa -,As l a y e r s w i t h 0.15 < x < 0.25, t h e 300 K f r e e e l e c t r o n H a l l m o b i l i t y i s reducea compared t o n-GaAs and i s o n l y s l i g h t l y dependent on C a r r i e r concentration. The 300 K m o b i l i - t i e s thus decrease from 1600 cmz/~.sec t o o n l y 1215 cm2/~.sec, when t h e c a r r i e r c o n c e n t r a t i o n i s increased from 6x1016 cm-3 t o 1 . 2 ~ 1 0 1 8 cm-3. F o r t h i s a l l o y com- p o s i t i o n range no marked c a r r i e r f r e e z e o u t was observed down t o 77 K. F o r n-A1xGal-xAs:Si l a y e r s w i t h h i g h e r A1 c o n t e n t (x > 0.3), however, a f u r t h e r reduc- t i o n o f t h e 300 K H a l l m o b i l i t y and a s u b s t a n t i a l c a r r i e r f r e e z e o u t was detected.

I n t h i s composition range the s u b s t r a t e temperature Ts has o n l y a minor i n f l u e n c e on t h e H a l l m o b i l i t y f o r T,> 6000C, whereas t h e e l e c t r i c a l p r o p e r t i e s d r a s t i c a l l y d e t e r i o r a t e f o r Ts < 600°C. The behavior can be analyzed by studying t h e 1 umi- nescence p r o p e r t i e s and t h e n a t u r e o f t h e deep e l e c t r o n traps.

The luminescence experiments were performed on t h e (100) s u r f a c e w i t h t h e samples immersed i n l i q u i d He pumped t o T< 2 K. As e x c i t a t i o n source t h e l a s e r l i n e from a Kr+ l a s e r w i t h photon energy P1~=2.603 eV was used. The e x c i t a t i o n i n t e n s i t y could be v a r i e d by employing n e u t r a l d e n s i t y f i l t e r s . The luminescence l i g h t was analyzed w i t h a Spex

lm

g r a t i n g monochromator, and the d e t e c t i o n i n t h e range

n w

> 1.45 eV was made w i t h a cooled GaAs photocathode mu1 t i p l i e r .

Capacitance measurements performed on Schottky diodes were used t o evaluate t h e dependence o f deep e l e c t r o n t r a p s on t h e A1 c o n t e n t x o f t h e a l l o y and on growth temperature TS. I n a d d i t i o n we i n v e s t i g a t e d t h e deepening o f t h e shallow donor l e v e l . The Schottky diodes were f a b r i c a t e d by evaporating Au onto t h e as- grown s u r f a c e o f t h e n-A14Gal-xAs:Si l a y e r s i n a separate vacuum system. The ob- served diode c h a r a c t e r i s t i c s were as f o l l o w s : diode n-value n=1.1+0.5, s a t u r a t i o n c u r r e n t I s = 1.5x?0-8~/cm2, and b a r r i e r h e i g h t V 0.95 eV. V d e t e s i n e d by capaci- tance-vol tage measurements was found t o be sligR;ly h i g h e r Vvb=l.l eV). The tempe- r a t u r e and frequency dependence of t h e capacitance and conductance o f t h e Schottky diodes were measured f o r temperat r e s ranging from 10 K t o 300 K and frequencies ranging from 10 sec-1 t o 107 Sei-Y. The evaluated t r a p depth i s thus l i m i t e d t o

(4)

Et=0.5 eV. The technique of admittance spectroscopy

/3/

i s well suited t o study deep majority c a r r i e r traps i f t h e i r concentration i s on the order of o r even higher than the shallow level concentration.

3. Results and Discussion. -

3.1 Luminescence properties of A1,Gal-xAs

I n big.

1

typical low-temperature

PL

spectra obtained from three representative

MBE

AlxGal-xAs layers of d i f f e r e n t a l l o y composition and grown a t d i f f e r e n t sub- s t r a t e temperatures a r e shown. The A10,1gGa0:81As specimen was grown a t the highest

s u b s t r a t e temperature used in t h e present study. When we comare t h i s PL s ~ e c t r u m

a l l o y composition, the binding energies of the exciton and of the two acceptors Si and

C

i n A1xGal-xAs d i f f e r only s l i g h t l y from thosein GaAs

/5/.

Variing the exci- t a t i o n i n t e n s ~ t y , y i e l d e d no s h i f t of the emission energy confirmin? our assign- ment. A t present, the source of t h i s Si contanination (Al-effusion c e l l o r sub- s t r a t e holder?) i s not y e t unambiguously identified. Further i t i s important t o note t h a t t h i s (e, SiO) recombination

1

ine i s only detectable in nominally undoped sanples grown a t high (>650°c) s u b s t r a t e temperatures due t o the strongly amphoteric behavior of Si i n

?!BE

GaAs and MBE A1xGal-xAs.

kIhen we compare the f i r s t PL spectrum ( a ) with spectrum (b) obtained from A10.24Gao 76As layer which was grown a t a lower temperature (630°C), we observe t h a t the l i n e due t o (e,Sio) recombination has t o t a l l y disappeared. In t h i s spectrum (b), the half-width of the (e,CO) recombination l i n e i s extremely narrow (13 meV) ar.d the BE peak i s well separated. Both features demonstrate the excellent minority- c a r r i e r properties of the

MBE

grown material.

In t h e PL spectrum ( c ) obtained from intentionally Si doped n-A10 42Ga0,58As layer with a high A1 content close t o t h e i n d i r e c t t r a n s i t i o n , we o b s e h e a l s o three d i s t i n c t peaks. The high energy peak a t 2.046 eV can again be a t t r i b u t e d t o

BE

tran- s i t i o n , and the two other l i n e s a r e apparently associated with

C

and Si acceptors on As s i t e s . Compared w i t h t h e r e s u l t s a t lower A1 content, however, t h e i r ener- g e t i c distances t o t h e

BE

peak a r e now considerably larger.

In Fig. 2 we show, in addition, t h a t a t high A1 content t h e low energy peak labeled B i s s h i f t i n g strongly t o higher energy with increasing excitation intensity.

We have used the l a r g e r separation of the PL peaks a s well a s the enhanced l i n e s h i f t observed on a l l o y specimens with higher A1 content a s two p a r t i c u l a r features which can be used t o i d e n t i f y the

PL

l i n e s labeled A and

B

a s donor-acceptor (DA) p a i r recombination /6/. The luminescence energy

hw i s then given by the equation

Rw =

Eg - (EA + EE) +;- e2

(1)

ENERGY teV 1

( a ) with a PL spectrum from

1.6 1.8 2.0 2.2

GaAs /4/, we can assign the

observed high energy peak forming a shoulder a t 1.74 eV t o recombination of a

I

, I

0

bound exci ton (BE). Then

T = 2 K

the two intense peaks a t

g

a ] x = O L Z

1.721 eV can be a t t r i b u t e d

U) x = 0 1 9 x = 0 2 ~ SI - doped

t o band-acceptor (BA) tran-

z nom undoped nom undoped

s i t i o n s , (e,Si") and (e.CO),

P

sub= 6.ro0c Tsub= 630nC TQ,~= 660°C

z respectively, due t o r e s i -

-

I

dual carbon and s i l i c o n

-I

acceptors. In t h i s range of

a

Fig. 1: Low-temperature photolumi nescence spectra

of nominally undoped and of

7000 6000

Si-doped MBE AlxGal-xAs

WAVELENGTH [ A 1

1 ayers.

.-. M B E

AI, Gal_,As P L= 1 0 ~w emQ ~ ~ ~
(5)

JOURNAL DE PHYSIQUE

F i g . 2 : E x c i t a t i o n i n t e n s i t y dependence

1.8 1.9 2.0 2.1 o f t h e PL spectrum i n MBE

I I I I A1 0. 42Ga0, 5 8 A ~ : S i

.

1

MBE Alo,42Gao.58 As:Si p~aser

where E i s t h e band gap energy, EA and 1.3 r n ~ c r n "

ED

a r e !he i o n i z a t i o n energies f o r t h e

acceptor and t h e donor, r e s p e c t i v e l y ,

L.. and t h e l a s t term describes t h e depen-

- 0.1

w

ern" dence o f t h e emission energy on t h e

o e x c i t a t i o n i n t e n s i t y . An increase o f

-

t h e e x c i t a t i o n i n t e n s i t y leads t o a

>-

5

-

1.3 W cm-2 s a t u r a t i o n o f more d i s t a n t donor-

V) acceptor p a i r recombination and thus

z

r e s u l t s i n a l o w e r i n g o f r i n Eq. (1).

e

As a consequence t h e luminescence l i n e

3

s h i f t s t o h i g h e r energy. I n s p e c t i o n o f

I

A F i g . 2 r e v e a l s t h a t a s h i f t o f about

a. 6 meV i s observed when t h e e x c i t a t i o n

i n t e n s i t y i s changed by one order o f magnitude. T h i s r e s u l t i s i n good T = 2 K agreement w i t h t h e data r e p o r t e d i n

Ref. 7.

7000 6500 6000 A t t h e lowest e x c i t a t i o n i n t e n s i t y o f WAVELENGTH [ A l 1.3 mll. cm-2, t h e separation between t h e

bound-exciton recombination BE and t h e S i acceptor r e l a t e d t r a n s i t i o n B i s found t o be 76 meV, whereas t h e i n t e n - s i t y o f l i n e A r e l a t e d t o t h e C acceptor i s a l r e a d y below t h e d e t e c t i o n 1 im i t . F u r t h e r r e d u c t i o n o f e x c i t a t i o n i n t e n - s i t y r e s u l t s i n a separation o f t h e BE and B f e a t u r e s up t o about 100 meV.

According t o Ref. 5 t h e S i acceptor b i n d i n g energy should be on t h e order o f 50 meV f o r n-A1xGal-xAs:Si w i t h x = 0.4. Thus, t a k i n g t h i s v a l u e i n t o account, a tremendous deepening o f t h e S i donor l e v e l can be deduced f o l l o w i n g t h e equation

AE =

~8~ + ~ 2 ' -

EEx

w i t h AE being t h e e n e r g e t i c separation o . t h e BE and B t r a n s i t i o n and E2', Eil, EEx t h e S i donor, S i acceptor and e x c i t o n b i n d i n g energies, r e s p e c t i v e l y . As a r e s u l t we o b t a i n a v a l u e o f b e t - ween 40 and 50 meV f o r t h e S i donor l e v e l assuming an e x c i t o n b i n d i n g energy o f 6 meV. /8/.

Next we i n v e s t i g a t e d t h e i n f l u e n c e o f t h e growth temperature on t h e i n t e n s i t y of t h e emission peak a t t r i b u t e d t o t h e S i acceptor which dominates t h e 2 K PL spectra o f n-Aloe 35Ga0. &AS. I n s p e c t i o n of F i g . 3 shows t h a t t h e i n t e n s i t y o f

SUBSTRATE TEMPERATURE tK1

Fig. 3 : Growth temperature dependence of t h e PL spectrum i n WBE A1 0. 42Ga0, 5 8 A ~ : S i

.

(6)

t h i s peak increases d r a s t i c a l l y by about two orders of magnitude when t h e substrate temperature i s increased from Ts

=

550°C t o Ts

>

6500C. In AlOe35Ga -65As layers grown a t lower substrate temperatures p a r t of t h e o p t i c a l l y excl te! c a r r i e r s recom- bine nonradiatively over deep t r a p centers. Our detai1.ed admittance measurements have revealed t h a t t h e i r concentration increases with decreasing growth temperature.

The observed reduction of

PL

i n t e n s i t y a t lower growth temperatures i s d i r e c t l y correlated with t h e occurence of an additional broad l i n e in the PL spectrum a t aD energetic position about 40 meV below the Si acceptor related peak. The i n t e n s i t y of t h i s broad

PL

f e a t u r e increases monotonically when the growth temperature i s lowered from 610°C and i t dominates the whole spectrum a t Ts

=

550%. The physical- chemical nature of t h i s deep recombination center i s a t present unknown.

3.2 Behavior of deep electron traps and shallow donors i n AlxGal,xAs

An example of the temperature depen ence o capacitance an con uctance a t a fre- quenc.v of 10 s - l f o r a rebresentati:e HBE :l.Gal -.Ar:Si (n!7x10P6cm-3) laver of A1

...

..\.

MBE # 4130

ll

-

&0,35&10,65A~:Si

....

content x=0.35 which was grown a t a medium s^ubsir^ate temperature i s depicted i n Fig

4. The

temperature dependence of t h e capacitance (dark points) shows two c h a r a c t e r i s t i c steps. A t low temperature, the measured capacitance drops nearly t o zero due t o the freeze out of the shallow donor level. Any remaining capacitance i s limited by t h e geometry and spacing of t h e Schottky contact with respect t o t h e ohmic return contact /3/. The observed increase of the capacitance a t about 150°C i s caused by the emission of electrons from the dominant deep level. I t can be used d i r e c t l y t o determine the concentration of shallow donors and deep levels.

The increase of the capacitance i s d i r e c t l y

deep level i s broad and

1 asymmetric because i t re- sul t s from two closely

, spaced levels. The depth from the conduction band edge can be determi ed bv simplv drawing

w

T$ vs T-1 on a semi-logarithmic p l o t , where Tp i s the con- ductance peak temperature and

w

t h e measurement f r e - auencv. The r e s u l t s f o r

-

300-

Lh -

w

200-

E

t h e 4 m p l e investigated

..-.. a r e given in Fig.

5.

The

...

a) f

=I0

Hz

...

u = o v

.e4--''

0 .

* .

goo.o 0 OO-O.a e . e.

1 3-

0. O . e.

0.

O.

bC =175pF % oo Be OOOO..OOe..

- I

0

1

I I

1 quency of 10 sec-1

0

100 200 300

a ) capacitance of

TEMPERATURE [K]

the sample in the

dark (01 and a f t e r connected

w i t h

a peak i n t h e temperature dependence

o f t h e

conductance when the emission r a t e i s in phase with the o s c i l l a t i n g measurement voltage a t a fixed frequency. !Je de- monstrate t h i s behavior i n Fig.

4.

The conductance neak a t t r i b u t e d t o the

. . ...

MBE # 4130

...

...

8

n

-

A~0.356a0,65A~:!3

Fig. 4: Temperature depen-

dence of admittance

of A u / A ~ 1. gGa0.65

As:Si Sc o ky

b a r r i e r diode a t a

measurement f r e -

(7)

JOURNAL DE PHYSIQUE

b=1.35 eV ( 0 ) b) conductance of

10 3 the sample in the

MBE # 4130 dark.

n -

AL0.35G~0.65 AS : Si

Fig. 5:Thermal emission r a t e versus inverse temperature f o r l e v e l s detected in

CV the upper half of

Y on =6.3 x m 2 the band gap in blBE

10

V) A1 0. 356a0. 65A~:

SI.

U

I- donor binding energy was

3 Et =0.38 eV thus found t o be 50 meV.

0,=1.6 x 1 0 - l ~ m 2 This deepening of the donor

level with

x

i s consistent with Hall-effect data a s well a s with the photo- 10 2 0 30 luminescence r e s u l t s . In

1000/T [K-l] p a r t i c u l a r i t elucidates

the change from a band- acceptor l i k e emission struc- ture ( e , s i o ) in the

PL

spectrd a t 0.2 <

x

4 0.25 t o a donor-acceptor recombination (DA) a t 0 . 3 < x < 0 . 3 5 indicated by t h e increase of

the

separation between the luminescence l i n e

B

and the bound exciton l i n e

BE

with increasing

x

(see Fig. 1).

Nhen t h e c a r r i e r concentration in the sample i s increased, the low-temperature capacitance s t e p s h i f t s t o lower temperatures. This menas t h a t the donor binding energy decreases. Fig. 6 shows t h i s dependence of the c a r r i e r concentration on the donor binding energy. For a c a r r i e r concentration of n=2

x

1017cm-3 and x=0.35, a binding energy of 13 meV i s evaluated. This i s in good agreement with recent r e s u l t s obtained from Hall-effect measurements on MBE A10 Ga0.65As:Si / 9 / . In addition the l o g o ~ $ vs T-1 plot y i e l d s a value of 0.38 eV for'38e depth of the dominant electron trap. This value has t o be corrected because t h e b a r r i e r f o r the emission of c a r r i e r s from the t r a p i s lowered due t o t h e Pool

-

Frenkel e f f e c t

/ l o / .

Usually t h i s correc- tion i s on the order of 10% f o r t h i s trap depth ( E ) and f o r t h i s deep level t o shallow level r a t i o (Nt/n) /11/. Using t h i s proce6ure we obtain a corrected value of 0.42 eV f o r the t r a p depth which agrees well with recent DLTS data f o r the do- minant t r a p obtained from the same material /12/.

75-

- 5

E

U

0 25

w

1016 10'7 1018 ted dominan't electron trap. This i s fur-

No

-

NA ~ c r n - ~ l t h e r supported by the capacitance increase t h a t corresponds t o the increase a t high temperatures in t h e dark. This finding strongly suggests t h a t the 0.42 eV electron t r a ? i s responsible f o r the p e r s i s t e n t MBE A1 0.35Ga0.65As : Si

TSub= 600eC

\ *

- I J

Fig. 6: Dependence of Si-donor binding energy on doping concentration in WBE A10.356a0.65As:Si deduced from admittance measurements.

In addition, in Fig. 4a, the tempera- t u r e dependence of t h e capacitance of the Schottky diode illuminated with l i g h t of energy below the bandgap (TI ~ 1 . 3 5 eY) f o r a short time a t low temperatures i s shown (open symbols). The observed p e r s i s t e n t increase a t low temperatures indicates the emission of f r e e e7ectrons from the detec-

(8)

p h o t o c o n d u c t i v i t y e f f e c t observed. Photo-Hall e f f e c t measurements r e c e n t l y performed on t h e same m a t e r i a l i n o r d e r t o measure t h e f r e e - e l e c t r o n c o n c e n t r a t i o n a r e i n ex- c e l 1 e n t agreement w i t h r e s p e c t t o donor b i n d i n g energy, s h a l l o ~ l e v e l concentration, and deep l e v e l concentration. I n a d d i t i o n , these H a l l e f f e c t measurements y i e l d e d an increase o f t h e e l e c t r o n m o b i l i t y compared t o t h e measurements performed i n t h e dark a t low temperatures. Consequently i o n i z e d i m p u r i t y s c a t t e r i n g i s reduced i n t h e i l l u m i n a t e d sample. The r e s u l t s s t r o n g l y i n d i c a t e t h a t t h e deep e l e c t r o n t r a p i n f a c t i s a double acceptor changing i t s charged s t a t e from -2 t o -1 r a t h e r than a deep donor changing t h e charged s t a t e from 0 t o +1 d u r i n g i l l u m i n a t i o n /13,14/.

Since t h i s c e n t e r i s thus s t i l l charged n e g a t i v e l y , i t a c t s as a Coulomb b a r r i e r t o t h e e l e c t r o n s i n t h e conduction band, g i v i n g r i s e t o t h e observed ~ e r s i s t e n t photo- c o n d u c t i v i t y . Any p e r s i s t e n t p h o t o c o n d u c t i v i t y which m i g h t be r e l a t e d t o t h e

n -

A1xGal-xAs/GaAs s u b s t r a t e i n t e r f a c e can be excluded from these experiments, s i n c e our, p r o f i l i n g measurements performed a t low temperatures i n t h e dark as w e l l as i n t h e i l l u m i n a t e d s t a t e c l e a r l y demonstrate t h e homogeneous d i s t r i b u t i o n o f ca- pacitance enhancement i n t h e d i r e c t i o n o f l a y e r growth.

A d d i t i o n a l systematic s t u d i e s revealed a s t r o n g dependence o f deep t r a p concen- t r a t i o n on t h e A1 content, doping concentration, and growth temperature. A v a r i a t i o n o f t h e n e t c a r r i e r c o n c e n t r a t i o n from 7 x 1016cm-3 t o 2 x 1017cm-3 leads t o an i n - crease o f t h e deep l e v e l c o n c e n t r a t i o n from 2.4 x 1 0 l ~ c m - ~ t o 5.8 x 1017cm-~ f o r an A1 content o f x = 0.35. T h i s d i r e c t c o r r e l a t i o n o f donor and deep l e v e l concentra- t i o n s t r o n g l y suggests t h a t t h e deep l e v e l i s d i r e c t l y c o r r e l a t e d w i t h t h e donor species as has been proposed p r e v i o u s l y f o r LPE AlxGal-xAs:Si /15/. I n agreement w i t h o u r PL data o f Sect. 3.1 t h e s u b s t r a t e temperature has a marked i n f l u e n c e on t h e 0.42 eV t r a p concentration. A decrease o f Nt/n from 3.4 t o 1.2 i s observed f o r x = 0.35 when t h e s u b s t r a t e temperature i s increased from 615°C t o 6400C. A reduc- t i o n o f the A1 content from x = 0.4 t o x = 0.33 r e s u l t s i n a decrease o f t h e deep t r a p t o fr e e l e c t r o n r a t i o Nt/n from 4.8 t o 1.4 a t a f r e e c a r r i e r c o n c e n t r a t i o n o f n = 7 x l0J6cm-3.

A f u r t h e r r e d u c t i o n o f t h e A1 c o n t e n t t o below x = 0.25 suppresses t h e t o t a l deep l e v e l c o n c e n t r a t i o n below t h e d e t e c t i o n l i m i t o f t h e admittance technique. I n Fig. 7 we show t h e r e s u l t s o f a d d i t i o n a l DLTS measurements which revealed f i v e elec- t r o n traps. Though s t i l l detectable, t h e 0.4 eV t r a p i s now no l o n g e r t h e most i n - tense emission. Rather, t h e e l e c t r o n t r a p s a t 0.6 and 0.7 eV dominate t h e spectrum.

A t t h i s growth temperature o f 630% t h e o v e r a l l r a t i o Nt/n i s reduced t o 2 x A f u r t h e r increase o f TS t o >6700C makes i t f e a s i b l e t o decrease t h e t o t a l t r a p c o n c e n t r a t i o n now r o u t i n e l y t o below o f t h e i n t e n t i o n a l c a r r i e r concentration.

On t h e o t h e r hand, as shown i n t h e PL spectra, t h e undesired S i autocompensation r a t i o i s s t r o n g l y enhanced i n t h i s case.

MBE AI0,23Ga0.77A~: Si

I I I I I

8x 1014 ern-3

lo0 200 300

TEMPERATURE I K I

4. Conclusion.

-

Ye have combined 2 K Photoluminescence, H a l l effect, admittance, and DLTS measurements t o i n v e s t i g a t e t h e i n f l u e n c e o f growth c o n d i t i o n s and a l l o y com- p o s i t i o n on t h e e l e c t r i c a l and o p t i c a l p r o p e r t i e s o f nominally undoped and c f S i doped n-type A1xGal-xAs (0.2 < x < 0.4) l a y e r s grown by molecular beam e p i t a x y (MBE) a t s u b s t r a t e temperatures ranging from 570 t o 6700C. The PL measurements demonstrate t h a t h i g h growth temperatures y i e l d F i g . 7: DLTS spectrum o f e l e c t r o n

t r a p s i n FlBE A ~ Q 23 Ga0.77As:Si i n d i t a t i n g t r a p depth and concentra- t i o n .

(9)

C5-182 JOURNAL DE PHYSIQUE

an improved luminescence i n t e n s i t y b u t a l s o an enhanced autocompensation r a t i o o f t h e amphoteric S i dopant. A v a r i a t i o n o f t h e A1 c o n t e n t from x l 0 . 2 5 t o x > 0.30 leads t o a conversion o f t h e band acceptor l i k e emission s t r u c t u r e (e, SiO) t o a donor acceptor (DA) s t r u c t u r e i n t h e PL spectrum. T h i s i s caused by t h e i n c r e a s i n g donor b i n d i n g energy as i s confirmed b y o u r admittance measurements. I n a d d i t i o n , f o r x > 0.30, one e l e c t r o n t r a p i s found t o dominate. The c o n c e n t r a t i o n o f t h i s t r a p l e v e l i s on t h e order o f o r even higher than t h e doping c o n c e n t r a t i o n a t t h i s a l l o y composition. The t r a p c o n c e n t r a t i o n can be reduced s i g n i f i c a n t l y by i n c r e a s i n g t h e growth temperature and reducinq A1 content. A t A1 contents below x = 0.25, t h e t o t a l t r a p c o n c e n t r a t i o n can now r o u t i n e l y be reduced below 10-2 o f t h e i n t e n t i o n a l c a r r i e r concentration.

Acknowledgement.

-

T h i s work was sponsored by t h e Bundesministerium f u r Forschung und Technologic. The authors a r e indebted t o A. F i s c h e r and J. Knecht f o r e x p e r t h e l p i n sample p r e p a r a t i o n and t o K. bliinstel f o r he1 p w i t h t h e DLTS measurements.

The t e c h n i c a l assistance o f B. Kiibler f o r metal c o n t a c t f a b r i c a t i o n and o f

!.I.

Heinz d u r i n g 1 umi nescence measurements i s g r a t e f u l 1 y acknowledged.

References

[l] TSANG W.T., Appl. Phys. L e t t . 39 (1981) 786.

-

[21 HIYAMIZU S. and !'IIFI1URA T., J. Cryst. Growth

25

(i982) 455.

[31 LOSEE D.L., J. Appl. Phys. -- 46 (1975) 2204.

[4] ASHEN D. J., DEAN P.J., HURLE D.T. J., MULLIN J.B., and WHITE A.M., J. Phys. Chem. S o l i d s

-

36 (1975) 1041.

[5] SMINATHAN V., STURGE M.D., and ZILKO J.L., J. Appl. Phys. _5_1 (1981) 6308.

E61 DEAN P.J., i n Progress i n S o l i d S t a t e Chemistry, ed. McCALDIN J.O. and SAMORJAI G. (Pergamon, New York, 1973)

--

Vol

.

8.

[TI

SCIANINATHAN V., SCHUFlAKER N.E., ZILKO J.L., HAGNER L.I.R., and PARSONS C.A., J. Appl. Phys.

-

52 (1981) 412.

STRINGFELLOW G.B. and LINNEBACH R., J. Appl. Phys. 51 (1980) 2212.

-

THORNE R.E., DRUMMOND T.J., LYONS U.G., FISCHER R. and MORKOC H., Appl. Fhys. L e t t .

-

41 (1982) 189.

FRENKEL J., Phys. Rev.

-

54 (1938) 647.

PAUTRAT J.L., S c l i d S t a t e Electron.

3

(1980) 661.

ZHOU B.L., PLOOG K., GElELIN E., ZENG X.Q., and SCHULZ If., Appl. Phys.

-

A28 (1982) 223.

LORENZ

M.R.,

SEGALL B., and LJOODSBURY H.H., Phys. Rev.= (1964) 751.

SAXENA A.K., S o l i d S t a t e Electron. 25 (1382) 127.

-

LANG D.V., and LOGAN R.A., I n s t . Phys. Conf. Ser. No.

--

43 (1979) 433.

Referências

Documentos relacionados

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements