• Nenhum resultado encontrado

Additional publications

International, peer-reviewed journal papers, written in the English language

[L7] Skwarek, A., Krammer, O., Hurtony, T., Ptak, P., Górecki, K., Wroński, S., Straubinger D., Witek, K., ,Illés, B. (2021). Application of ZnO nanoparticles in

Sn99Ag0.3Cu0.7-based composite solder alloys. In Nanomaterials, 11(6), 1545., doi: 10.3390/nano11061545

[L8] Straubinger, D., Bozsóki, I., Illes, B., Krammer, O., Bušek, D. and Geczy, A.

(2020), "Heat transfer aspects of condensation during vapour phase soldering on aligned PCB-based surfaces", Soldering & Surface Mount Technology, Vol. 32 No. 4, pp. 247-252., doi: 10.1108/SSMT-11-2019-0038.

International, peer-reviewed conference papers, written in the English language

[R8] Alaya, M. A., Gál, L., Hurtony, T., Medgyes, B., Straubinger, D., Tareq, A. M.,

& Géczy, A. (2019). Wetting of different lead free solder alloys during vapour phase soldering. In 2019 42nd International Spring Seminar on Electronics

Technology (ISSE) (pp. 1-6). IEEE.,

doi: 10.1109/ISSE.2019.8810204.

[R9] Géczy, A., Szalmási, D., Straubinger, D., & Illés, B. (2019). Investigating shadowing and possible tombstoning caused by large SMD components during vapour phase reflow soldering. In 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME) (pp. 343-346). IEEE., doi: 10.1109/SIITME47687.2019.8990744.

[R10] Illés, B., Skwarek, A., Krammer, O., Straubinger, D., Lakó, B., Harsányi, G., &

Witek, K. (2021). Soldering with SACX0307-(TiO 2/ZnO) nano-composite solder alloys. In 2021 44th International Spring Seminar on Electronics Technology (ISSE) (pp. 1-6). IEEE., doi: 10.1109/ISSE51996.2021.9467652

[R11] Illés, B., Skwarek, A., Krammer, O., Hurtony, T., Straubinger, D., Ratajczak, J.,

& Witek, K. (2021). Properties of nano-composite SACX0307-(ZnO, TiO 2) solders. In 2021 23rd European Microelectronics and Packaging Conference &

Exhibition (EMPC) (pp. 1-6). IEEE., doi: 10.23919/EMPC53418.2021.9585015 [R12] Géczy, A., Alaya, M. A., Rozs, E., Straubinger, D., & Illés, B. (2021). Flow and

Gauge Sensor Fusion in Vapour Phase Soldering Ovens for Optimized Process Control. In 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC) (pp. 111-114). IEEE., doi: 10.1109/EPTC53413.2021.9663870

[R13] Géczy, A., Csiszár, A., Rozs, E., Hajdu, I., Medgyes, B., Krammer, O., Straubinger, D., Gál, L. (2022, May). Novel PLA/Flax Based Biodegradable Printed Circuit Boards. In 2022 45th International Spring Seminar on Electronics Technology (ISSE) (pp. 1-6). IEEE., doi: 10.1109/ISSE54558.2022.9812827

References

[1.1] Tsai, T. N. (2012). Thermal parameters optimization of a reflow soldering profile in printed circuit board assembly: A comparative study. Applied Soft Computing, 12(8), 2601-2613.

[1.2] Gao, J., Wu, Y., & Ding, H. (2007). Optimization of a reflow soldering process based on the heating factor. Soldering & surface mount technology, 19(1), 28- 33.

[1.3] Gao, J. G., Wu, Y. P., Ding, H., & Wan, N. H. (2008). Thermal profiling: a reflow process based on the heating factor. Soldering & Surface Mount Technology.

[1.4] Tao, B., Wu, Y., Ding, H., & Xiong, Y. L. (2006). A quantitative method of reliability estimation for surface mount solder joints based on heating factor Qη. Microelectronics Reliability, 46(5-6), 864-872.

[1.5] Tu, P. L., Chan, Y. C., Hung, K. C., & Lai, J. K. L. (2001). Study of micro-BGA solder joint reliability. Microelectronics Reliability, 41(2), 287-293.

[1.6] Fengshun, W., Li, C., Boyi, W., & Yiping, W. (2004). Effects of heating factors on the geometry size of unrestricted lead-free joints. In 2004 International IEEE Conference on the Asian Green Electronics (AGEC). Proceedings of (pp. 81- 85). IEEE.

[1.7] Hu, X., Xu, T., Jiang, X., Li, Y., Liu, Y., & Min, Z. (2016). Effects of post- reflow cooling rate and thermal aging on growth behavior of interfacial intermetallic compound between SAC305 solder and Cu substrate. Applied Physics A, 122(4), 1-10.

[1.8] Lee, H. T., Chen, M. H., Jao, H. M., & Liao, T. L. (2003). Influence of interfacial intermetallic compound on fracture behavior of solder joints. Materials Science and Engineering: A, 358(1-2), 134-141.

[1.9] Veselý, P., Horynová, E., Starý, J., Bušek, D., Dušek, K., Zahradník, V., ... &

Dosedla, M. (2018). Solder joint quality evaluation based on heating factor. Circuit World.

[1.10] Chan, Y. C., Tu, P. L., Tang, C. W., Hung, K. C., & Lai, J. K. (2001). Reliability studies/spl mu/BGA solder joints-effect of Ni-Sn intermetallic compound. IEEE Transactions on Advanced Packaging, 24(1), 25-32.

[1.11] Hurban, M., Szendiuch, I., & Hejátková, E. (2018, May). Gas flow and heat transfer in reflow oven. In 2018 41st International Spring Seminar on Electronics Technology (ISSE) (pp. 1-3). IEEE

[1.12] Illés, B., & Harsányi, G. (2009). Investigating direction characteristics of the heat transfer coefficient in forced convection reflow oven. Experimental Thermal and Fluid Science, 33(4), 642-650.

[1.13] Castell, A., Solé, C., Medrano, M., Roca, J., Cabeza, L. F., & García, D. (2008).

Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Applied thermal engineering, 28(13), 1676- 1686.

[1.14] Gao, Y., Tse, S., & Mak, H. (2003). An active coolant cooling system for applications in surface grinding. Applied Thermal Engineering, 23(5), 523-537.

[1.15] Zhao, X., Li, J. M., & Riffat, S. B. (2008). Numerical study of a novel counter- flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering, 28(14-15), 1942-1951.

[1.16] Illés, B., & Harsányi, G. (2009). Heating characteristics of convection reflow ovens. Applied Thermal Engineering, 29(11-12), 2166-2171.

[1.17] Whalley, D. C. (2004). A simplified reflow soldering process model. Journal of Materials Processing Technology, 150(1-2), 134-144.

[1.18] Livovsky, L., & Pietrikova, A. (2019). Measurement and regulation of saturated vapour height level in VPS chamber. Soldering & Surface Mount Technology, 31(3), 157-162.

[1.19] Zabel, C. (2006). Condensation Reflow Soldering-The Soldering Process with Solutions for future Technological Demands. Germany, ASSCON Systemtechnik-Elektronik GmbH.

[1.20] Livovsky, L., & Pietrikova, A. (2017). Real-time profiling of reflow process in VPS chamber. Soldering & Surface Mount Technology 29(1), 42-48

[1.21] Thumm, A. (2010, May). Going lead free with vapor phase soldering-lead free is still a challenge for major industries. In SMTA Proceedings of International Conference on Soldering and Reliability, Toronto, Ontario.

[1.22] Leider, W. (2002). Dampfphasenlöten–Grundlagen und praktische Anwendung. Eugen G. Leuze Verlag, Bad Saulgau, Germany.

[1.23] Bozsóki, I., Géczy, A., & Illés, B. (2019). Component level modelling of heat transfer during vapour phase soldering with finite difference ADI approach. International Journal of Heat and Mass Transfer, 128, 562-569.

[1.24] Surface Mount Process, Neoden Technology Co. Ltd., https://www.neodensmt.com/news/surface-mount-process-15132040.html (Accessed at August 2022.)

[1.25] Zhen, H., Ershi, Q., & Zixian, L. (2000, November). Quality improvement through SPC/DOE in SMT manufacturing. In Proceedings of the 2000 IEEE International Conference on Management of Innovation and Technology.

ICMIT 2000.'Management in the 21st Century'(Cat. No. 00EX457) (Vol. 2, pp.

855-858). IEEE.

[1.26] Lotfi, A., & Howarth, M. (1998, October). An intelligent closed-loop control of solder paste stencil printing. In Twenty Third IEEE/CPMT International

Electronics Manufacturing Technology Symposium (Cat. No. 98CH36205) (pp.

87-91). IEEE.

[1.27] Krammer, O. (2014). Modelling the self-alignment of passive chip components during reflow soldering. Microelectronics Reliability, 54(2), 457-463.

[1.28] Shim, J. H., Cho, H. S., & Kim, S. (1996, April). A new probing system for the in-circuit test of a PCB. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 1, pp. 590-595). IEEE.

[1.29] Bajzek, T. J. (2005). Thermocouples: a sensor for measuring temperature. IEEE Instrumentation & Measurement Magazine, 8(1), 35-40.

[1.30] Shaukatullah, H., & Claassen, A. (2003, March). Effect of thermocouple wire size and attachment method on measurement of thermal characteristics of electronic packages. In Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003. (pp. 97-105). IEEE.

[1.31] Géczy, A., Kvanduk, B., Illes, B., & Harsányi, G. (2016). Comparative study on proper thermocouple attachment for vapour phase soldering profiling. Soldering

& Surface Mount Technology, 28(1), 7-12.

[1.32] Géczy, A., Kvanduk, B., Illés, B., & Illyefalvi-Vitéz, Z. (2012, October).

Thermocouple attachment methods for PCB profiling during Vapour Phase Soldering. In 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME) (pp. 133-137). IEEE.

[1.33] Yang, S. Y., Jeon, Y. D., Lee, S. B., & Paik, K. W. (2006). Solder reflow process induced residual warpage measurement and its influence on reliability of flip- chip electronic packages. Microelectronics Reliability, 46(2-4), 512-522.

[1.34] Ume, I. C., Martin, T., & Gatro, J. T. (1997). Finite element analysis of PWB warpage due to the solder masking process. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 20(3), 295-306.

[1.35] Chung, S. and Kwak, J. (2015).Realistic warpage evaluation of printed board assembly during reflow process. Soldering & Surface Mount Technology, Vol.

27 No. 4, pp. 137-145.

[1.36] Xia, W., Xiao, M., Chen, Y., Wu, F., Liu, Z., & Fu, H. (2014). Thermal warpage analysis of PBGA mounted on PCB during reflow process by FEM and experimental measurement. Soldering & Surface Mount Technology.

[1.37] Xue, K., Wu, J., Chen, H., Gai, J., & Lam, A. (2009, August). Warpage prediction of fine pitch BGA by finite element analysis and shadow moiré technique. In 2009 International Conference on Electronic Packaging Technology & High Density Packaging (pp. 317-321).

[1.38] Lee, T., Lee, J., & Jung, I. (1998). Finite element analysis for solder ball failures in chip scale package. Microelectronics Reliability, 38(12), 1941-1947.

[1.39] Lee, N. C. (2002). Reflow soldering processes and Troubleshooting SMT, BGA, CSP and Flip Chip Technologies. Newnes.

[1.40] Amir, D., Aspandiar, R., Buttars, S., Chin, W. W., & Gill, P. (2009). Head–and–

pillow SMT failure modes. Proceedings SMTAI, 409-421.

[1.41] Xie, D., Shangguan, D., Geiger, D., Gill, D., Vellppan, V., & Chinniah, K. (2009, May). Head in pillow (HIP) and yield study on SIP and PoP assembly. In 2009 59th Electronic Components and Technology Conference (pp. 752-758). IEEE.

[1.42] He, C., Liu, Z., Wang, H., Wang, L., Lu, F., Ran, H., & Shenzhen, G. (2009, October). Thermo-mechanical simulation and optimization analysis for warpage-induced PBGA solder joint failures. In SMTA International Conference (Vol. 2, pp. 620-629).

[1.43] Powell, R. E., & Ume, I. C. (2009). A novel projection moiré system for measuring PWBA Warpage using simulated optimized convective reflow process.

[1.44] Zhu, C., Ning, W., Ye, J., Xu, G., & Luo, L. (2012, August). FEA study of the evolution of wafer warpage during reflow process in WLP. In 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging (pp. 661-665). IEEE.

[1.45] Geczy, A., Lener, V., Hajdu, I., & Illyefalvi-Vitez, Z. (2011, May). Low temperature soldering on biopolymer (PLA) Printed Wiring Board substrate.

In Proceedings of the 2011 34th International Spring Seminar on Electronics Technology (ISSE) (pp. 57-62). IEEE.

[1.46] Dušek, K., Bušek, D., Plaček, M., Géczy, A., Krammer, O., & Illés, B. (2018).

Influence of vapor phase soldering fluid Galden on wetting forces (tombstone effect). Journal of Materials Processing Technology, 251, 20-25.

[1.47] Ellis, J. R., & Masada, G. Y. (1990). Dynamic behavior of SMT chip capacitors during solder reflow. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 13(3), 545-552.

[1.48] R.S., Ranjit and S., Chrys "Optimizing stencil design for lead-free SMT processing." Proceedings of SMTA International. Vol. 18. 2004.

[1.49] Rajewski, K. (2019). Defect Minimization Methods for No-Clean SMT process.

In SMT Process Recommendations. Kester.

[1.50] Jackson, G. J., Hendriksen, M. W., Kay, R. W., Desmulliez, M., Durairaj, R. K.,

& Ekere, N. N. (2005). Sub process challenges in ultra fine pitch stencil printing of type‐6 and type‐7 Pb‐free solder pastes for flip chip assembly applications. Soldering & Surface Mount Technology.

[1.51] Lee, H. M., Kim, M. S., Kim, M., & Hong, W. S. (2022). Optimization of FC- CSP and MLCC Soldering Process Using Type 7 Solder Paste. Journal of Welding and Joining, 40(2), 165-174.

[1.52] Ho, P. S., & Kwok, T. (1989). Electromigration in metals. Reports on Progress in Physics, 52(3), 301.

[1.53] Black, J. R. (1969). Electromigration failure modes in aluminum metallization for semiconductor devices. Proceedings of the IEEE, 57(9), 1587-1594.

[1.54] de Orio, R. L., Ceric, H., & Selberherr, S. (2012). Electromigration failure in a copper dual-damascene structure with a through silicon via. Microelectronics Reliability, 52(9-10), 1981-1986.

[1.55] Albrecht, O., Wohlrabe, H., & Meier, K. (2019, May). Impact of warpage effects on quality and reliability of solder joints. In 2019 42nd International Spring Seminar on Electronics Technology (ISSE) (pp. 1-6). IEEE.

[1.56] Ryu, C., Kwon, K. W., Loke, A. L., Lee, H., Nogami, T., Dubin, V. M., ... &

Wong, S. S. (1999). Microstructure and reliability of copper interconnects. IEEE transactions on electron devices, 46(6), 1113-1120.

[1.57] Electronic devices and applianced, Micro Electronics Cloud Alliance (MECA), https://www.ett.bme.hu/meca/Courses/TEP/7_3.html, (Accessed at August 2022.).

[1.58] Tombstoning of an SMD component, FCT Solder. (n.d.). Retrieved August 29, 2022, from https://fctsolder.com/homepage-copy/tombstonehd/

[1.59] Lienig, J., & Thiele, M. (2018), "The pressing need for electromigration-aware physical design", Proceedings of the 2018 International Symposium on Physical Design (pp. 144-151). doi:10.1145/3177540.3177560

[2.1] Géczy, A., Illés, B., & Illyefalvi-Vitéz, Z. (2013). Modeling method of heat transfer during Vapour Phase Soldering based on filmwise condensation theory. International Journal of Heat and Mass Transfer, 67, 1145-1150.

[2.2] Whalley, D. C. (2002, May). A simplified model of the reflow soldering process.

In ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.

02CH37258) (pp. 840-847). IEEE.

[2.3] Illés, B. (2014). Comparing 2D and 3D numerical simulation results of gas flow velocity in convection reflow oven. Soldering & Surface Mount Technology, 26(4), 223-230.

[2.4] Gao, Q., & Cui, H. (2017). An efficient and accurate method for transient heat conduction in 1D periodic structures. International Journal of Heat and Mass Transfer, 108, 1535-1550.

[2.5] Hua, Y. C., Zhao, T., & Guo, Z. Y. (2018). Optimization of the one-dimensional transient heat conduction problems using extended entransy analyses. International Journal of Heat and Mass Transfer, 116, 166-172.

[2.6] Çengel, Y.A. and Ghajar, A.J. (2015), Heat and Mass Transfer,5th Ed., McGraw- Hill, New York, NY.

[2.7] Fjelstad, J. (2011), Flexible Circuit Technology, 4th ed., BR Publishing, SeasideOR.

[2.8] Licari, J. J. (1998). Hybrid microcircuit technology handbook: materials, processes, design, testing and production. Elsevier.

[2.9] Schramm, R., Reinhardt, A., & Franke, J. (2012, May). Capability of biopolymers in electronics manufacturing. In 2012 35th International Spring Seminar on Electronics Technology (pp. 345-349). IEEE.

[2.10] Henning, C., Schmid, A., Hecht, S., Harre, K., & Bauer, R. (2019). Applicability of different bio-based polymers for wiring boards. Periodica Polytechnica Electrical Engineering and Computer Science, 63(1), 1-8.

[2.11] Zhang, T., Tsang, M., Du, L., Kim, M., & Allen, M. G. (2019). Electrical interconnects fabricated from biodegradable conductive polymer composites. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(5), 822-829.

[2.12] Material properties of different PCB substrates, www.matweb.com, (Accessed in 2019.)

[2.13] Material properties of different PCB substrates, www.sd3d.com, (Accessed in 2019.)

[2.14] dos Santos, W. N., De Sousa, J. A., & Gregorio Jr, R. (2013). Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polymer Testing, 32(5), 987-994.

[2.15] Whalley, D. C., Williams, D. J., & Conway, P. P. (1990, May). Thermal modelling of temperature development during the reflow soldering of SMD Assemblies. In Proceedings of the 6th ISHM International Microelectronics Conference, Tokyo.

[2.16] Conway, P. P., Ogunjimi, A. O., Sargent, P. M., Tang, A. C. T., Whalley, D. C., Williams, D. J., & Chisholm, A. W. J. (1991). SMD reflow soldering: a thermal process model. CIRP annals, 40(1), 21-24.

[2.17] Costa, J., Soares, D., Teixeira, S. F., Cerqueira, F., Macedo, F., Rodrigues, N., ... & Teixeira, J. C. (2015, July). Modeling the reflow soldering process in PCB’s. In International Electronic Packaging Technical Conference and Exhibition (Vol. 56895, p. V002T02A014). American Society of Mechanical Engineers.

[2.18] Lau, C. S., Abdullah, M. Z., & Ani, F. C. (2012). Three‐dimensional thermal investigations at board level in a reflow oven using thermal‐coupling method. Soldering & Surface Mount Technology.

[2.19] Géczy, A. (2017). Investigating heat transfer coefficient differences on printed circuit boards during vapour phase reflow soldering. International Journal of heat and mass transfer, 109, 167-174.

[2.20] Bozsóki, I., Illés, B., & Géczy, A. (2022). Compact numerical modelling of transient condensate layer formation on small components during vapour phase soldering. In International Communications in Heat and Mass Transfer, Vol.

135, 106071

[2.21] Belov, I., Lindgren, M., Leisner, P., Bergner, F., & Bornoff, R. (2007, April).

CFD aided reflow oven profiling for PCB preheating in a soldering process.

In 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007 (pp. 1-8). IEEE.

[2.22] Lau, C.S., Abdullah, M.Z. and Ani, F.C. (2012), “Threedimensional thermal investigations at board level in a reflow oven using thermal-coupling method”, Soldering & Surface Mount Technology, Vol. 24No. 3, pp. 167-182.

[2.23] Yeary, A. and Hubble, N. (2017). Variables affecting bare PCB warpage during reflow; a study on support methods and temperature uniformity. PCB West 2017 Conference, Santa Clara, CA.

[3.1] Shaukatullah, H., & Claassen, A. (2003, March). Effect of thermocouple wire size and attachment method on measurement of thermal characteristics of electronic packages. In Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003. (pp. 97-105). IEEE.

[3.2] Illes Balazs, Oliver Krammer, Attila Geczy, Reflow Soldering, 1st Edition, Apparatus and Heat Transfer Processes, Chapter 2.9 - Temperature measurements inside IR and other Reflow Ovens Elsevier, Amsterdam, ISBN:

9780128185056, 2020, pp. 85-96.

[3.3] Sobolewski, M. and Dziurdzia, B. (2019). Experimental approach to thermal conductivity of macro solder joints with voids. Soldering & Surface Mount Technology, 31(3), pp. 181-191. https://doi.org/10.1108/SSMT-11-2018-0050

[3.4] Dziurdzia, B., Sobolewski, M., Mikołajek, J., & Wroński, S. (2020). Low- voiding solder pastes in LED assembly. Soldering & Surface Mount Technology, 32(4), 201-217.

[3.5] Syarfa, N. S., & Najib, A. M. (2021). Heat Level Mode in Vapour Phase Soldering Using Lead-Free Solder Paste for Surface Mount Technology: A Review. Intelligent Manufacturing and Mechatronics, 673-690.

[3.6] Ahmad, M. I., Abdul Aziz, M. S., Abdullah, M. Z., Salleh, M. A. A. M., Ishak, M. H. H., Rahiman, W., & Nabiałek, M. (2021). Investigations of infrared desktop reflow oven with FPCB substrate during reflow soldering process. Metals, 11(8), 1155.

[3.7] Lin, D., Wang, C., Fu, L., Ke, Y., He, Y., Fang, G., ... & Zheng, L. (2019).

Cryogenic auxiliary drilling of printed circuit boards. Circuit World 45(4) 279- 286.

[3.8] Guo, M., Sun, F., & Yin, Z. (2019). Microstructure evolution and growth behavior of Cu/SAC105/Cu joints soldered by thermo-compression bonding. Soldering & Surface Mount Technology 31(4) 227-232.

[3.9] Yang, H., & Jing, Z. (2021, July). Research on Thermal Simulation Improving the Components’ Soldering Quality in Electronic Module. In Journal of Physics:

Conference Series (Vol. 1965, No. 1, p. 012020). IOP Publishing.

[3.10] Alaya, M. A., Megyeri, V., Bušek, D., Harsányi, G., & Geczy, A. (2020). Effect of different thermocouple constructions on heat-level vapour phase soldering profiles. Soldering & Surface Mount Technology 32(4) 253-259.

[3.11] Papaioannou, N., Leach, F., and Davy, M. (2018). Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines. SAE Technical Paper

[3.12] ASSCON Systemtechnik GmbH (2009), Operation instructions, quicky 450-2, pp. 23-24

[3.13] Noriega, M., Ramírez, R., López, R., Vaca, M., Morales, J., Terres, H., ... &

Chávez, S. (2015, January). Thermocouples calibration and analysis of the influence of the length of the sensor coating. In Journal of Physics: Conference Series (Vol. 582, No. 1, p. 012029). IOP Publishing.

[3.14] Borovkova, T. V., Yeliseyev, V. N., & Lopukhov, I. I. (2008). Mathematical modeling of contact thermocouple. Physics of Particles and Nuclei Letters, 5(3), 274-277.

[3.15] Romero, V. J., Shelton, J. W., & Sherman, M. P. (2006, January). Modeling boundary conditions and thermocouple response in a thermal experiment.

In ASME International Mechanical Engineering Congress and Exposition (Vol.

47845, pp. 463-473).

[3.16] Tanmoy C., Ravikiran K. (2014). Mathematical and Numerical Modeling of Type N Thermocouple, Universal Journal of Mechanical Engineering 2(5) 174- 180,

[3.17] Kulkarni, K. S., Madanan, U., & Goldstein, R. J. (2020). Effect of freestream turbulence on recovery factor of a thermocouple probe and its consequences. International Journal of Heat and Mass Transfer, 152.

[3.18] Frankel, J. I., & Chen, H. (2019). Analytical developments and experimental validation of a thermocouple model through an experimentally acquired impulse response function. International Journal of Heat and Mass Transfer, 141, 1301- 1314.

[3.19] Zou, Z., Yang, W., Zhang, W., Wang, X., & Zhao, J. (2018). Numerical modeling of steady state errors for shielded thermocouples based on conjugate heat transfer analysis. International Journal of Heat and Mass Transfer, 119, 624-639.

[3.20] Pantazis, S., Buthig, J., & Jousten, K. (2014). Conjugate heat transfer simulations of a thermocouple sensor in a low temperature nitrogen gas ambient. International Journal of Heat and Mass Transfer, 70, 536-544.

[3.21] Segall, A. E. (2001). Solutions for the correction of temperature measurements based on beaded thermocouples. International Journal of Heat and Mass Transfer, 44(15), 2801-2808.

[3.22] Ahmad, M. I., Abdul Aziz, M. S., Abdullah, M. Z., Salleh, M. A. A. M., Ishak, M. H. H., Rahiman, W., & Nabiałek, M. (2021). Investigations of infrared desktop reflow oven with FPCB substrate during reflow soldering process. Metals, 11(8), 1155.

[3.23] www.matweb.com, (Accessed at August 2021.).

[3.24] Brewer, W. D. (1967). Effect of thermocouple wire size and configuration on internal temperature measurements in a charring Ablator (No. NASA-TN-D- 3812).

[3.25] Sinohui, C. (1999). A Comparison of Methods for Attaching Thermocouples to Preinted Circuit Boards for Thermal Profiling. KIC Thermal Profiling, 1-10.

[3.26] Wickham, M.J. and Hunt, C.P. (2001). Thermal profiling of electronic assemblies. National Physical Laboratory Report, MATC (A) 50, San Diego, CA.

[3.27] Manual on the Use of Thermocouples in Temperature Measurement (Fourth Edition), 2003. ASTM Manual Series: MNL 12

[3.28] The Heat Transfer Module User's Guide, pp. 151-161. COMSOL Multiphysics®

v. 5.4. COMSOL AB, Stockholm, Sweden. 2020

[3.29] Géczy, A., Illés, B., Péter, Z., & Illyefalvi‐Vitéz, Z. (2013). Characterization of vapour phase soldering process zone with pressure measurements. In Soldering

& Surface Mount Technology, Vol. 25 No. 2, pp. 99-106.

[3.30] Illés, B., Géczy, A., Krammer, O., Skwarek, A., & Witek, K. (2018, May).

Soldering problems of large size SMD PET capacitors during vapour phase soldering process. In 2018 41st International Spring Seminar on Electronics Technology (ISSE) (pp. 1-6). IEEE.

[3.31] Thomas W. Kerlin, Mitchell Johnson, Practical Thermocouple Thermometry, Second Edition, 2012 International Society of Automation (ISA), USA, NC, 3.6.3

[4.1] Lee, N-C., (1999) Optimising the reflow profile via defect mechanism analysis.

Soldering & Surface Mount Technology, 11(1), pp.13-20.

[4.2] Biocca, P. (2007). Lead-free SMT Soldering Defects How to Prevent Them. Kester.

[4.3] Noor M., E.E., Nasir M., N.F. and Idris, S.R.A. (2016). A review: lead free solder and its wettability properties. Soldering & Surface Mount Technology 28(3): 125-132.

[4.4] Acceptability of Electronic Assemblies (2017), IPC-A-610G Standard, Section 5.2.7.1

[4.5] Briggs, E., & Lasky, R. (2009). Best practices reflow profiling for lead-free SMT Assembly. In SMTA International Conference.

[4.6] Veselý, P., Bušek, D., Krammer, O., & Dušek, K. (2020). Analysis of no-clean flux spatter during the soldering process. Journal of materials processing technology, 275, 116289.

[4.7] Tan, M. Y., Zhou, M. B., Huang, J. Q., Ma, F. Q., Ma, X., & Zhang, X. P. (2016, August). Dynamic wetting behavior and solder ball spattering formation of Sn- Bi solder pastes during reflow soldering process. In 2016 17th International Conference on Electronic Packaging Technology (ICEPT) (pp. 974-978). IEEE.

[4.8] Bath, J. (2007).Lead-Free Soldering, Boston MA, Springer

[4.9] Arra, M., Shangguan, D., Ristolainen, E., & Lepistö, T. (2002). Solder balling of lead-free solder pastes. Journal of electronic materials, 31(11), 1130-1138.

[4.10] Krammer, O., & Illés, B. (2006, May). Lead-free soldering technology review- evaluating solder pastes and stencils. In 2006 29th International Spring Seminar on Electronics Technology (pp. 86-91). IEEE.

[4.11] Wohlrabe, H., & Pantazica, M. (2014, September). Correlations between process, material and quality characteristics and the reliability of solder joints.

In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC) (pp. 1-6). IEEE.

[4.12] Hance, W. B., Jaeger, P. A., & Lee, N. C. (1991). Solder beading in SMT—

cause and cure. Proceedings of Surface Mount International, San Jose, California, 210.

[4.13] Illés, B. (2010). Distribution of the heat transfer coefficient in convection reflow oven. Applied Thermal Engineering, 30(13), 1523-1530.

[4.14] Lüngen, S., Klemm, A., & Wohlrabe, H. (2015, May). Evaluation of the quality of SMDs according to vacuum vapour phase soldering. In 2015 38th International Spring Seminar on Electronics Technology (ISSE) (pp. 218-222).

IEEE.

[4.15] Albrecht, O., Wohlrabe, H., Meier, K., Oppermann, M., & Zerna, T. (2018, September). In-situ X-ray characterization of IC package warpage at elevated temperatures. In 2018 7th Electronic System-Integration Technology Conference (ESTC) (pp. 1-6). IEEE.

[4.16] IAVT / ZmP TU Dresden, Entstehung einer Lotperle - Formation of a solder bead - 10 fps - Experiment 3, https://www.youtube.com/watch?v=q-