• Nenhum resultado encontrado

DNBS Experimento

2 Número reduzido de células positivas ou células isoladas

3.3 ANÁLISE ESTATÍSTICA

Os resultados foram expressos como média ± SEM. As diferenças entre as médias foram testadas para significância estatística usando uma análise de uma via de variância (ANOVA).

Dados paramétricos e não paramétricos foram analisados pelo teste de Tukey e Mann-Whitney U-test, respectivamente. Todas as análises estatísticas foram realizadas com o software GraphPad 5.0 (GraphPad Software Inc., La Jolla, CA, EUA), com significância estatística de p < 0,05.

REFERÊNCIAS

AGARWAL, S. et al. Role of NF-kappaB Transcription Factors in Antiinflammatory and Proinflammatory Actions of Mechanical Signals. Arthritis & Rheumatism, v. 50, n.11, p.3541–3548, 2004.

AHMED, A. S et al. Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Research International, v. 74, p. 80–88, 2015.

ALBENZIO, M. et al. Differences in protein fraction from goat and cow milk and their role on cytokine production in children with cow’s milk protein allergy. Small Ruminant

Research, v. 105, n.1-3, p.202-205, 2012.

ALDHOUS, M.C. et al. Does Nicotine Influence Cytokine Profile and Subsequent Cell Cycling/Apoptotic Responses in Inflammatory Bowel Disease? Inflammatory Bowel

Diseases, v. 14, n. 11, p. 1469-1482, 2008.

AL-SADI, R. M.; Ma, T. Y. IL-1b causes an increase in intestinal epithelial tight junction permeability. The Journal of Immunology, v. 178, p. 4641–4649, 2007. AL-SADI, R. et al. Mechanism of IL-1 Modulation of Intestinal Epithelial Barrier Involves p38 Kinase and Activating Transcription Factor-2 Activation. The Journal of

Immunology, p. 1-11, 2013. ISSN on line: 1550-6606. Disponível em:

<http://www.jimmunol.org/content/early/2013/05/08/jimmunol.1201876.full.pdf>. Acesso em:05 de julho de 2016.

AMIGO, L.; FONTECHA, J. Goat Milk. Encyclopedia of Dairy Sciences, 2. Edition. Ed. Elsevier. v. 3, p. 484-493, 2011.

AMRE, D. K. et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn’s disease in children. The American Journal of

Gastroenterology, v.102, p. 2016-2025, 2007.

ANANTHAKRISHNAN, A. N. Epidemiology and risk factors for IBD, Nature Reviews

Gastroenterology & Hepatology, v. 12, p. 205–217, 2015.

ANDERSEN, V. et al. Diet and risk of inflammatory bowel disease. Digestive and Liver

ANDERSON, M.E. Determination of glutathion and glutathion disulfide in biological samples. Methods in Enzymology, v. 113, p. 548-555, 1985.

ANDOU, A. et al., Dietary histidine ameliorates murine colitis by inhibition of

proinflammatory cytokine production from macrophages. Gastroenterology, v. 136, p. 564–574, 2009.

ANIFANTAKIS, E. M.; ROSAKIS, B.; RAMOU, C. Travaux Scientifiques de l’Institut Technologique Superieur des Industries Alimentaires (Scientific work of the

Technology Institut for Nutrition Industries). Plovdiv, Bulgaria, Tom, XXVII, CB1., 1980.

ARDIZZONE, S.; PORRO, G. B. Inflammatory bowel disease: new insights into pathogenesis and treatment. Journal of Internal Medicine, v. 252, n. 6, p. 475–496, 2002.

ARDIZZONE, S.; PORRO, G. B. Biologic therapy for inflammatory bowel disease.

Drugs, v. 65, p.2253–2286, 2005.

ASSIS, P. O. A. Intestinal anti-inflammatory activity

of goat milk and goat yoghurt

in the acetic acid model of rat colitis

. International Dairy Journal, v. 56, p. 45-54, 2016.

ASSOCIATION OF OFFICIAL ANALITYCAL CHEMISTRY. Official Methods of Analysis. Washington D.C.: AOAC International, 2005.

BAILEY, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain, Behavior and

Immunity, v.25, p. 397–407, 2011.

BALLARD, O. Human Milk Composition: Nutrients and Bioactive Factors.

Pediatric Clinics of North America , v. 60, n. 1, p. 49–74, 2013.

BALIGA, M. S. et al. Polyphenols in the Prevention of Ulcerative Colitis: Past, Present and Future, Chapter 50, 2014. pp. 655-663.

BLANKSON, H., et al. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. Journal of Nutrition, v. 130, p. 2943–8, 2000.

BARBOSA, K. B. F. et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição, v. 23, n. 4, p. 629-643, 2010.

BARREIROS, A. L. B. S.; DAVID, J. M. Estresse oxidativo: Relação entre geração de espécies reativas e defesa do organismo. Química Nova, v. 29, n.1, p. 113-123, 2006.

BASSAGANYA-RIERA, J.; HONTECILLAS, R. CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clinical Nutrition, v. 25, n. 3, 454–465, 2006.

BASSAGANYA-RIERA, J. et al. Activation of PPAR and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease.

Gastroenterology, v. 127, n. 3, 777–791, 2004.

BAUMGART, D. C.; CARDING, S. R. Inflammatory bowel disease: cause and immunobiology. The Lancet, v. 369, 1627-1640, 2007.

BELL, C.J.; GALL, D.G.; WALLACE, J.L. Disruption of colonic electrolyte transport in experimental colitis. American Journal Physiology, v. 268, n.4, p. 622-30. 1995.

BENGMARK, S.; URBINA, J. J. O. Simbióticos: uma nueva estratégia en el

tratamiento de pacientes críticos. Nutrición Hospitalaria, v. 20, n. 2, p.147-156, 2005.

BERG, D. J. et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice.

Gastroenterology, v.123, p. 1527-42, 2002.

BERINGER, A.; NOACK, M.; MIOSSEC, P. IL-17 in Chronic Inflammation: From Discovery to Targeting. Trends in Molecular Medicine, v. 22, n. 3, p. 230–241, 2016. BERNSTEIN, C. N. Treatment of IBD: where we are and where we are going. The

American Journal of Gastroenterology. v.110, n.1, p.114-26, 2015.

BERTEVELLO, P.L. et al. Immunohistochemical assessment of mucosal cytokine profile in acetic acid experimental colitis. Clinics, v.60, n.4, p.277-286, 2005.

BRESSLER, B. et al. Clinical practice guidelines for the medical management of nonhospitalized ulcerative colitis: the toronto consensus. Gastroenterology, v. 148, n. 5, p. 1035–1058, 2015.

BODE, L. et al. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thrombosis and Haemostasis, v. 92, n.6, p. 1402–1410, 2004.

BODE, L. The functional biology of human milk oligosaccharides. Early Human

Development, v. 91, p.619-622, 2015.

BOEHM, G.; STAHL, B. Oligosaccharides from milk. Journal of Nutrition, v.137, n.3, S847 - 849, 2007.

BOIRIVANT, M., FUSS, I. J., CHU, A., STROBER, W. Oxazolone colitis, a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. The

Journal of Experimental Medicine, v.188, p.1929–1939, 1998.

BONAZ, B. L.; BERNSTEIN, C. N. Brain–gut interactions in inflammatory bowel disease. Gastroenterology, v. 144, p.36–49, 2013.

BOMFIM, M. A. D.; QUEIROGA, R.C.E.; AGUILA, M.B. et al. Abordagem multidisciplinar de P, D & I para o desenvolvimento de produto lácteo caprino com alto teor de CLA e alegação de propriedade funcional. Revista Brasileira de Zootecnia, v.40, p.98-106, 2011 (supl. Especial).

BOONE, D. L. et al. Interleukin-2-deficient mice develop colitis in the absence of CD28 costimulation. Inflamm Bowel Disease, v. 8, n. 1, p. 35-42, 2002.

BOUMA, G.; STROBER, W. The imunological and genetic basis of inflammatory bowel disease. Nature Reviews Imunnology, v. 3, p. 521-533, 2003.

BOYAZOGLU, J., HATZIMINAOGLOU, I.; MORAND-FEHR, P. The role of the goat in society: Past, present and perspectives for the future. Small Ruminant Research, v. 60, n. 1–2, p 13–23, 2005.

CALABRESE, E.; YANAI, H.; SHUSTER, D.; RUBIN, D. T.; HANAUER, S. B. Low- dose smoking resumption in ex-smokers with refractory ulcerative colitis. Journal of

Crohn's and Colitis, v.6, p.756–762, 2012

CANNARILE, L. et al. Glucocorticoid-Induced Leucine Zipper Is Protective in Th1- Mediated Models of Colitis. Gastroenterology, v.136, p.530–54, 2009.

CARBONNEL, F. et al. Methotrexate Is Not Superior to Placebo for Inducing Steroid- Free Remission, but Induces Steroid-Free Clinical Remission in a Larger Proportion of Patients With Ulcerative Colitis. Gastroenterology, v. 150, p. 380–388, 2016.

CARTY, E.; DE BRABANDER, M.; FEAKINS, R. M.; RAMPTON, D. D.

Measurement of in vivo rectal mucosal cytokine and eicosanoid production in ulcerative colitis using filter paper. Gut, v. 46, n. 4, 487-492, 2000.

CARUSO, L. Distúrbios do trato digestório. In: CUPPARI, L. Guia de nutrição: clínica do adulto. 3 ed. Barueri, SP: Manole, 2014. 297-325p.

CHINYU, S.; GARY, R. Advanced therapy in gastroenterology and liver disease, Chapter 119, 2517, 2004.

CHONG, E. S. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World Journal of Microbiology and Biotechnology, v. 30, p. 351-74, 2014.

CLARE, D.A.; SWAISGOOD, H.E. Bioactive milk peptides: A prospectus. Journal of

Dairy Science, v. 83, p.1187 – 1195, 2000.

CLAPS, S. et al. Sialyloligosaccharides content in colostrum and milk of two goat breeds. Small Ruminant Research, v. 121, 116–119, 2014.

CLAPS, S. et al. Factor affecting the 3_sialyllactose, 6_sialyllactose and

disialyllactosecontent in caprine colostrum and milk: Breed and parity. Small Ruminant

Research, v.134, p. 8–13, 2016.

COOPER, H. S. et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, v. 69, n. 2, p. 238-249, 1993.

COSNES, J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Practice & Research Clinical Gastroenterology, v. 18, n.3, p. 481–496, 2004.

COSTEA, I. et al. Interactions between the dietary polyunsaturated fatty acid ratio and genetic factors determine susceptibility to pediatric Crohn's disease. Gastroenterology, v.146, p.929–931, 2014.

CROOKS, S.W.; STOCKLEY R.A. Leukotriene B4. The International Journal of

Biochemistry & Cell Biology, v.30, p.173-178, 1998.

CROSS, R. K.; WILSON, K. T. Nitric Oxide in Inflammatory Bowel Disease.

Inflammatory Bowel Diseases, v. 9, n. 3, p. 179–189, 2003.

DADDAOUA, A. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. Journal of Nutrition, v.135, n.5, p.1164–1170, 2006.

DANESE, S.; SANS, M.; FIOCCHI, C. Inflammatory bowel disease: the role of environmental factors. Autoimmunity Reviews, v. 3, p. 394 – 400, 2004.

DEDON, P. C.; TANNENBAUM, S. R. Reactive nitrogen species in the chemical biology of inflammation. Archives of Biochemistry and Biophysics, v.423, p.12–22, 2004.

DESHMUKH, H. S. et al. Critical role of NOD2 in regulating the immune response to

Staphylococcus aureus. Infection and Immunity, v.77, p. 1376–82, 2009.

DHARMANI, P; LEUNG, P.; CHADEE, K. Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PloS One, v.6, n.9, 1-13, 2011.

DIJKSTRA, G. et al. Increased Expression of Inducible Nitric Oxide Synthase in Circulating Monocytes from Patients with Active Inflammatory Bowel Disease.

Scandinavian Journal of Gastroenterology, v.37, v. 5, p. 546-54, 2002.

DOTHEL, G. et al. Animal models of chemically induced intestinal inflammation: Predictivity and ethical issues. Pharmacology & Therapeutics, v.139, p. 71–86, 2013. DUSSE, L. M. S.; VIEIRA, L. M.; CARVALHO, M. G. Nitric oxide revision. Jornal

Brasileiro de Patologia e Medicina Laboratorial, v. 39, n. 4, p. 343-350, 2003.

ECKBURG, P.B. et al. Diversity of the human intestinal microbial flora. Science, v. 308, n.5728, p.1635-1638, 2005.

Eco™ Real-Time PCR System User Guide, Illumina, San Diego, California, EUA (2012). Disponível em: <http://www.illumina.com/documents/documentation/ user_guide/Eco_System_User_Guide_15017157_F.pdf>. Acesso em 04 de julho de 2015.

ESTERBAUER, M.; CHEESEMAN, K. H. Determination of aldehydic lipid peroxidation products: malonyldialdihyde and 4-hydroxynonenal. Methods in

Enzymology, v. 186, p. 407–421, 1990.

FAOSTAT. 2012. FAO statistical database. Disponível em: <http://faostat.fao.org/> Acesso em: 13 de julho de 2016.

FAURSCHOU, M.; BORREGAARD, N. Neutrophil granules and secretory vesicles in inflammation. Microbes and Infection, v.5, n.14, p. 1317-27, 2003.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). Food and Agriculture Organization. Milk and dairy products in human nutrition. Rome; 2013.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). Report on functional foods, food quality and standards service (AGNS), 2007.

FROICU, M., ZHU, Y.; CANTORNA, M. T. Vitamin D receptor is required to control gastrointestinal immunity in IL-10 knockout mice. Immunology, v.117, p.310–318, 2006.

FROICU, M.; CANTORNA, M. T. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunology, v.8, p.1- 5, 2007.

FROLKIS, A. et al. Environment and the inflammatory bowel diseases. Canadian

Journal of Gastroenterology, v. 27, n. 3, p.18-24, 2013.

FUSS, I. J. et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 respon se in ulcerative colitis. The Journal of Clinical

Investigation, v. 113, p. 1490–1497, 2004.

GÁLVEZ, J. COMALADA, M.; XAUS, J. Prebiotics and Probiotics in Experimental Models of Rodent Colitis: Lessons in Treatment or Prevention of Inflammatory Bowel Diseases. In: Ronald Ross Watson and Victor R. Preedy, editors, Bioactive Foods in

Promoting Health. Oxford: Academic Press, 2010, pp. 589-610. ISBN: 978-0-12- 374938-3.

GALVEZ, J. et al. Intestinal anti-infammatory activity of morin on chronic

experimental colitis in the rat. Alimentary Pharmacology & Therapeutics, v.15, p. 2027- 2039, 2001.

GÁLVEZ, J. Role of Th17 Cells in the Pathogenesis of Human IBD. ISRN

Inflammation, v. 2014, ID 928461, 14 p.

GARCÍA, V. et al. Improvemetns in goat milk qualitty: A review. Small Ruminat

Research. v.1, n.1, p. 51–57, 2014.

GATTÁS, G. BRUMANO, G. Ácido linoleico conjugado (CLA). Revista Eletrônica

Nutritime, v.2, p.164-171, 2005.

GILL, H.S. et al. Immunoregulatory peptides in bovine milk. British Journal

of Nutrition, v. 84, S111 – S117, 2000.

GISBERT, J.P. et al. Questions and answers on the role of azathioprine and 6- mercaptopurine in the treatment of inflammatory bowel disease. Journal of

Gastroenterology & Hepatology, v.25, p. 401–415, 2002.

GNOTH, M. J. et al. Human milk oligosaccharides are minimally digested in vitro.

Journal of Nutrition, v.130, n.12, p. 3014–1320, 2000.

GOLDBOHM, R. A. Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands. The American Journal of Clinical

Nutrition. v. 96, p. 615-27, 2011.

GONZALEZ-LAMA, Y. et al. Methotrexate in inflammatory bowel disease: A multicenter retrospective study focused on long-term efficacy and safety. The Madrid experience. European Journal of Gastroenterology & Hepatology, v.24, p. 1086–1091, 2012.

GRAMLICH, T.; PETRAS, R. E. Pathology of inflammatory bowel disease. Seminars

GREEN, L. C. et al. Analysis of nitrate, nitrite and nitrate in biological fluids.

Analytical Biochemistry, v. 126, p. 131-138, 1982.

GREICIUS, G.; ARULAMPALAM, V.; PETTERSSON, S. A CLA’s act: Feeding away inflammation. Gastroenterology, v. 127, n. 3, p. 994–996, 2004.

GRIINARI, J.M. et al. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by (9)-desaturase. Journal of Nutrition, v.130, n. 9, p. 2285-2291, 2000.

GUÉGUEN, L. La valeur nutritionnelle minérale du lait de chèvre, Niort, Ed INRA, Paris Colloques, v.7, p.67-80, 1996.

GUERRA, G. C. B. et al. Telmisartan decreases inflammation by modulating TNF-α, IL-10, and RANK/RANKL in a rat model of ulcerative colitis. Pharmacological

Reports, v. 67, p. 520–526, 2015.

GUIDE FOR THE CARE AND USE OF LABORATORY ANIMALS. U.S.

Department of Health and Human Services. NIH Publication, No. 85-23. Revised 1985.

GUO, M. R. et al. Seasonal Changes in the Chemical Composition of Commingled Goat Milk. Journal of Dairy Science, v. 84, p.79–83, 2001.

HAENLEIN, G. F. W.; WENDORFF, W. Sheep milk. In: PARK, Y. W.; HAENLEIN, G. F. W. (Eds). Handbook of Milk of Non-bovine Mammals. Blackwell Publishing Professional, Oxford, England, pp.137-194, 2006.

HAENLEIN, G.F.W. Goat Milk in human nutrition. Small Ruminant Research, v. 51, n.2, p.155-163, 2004.

HAENLEIN, G.F.W.; CACCESE, R. Goat milk versus cow milk. In: Haenlein, G.F.W., Ace, D.L. (Eds.), Extension Goat Handbook. USDA Publ., Washington, DC, p. 1, E-1., 1984.

HALLIWELL, B. et al. The characterization of antioxidants. Food and Chemical

Toxicology, v. 33, n. 7, p. 601-17, 1995.

HANAUER, S. B. Review article: evolving concepts in treatment and disease

modification in ulcerative colitis. Alimentary Pharmacology & Therapeutics, v. 27, n. 1521, 2008.

HATOUM, O. A. et al. Acquired microvascular dysfunction in inflammatory bowel disease: loss of nitric oxide-mediated vasodilatation. Gastroenterology, v. 125, p. 58– 69, 2003.

HEGAZY, S. K.; EL-BEDEWY. M. M. Effect of probiotics on pro-inflammatory cytokines and NF-κB activation in ulcerative colitis. World Journal Gastroenterology, v. 16, n. 33, p. 4145-4151, 2010.

HERNÁNDEZ-LEDESMA, B.; RAMOS, M.; GÓMEZ-RUIZ, J. A. Bioactive

components of ovine and caprine cheese whey. Small Ruminat Research, v.101, p.196- 204, 2011.

HO, G.; BOYAPATI, R.; SATSANG, J. Ulcerative colitis. Medicine, v.43, n. 5, p. 276– 281, 2015.

HONTECILLAS, R. et al. Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. The Journal of Nutrition, v. 132, n. 7, p. 2019–2027, 2002. HUGOT, J. P. et al. Association of NOD2 leucine-rich repeat variants with

susceptibility to Crohn's disease. Nature, v. 411, p.599–603, 2001.

HYUN, J. G.; MAYER, L. Mechanisms underlying inflammatory bowel disease. Drug

Discovery Today: Disease Mechanisms, v.3, n.4, p.457-462, 2006.

ICHIKAWA-TOMIKAWA, N. et al. Possible Involvement of tight junctions, extracellular matrix and nuclear receptors in epithelial differentiation. Journal of

Biomedicine and Biotechnology, v. 2011, p.1-10, 2011.

JANSE, M. et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL 2, REL and CARD9. Hepatology, v. 53, p.1977–1985, 2011.

JENNESS, R. Composition and characteristics of goat milk: review 1968–1979. Journal

of Dairy Science, v. 63, p. 1605–1630, 1980.

JESS, T. et al. Risk of Intestinal Cancer in Inflammatory Bowel Disease: A Population- Based Study From Olmsted County, Minnesota. Gastroenterology, v.130, p. 1039- 1045, 2006.

JIANG, H. et al. Curcumin-attenuatted trinitrobenzene sulphonic acid induces chronic colitis by inhiniting expression of cycloocygenase-2. Word Journal of

Gastroenterology, v.12, n.24, p.3848-53, 2006.

JOBIN, C. Nf-kappa B signaling cascade and IBD: turn it down? Inflammatory Bowel

Disease, v. 14, (Suppl. 2): S108–S109, 2008.

JOSTINS, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, v. 491, n. 7422, p. 119–24, 2012.

JURENKA, J. S. Anti-inflammatory Properties of Curcumin, a Major Constituent of Curcuma longa: A Review of Preclinical and Clinical Research. Alternative Medicine

Review, v. 14, n.2, p. 141-53, 2009.

KANWAR, J. R. et al.. Comparative activities of milk components in reversing chronic colitis. Journal of Dairy Science, p. 1–14, 2016.

KHOR, B.; GARDET, A.; XAVIER, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature, v. 474, p. 307-17, 2011.

KORHONEN, H.; PIHLANTO, A. Bioactive peptides from food proteins . In:

Handbook of Food Products Manufacturing . Y.H. Hui , eds. John Wiley & Sons, Inc. , Hoboken, NJ . pp. 5 – 37, 2007.

KIMURA H. et al. Increased nitric production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn’s disease.

Digestive Disease and Science, v.42, p.1047-1054, 1997.

KOURY, J. C.; DONANGELO, C. M. Zinc, oxidative stress and physical activity.

Revista de Nutrição. v. 16, n. 4, p. 433-441, 2003.

KOZUCH, P. L.; HANAUER, S. B. Treatment of inflammatory bowel disease: a review of medical therapy. World Journal Gastroenterology, v.14, p.354–377, 2008.

KRAWISZ, J. E.; SHARON, P.; STENSON, W. F. Quantitative assay for acute intestinal inflammation in rat and hamster models. Gastroenterology, v. 87, n.6, p. 1344–50, 1984.

KRISHNAN, A.; KORZENIK, J.R. Inflammatory bowel disease and environmental influences. Gastroenterology Clinics North America, v. 31, n. 1, p. 21-39, 2002.

KUNZ, C.; RUDLOFF, S. Health promoting aspects of milk oligosaccharides.

International Dairy Journal, v. 16, n.11, p. 1341–1346, 2006.

KUNZ, C.; RUDLOFF, S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annual Review of Nutrition, v. 20, p. 699–722, 2000.

LANNA, C. C. D. et al. Articular Manifestations in Patients with Crohn’s Disease and Ulcerative Colitis. Revista Brasileira de Reumatologia, v. 46, supl.1, p. 45-51, 2006

LAPRISE, P. Emerging role for epithelial polarity proteins of the crumbs family as potential tumor suppressors. Journal of Biomedicine and Biotechnology, v. 2011, 1- 9, 2011.

LARA-VILLOSLADA, F. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis.

Clinical Nutrition, v. 25, p. 477–488, 2006.

LARSON, B. L.; SMITH, V.R. (Eds.), 1974. Lactation, v. 4. Academic Press, New York, p. 1994.

LEBLANC, J. G.; LEBLANC, A. M. Probiotics, Prebiotics, and Synbiotics. Probiotics in Inflammatory Bowel Diseases and Cancer Prevention, Cap. 50, p.755-771, 2016. http://dx.doi.org/10.1016/B978-0-12-802189-7.00057-5

LEE, J. Y. et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. The Journal of Biological

Chemistry, v. 279, p.16971-79, 2004.

LEE, B. et al. Attenuation of colitis by Lactobacillus casei BL23 is dependent on the dairy delivery matrix. Applied and Environmental Microbiology, v. 81, p. 6425–6435, 2015.

LEHNEN, T. E. et al., A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolismo. Journal of the International Society

MacPHERSON, B. R.; PFEIFFER, C. J. Experimental production of diffuse colitis in rats. Digestion. v. 17, p. 135-50, 1978.

MAGALHÃES, K. T. et al. Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chemistry, v. 126, n. 1, p. 249-253, 2011.

MANDALARI, G. et al. Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease. International

Immunopharmacology, v. 11, p. 915–924, 2011.

MARGOLIS, K.G.; GERSHON, M.D. Neuropeptides and inflammatory bowel disease.

Current Opinion in Gastroenterology, v.25, p. 503-511, 2009.

MARLETTA, M.A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell, v.78, p. 927-30, 1994.

MARTINEZ-FEREZ, A. et al. Goat’s milk as a natural source of lactose-derived

oligosaccharides: isolation by membrane technology. International Dairy Journal, v.16, n.2, p.173–81, 2006.

MASHIMO, H. et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science, v.274, p.262–265, 1996.

McCAFFERTY, D. M.; RIOUX, K.; WALLACE, J. L. Granulocyte infiltration in experimetal colitis in the rats is interleukin-1 dependet and leukotriene independet.

Eicosanoids, v. 5, p. 121-125, 1992.

MCDONALD, S. A. C. et al. Mechanisms of Disease: from Stem Cells to Colorectal Cancer. Nature Clinical Practice Gastroenterology & Hepatology, v.3, n.5, p. 267-274, 2006.

MEDEIROS, L. B. et al. Neonatal administration of goat whey modulates memory and cortical spreading depression in rats previously suckled under different litter sizes: Possible role of sialic acid. Nutritional Neuroscience (Online), 2016. DOI: http://doi.org/10.1080/1028415X.2016.1227762

MEIER, J.; STURM, A. Current treatment of ulcerative colitis. World Journal of

MELGAR, S. et al. Psychological stress reactivates dextran sulfate sodium-induced chronic colitis in mice. Stress, v. 11, n. 5, p. 348–362, 2008.

MILLS, S. et al. Milk intelligence: Mining milk for bioactive substances associated with human health. International Dairy Journal, v. 21, p.377-401, 2011.

MICHIELAN, A.; D’INCÀ, R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators of

inflammation, v. 2015, p. 628157, 2015.

MILLAR, A. D. et al. R.Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut, v. 39, n. 3, p. 407–415, 1996.

MOCCIARO, F. et al. Cyclosporine or infliximab as rescue therapy in severe refractory ulcerative colitis: early and long-term data from a retrospective observational study.

Journal of Crohn's and Colitis, v.6, n. 6, p. 681–686, 2012.

MOLODECKY, N. A.; KAPLAN, G. G. Environmental risk factors for inflammatory bowel disease. Journal of Gastroenterology & Hepatology (NY), v. 6, p.339-46, 2010.

MORAMPUDI, V. et al. DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat. Journal of Visualized

Experiments, v. 84, e51297, 2014.

MORRIS, C. P. et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, v.96, p. 795-803, 1989.

MÛZES, G. et al. Changes of the cytokine profile in inflammatory bowel diseases.

World Journal of Gastroenterology, v.18, p. 5848–5861, 2012.

NAUGLER, W. E.; KARIN, M. NF-KappaB and cancer-identifying targets and mechanisms. Current Opinion in Genetics & Development, v.18, p.19-26, 2008.

NEURATH, M. F. et al. Local administration of antisense phosphorothioate

oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Journal of Nature Medicines, v. 2, p.998– 1004, 1996.

NEURATH, M.; FUSS, I.; STROBER, W. TNBS-colitis. International Reviews of

Immunology, v. 19, n. 1, p. 51–62, 2000.

NEURATH, M. F. et al. S. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. The Journal of Expimental

Medicine, v. 195, p.1129–1143, 2002.

NEURATH, M. F. Cytokines in inflammatory bowel disease. Nature, Advance Online Publication, p. 1-14, 2014.

NG, S. C.; KAMM, M. A. Therapeutic strategies for the management of ulcerative colitis. Inflammatory Bowel Disease, v.15, p.935–950, 2009.

NGO, B. et al. Tumor necrosis factor blockade for treatment of inflammatory bowel disease: efficacy and safety. Current Molecular Pharmacology, v. 3, p.145–152, 2010. NOA, M. et al. Comparative study of D-002 versus sulfasalazine on acetic acid-induced colitis in rats. Drugs under Experimental Clinical Research, v. 26, p. 13-17, 2000.

NYBOE, A. N. et al. Association between tumour necrosis factor-a inhibitors and risk of serious infections in people with inflammatory bowel disease: nationwide Danish cohort study. BMJ , v. 5, n. 5, 350:h2809, 2015.

O'FLAHERTY, S. et al. How can probiotics and prebiotics impact mucosal immunity?

Gut Microbes, v. 1, n. 5, p. 293-300, 2010.

O’NEILL, L. A.; DINARELLO, C. A. The IL-1 receptor/Toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunology Today Journal, v. 21, p. 206–209, 2000.

O’SULLIVAN, A.; NORD, C. E. Probiotics in human infections. Journal of

Antimicrobial Chemotherapy, v.50, n.5, p. 625-627, 2002.

OGURA Y, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature, v. 411, p. 603–6, 2001.

OLIVEIRA, F. M.; EMERICK, A. P. C.; SOARES, E. G. Aspectos epidemiológicos das doenças intestinais inflamatórias na macrorregião de saúde leste do Estado de Minas

Gerais. Ciência & Saúde Coletiva, v. 15, p. 1031–1037, 2010.

OLIVEIRA, M. E. G. et al. Technological, physicochemical and sensory characteristics of a Brazilian semi-hard goat cheese (coalho) with added probiotic lactic acid

bacteria. Scientia Agricola, v. 69, n. 6, 370-379, 2012.

ORDÁS, I. et al. Ulcerative colitis. Lancet, v. 380, p. 1606–19, 2012.

O'SHEA, M.; BASSAGANYA-RIERA, J.; MOHEDE, I. C. Immunomodulatory properties of conjugated linoleic acid. The American Journal of Clinical Nutrition,

Documentos relacionados