• Nenhum resultado encontrado

Complexos metálicos de rutênio (II): um breve histórico

CAPÍTULO CAPÍTULO

CTAB + sal metálico + ácido ascórbico

2.6. Complexos metálicos de rutênio (II): um breve histórico

Complexos metálicos na presença de rutênio têm mostrado uma infinidade de usos e aplicações. Estruturas complexas na presença de um centro metálico contendo rutênio têm apresentado bons resultados em aplicações biológicas.

O grupo de pesquisa liderado pelo Prof. Dr. César Vitorio Franco da UFSC, com a colaboração do Prof. Dr. Marcos Marques da Silva Paula da UNESC, vem desde a década de 90, intensificando suas pesquisas no âmbito do desenvolvimento de novos complexos inorgânicos de rutênio, obtendo excelentes resultados para diversas aplicações.

Compostos de coordenação de fórmula geral trans-[RuX2(L)4], onde (X) = Cl, Br, I e (L) um ligante monodentado (Figura 2.41) são extremamente conhecidos na literatura e muitos complexos contendo grupos piridínicos e seus derivados têm sido preparados e caracterizados. [232-234]

Figura 2.41. Estrutura proposta para os complexos metálicos de Ru(II), onde L são os diferentes ligantes monodentados e X, os halogênios, Cl, Br, I. [238]

Os primeiros trabalhos se deram com a síntese de complexos de coordenação com quatro substituintes do grupo pirrol. Em 1996, foi reportado o avanço da síntese e caracterização de complexo de cobre (I) tetranuclear contendo quatro substituintes pirrólicos unidos ao ligante piridínico, visando a eletropolimerização na forma de um copolímero, porém os resultados não foram animadores e o grupo se manteve focado apenas nos complexos de rutênio. [235] Foi reportada a síntese e caracterização do poli-

trans[RuCl2(pmp)4] (pmp=3-(pyrrol-1-ylmethyl)pyridine) e demonstrada a

aplicabilidade de seu uso na preparação de eletrodos modificados. [236,237]

No sentido de compreender melhor o processo de eletropolimerização e para determinar os melhores parâmetros eletroquímicos visando obter a formação de um ótimo filme, foi dado início aos estudos da eletroquímica com o trans[RuCl2(pmp)4]. Franco et al. [238] em 1997 demonstraram a preparação de eletrodos modificados por eletropolimerização do poli-trans[RuCl2(pmp)4] (pmp=3-(pyrrol-1-ylmethyl)pyridine) usando técnicas galvanostáticas e potenciométricas. Estudos mostraram que os complexos de rutênio solúveis em água são de potencial valor terapêutico por causa de

sua capacidade em interferir no percurso do óxido nítrico (NO) em sistemas biológicos. [239]

Franco et al. tem sintetizado e caracterizado uma série de novos complexos eletropolimerizáveis com fórmula geral trans-[RuX2(L)4]. [236,238] Em particular, o complexo trans[RuCl2(vpy)4] [240] (vpy=4-vinilpiridina), composto por quatro grupos eletropolimerizáveis, que são facilmente polimerizados produzindo filmes aderentes e eletroativos em relação aos filmes produzidos com os ligantes vinilpiridina e vinilterpiridina. [241,242] Estudos anteriores mostraram que o complexo

trans[RuCl2(vpy)4] pode ser eletropolimerizado em diferentes substratos, incluindo

materiais inertes como Pt e Pd [240], ligas ferrosas [243-245], e aço inoxidável. [246]

Estudos envolvendo voltametria cíclica, microbalança eletroquímica de cristal de quartzo (EQCM) e espectroscopia Raman revelaram os resultados encontrados da eletropolimerização do complexo trans[RuCl2(vpy)4] em eletrodos de Pt e Au, em particular os efeitos do potencial de polimerização nas características do filme formado, e principalmente o entendimento dos principais processos envolvidos na eletropolimerização. [247]

2.7. Referências bibliográficas

1 KERKER, M. The optics of colloidal silver: something old and something new. Journal of Colloid and Interface

Science, v.105, n.2, p.297-314, 1985.

2 TOMA, Henrique E. Toma, ARAKI, Koiti. Nanotecnologia: o gigantesco e promissor mundo do muito pequeno.

Revista ciência hoje, v.37, n.217, jul. 2005. p.24-31.

3 FARADAY, M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philosophical

Transactions of the Royal Society of London, v.147, p.145-181, 1857.

4 MIE, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. (Leipzig). Annals of Physics, v.25,

p.377-445, 1908.

5 PAPAVASSILIOU, G. C. Optical properties of small inorganic and organic metal particles. Progress in Solid State

Chemistry, v.12, n.3-4, p.185-271, 1979.

6 KERKER, M. The Scattering of Light and Other Electromagnetic Radiation. Academic Press: New York, 1969. 7 BOHREN, C. F.; HUFFMAN, D. R. Absorption and Scattering of Light by Small Particles. Wiley: New York,

1983.

8 CREIGHTON, J. A.; EADON, D. G. Ultraviolet–visible absorption spectra of the colloidal metallic elements.

Journal of the Chemical Society, Faraday Transactions, v.87, p.3881-3891, 1991.

9 MULVANEY, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, v.12, n.3, p.788-800,

1996.

10 TURKEVICH, J.; STEVENSON, P. C.; HILLIER, J. A study of the nucleation and growth processes in the

synthesis of colloidal gold. Discussions of the Faraday Society, v.11, p.55-75, 1951.

11 TURKEVICH, J.; STEVENSON, P. C.; HILLIER, J. The formation of colloidal gold. Journal of Physical

Chemistry, v.57, n.7, p.670-673, 1953.

12 TURKEVICH, J.; GARTON, G.; STEVENSON, P. C. The color of colloidal gold. Journal of Colloid Science,

v.9, p.S26-S35, 1954.

13 ARARIPE, Flamínio. Oswaldo Luiz Alves prevê mercado de mais de US$ 1 trilhão para nanotecnologia em

2010. Disponível em <http://www.jornaldaciencia.org.br/Detalhe.jsp?id=39341>. Acesso em: 08 abr. 2007.

14 KELLY, K.L.; CORONADO, E.; ZHAO, L.L.; SCHATZ, G.C. The optical properties of metal nanoparticles: the

influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, v.107, p.668-677, 2003.

15 MAILLARD, M.; HUANG, P.; BRUS, L. Silver nanodisk growth by surface plasmon enhanced photoreduction of

adsorbed [Ag+]. Nano Letters, v.3, n.11, p.1611-1615, 2003.

16 JIN, R; CAO, Y.C.; HAO, E.; MÉTRAUX, G.S.; SCHATZ, G.C.; MIRKIN, C.A. Controlling anisotropic

nanoparticle growth through plasmon excitation. Nature, v.425(6957), p.487490, 2003.

17 ROCHA, T. C. R.; WINNISCHOFER, H; WESTPHAL, E.; ZANCHET, D. Formation kinetics of silver triangular

nanoplates. Journal of Physical Chemistry C, v.111, n.7, p.2885-2891, 2007.

18 BECKER, R. O. Silver ions in the treatment of local infections. Metal-Based Drugs, v.6, p.297-300, 1999. 19 KLAUS, T.; R. JOERGER, OLSSON, E.; GRANQVIST, C.-G. "Silver-based crystalline nanoparticles, microbially

fabricated. Proceedings of the National Academy of Sciences of the United States of America, v.96, n.24, p.13611-13614, 1999.

20 SILVER, S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS

Microbiology Reviews, v.27, n.2-3, p.341-353, 2003.

21 COOK, G.; COSTERTON, J. W.; DAROUICHE, R. O. Direct confocal microscopy studies of the bacterial

colonization in vitro of a silver-coated heart valve sewing cuff. International Journal of Antimicrobial Agents, v.13, n.3, p.169-173, 2000.

22 LEE, H. J.; YEO, S. Y.; JEONG, S. H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics.

23 YEO, S. Y.; JEONG, S. H. Preparation and characterization of polypropylene/silver nanocomposite fibers.

Polymer International, v.52, p.1053-1057, 2003.

24 HONG, K. H.; PARK, J. L.; SUL, I. H.; YOUK, J. H.; KANG, T. J. Preparation of antimicrobial poly(vinyl

alcohol) nanofibers containing silver nanoparticles. Journal of Polymer Science Part B: Polymer Physics, v.44, n.17, p.2468-2474, 2006.

25 FURNO, F.; MORLEY, K. S.; WONG, B.; SHARP, B. L.; ARNOLD, P. L.; HOWDLE, S. M.; BAYSTON, R.;

BROWN, P. D.; WINSHIP, P. D.; REID, H. J. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, v.54, p.1019-1024, 2004.

26 WEBB, P. B.; MARR, P. C.; PARSONS, A. J.; GIDDA, H. S.; HOWDLE, S. M. Dissolving biomolecules and

modifying biomedical implants with supercritical carbon dioxide. Pure and Applied Chemistry, v.72, n.7, p.1347- 1355, 2000.

27 WILCOX, M.; KITE, P.; DOBBINS, B. Antimicrobial intravascular catheters - which surface to coat? Journal of

Hospital Infection, v.38, n.4, p.322-324, 1998.

28 XU, J.; HAN, X.; LIU, H.; HU, Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini

surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.273, p.179–183, 2006.

29 ZANA, R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances

in Colloid and Interface Science, v.97, n.1-3, p.203-251, 2002.

30 ZHAO, S.; ZHANG, K.; AN, J.; SUN, Y.; SUN, C. Synthesis and layer-by-layer self-assembly of silver

nanoparticles capped by mercaptosulfonic acid. Materials Letters, v.60, p.1215–1218, 2006.

31 MAYER, C.R.; DUMAS, E.; SÉCHERES, F. Size controlled formation of silver nanoparticles by direct bonding of

ruthenium complexes bearing a terminal mono- or bi-pyridyl group. Chemical Communications, p.345–347, 2004.

32 LI, D.-G.; CHEN, S-H.; ZHAO, S.-Y.; HOU, X.-M.; MA, H.-Y.; YANG, X.-G. Simple method for preparation of

cubic Ag nanoparticles and their self-assembled films. Thin Solid Films, v.460, p.78–82, 2004.

33 YU, D.; LIN, W.; LIN, C.; CHANG, L.; YANG, M. An in situ reduction method for preparing silver/poly(vinyl

alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates, Materials Chemistry and

Physics, v.101, 93–98, 2007.

34 GAO, N.; DONG, J.; ZHANG, H.; ZHOU, X.; ZHANG, G.; EASTOE, J. Application of a multi-dentate

amphiphilic compound to transfer silver nanoparticles into an organic solvent. Journal of Colloid and Interface

Science, v.304, 388–393, 2006.

35 HIRAI, H.; AIZAWA, H.; SHIOZAKI, H. Preparation of non-aqueous dispersion of colloidal silver by phase

transfer. Chemical Letters, v.21, n.8, p.1527, 1992.

36 LI, D-G.; CHEN, S-H.; ZHAO, S-Y.; HOU, X-M.; MA, H-Y.; YANG, X-G. A study of phase transfer processes of

Ag nanoparticles. Applied Surface Science, v.200, p.62- 67, 2002.

37 ZHOU, Y.; YU, S. H.; WANG, C. Y.; LI, X. G.; ZHU, Y. R.; CHEN, Z. Y. A novel ultraviolet irradiation

photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, v.11, n.10, p. 850-852, 1999.

38 ZHOU, Y.; YU, S. H.; CUI, X. P.; WANG, C. Y.; CHEN, Z. Y. Formation of silver nanowires by a novel solid-

liquid phase arc discharge method. Chemistry of Materials (Communication), v.11, n.3, p.545-546, 1999.

39 ZHU, J.; LIU, S.; PALCHIK, O.; KOLTYPIN, Y.; GEDANKEN, A. Shape-Controlled Synthesis of Silver

Nanoparticles by Pulse Sonoelectrochemical Methods Langmuir, v.16, n.16, p.6396-6399, 2000.

40 BRAUN, E.; EICHEN, Y.; SIVAN, U.; BEN-YOSEPH, G. DNA-templated assembly and electrode attachment of

a conducting silver wire. Nature, v.391, n.6669, p.775-778, 1998.

41 SLOAN, J.; WRIGHT, D. M.; WOO, H. G.; BAILEY, S.; BROWN, G.; YORK, A. P. E.; COLEMAN, K. S.;

HUTCHISON, J. L.; GREEN, M. L. H. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chemical Communications, p.699-700, 1999.

42 HUANG, M. H.; CHOUDREY, A.; YANG, P. Ag nanowire formation within mesoporous sílica. Chemical

43 BHATTACHARRYA, S.; SAHA, S. K.; CHAKRAVORTY, D. Nanowire formation in a polymeric film. Applied

Physics Letters, v.76, n.26, p.3896-3898, 2000.

44 CEPAK, V. M.; MARTIN, C. R. Preparation and stability of template-synthesized metal nanorod sols in organic

solvents. Journal of Physical Chemistry B, v.102, n.49, p.9985-9990, 1998.

45 JANA, N. R.; GEARHEART, L.; MURPHY, C. J. Wet chemical synthesis of silver nanorods and nanowires of

controllable aspect ratio. Chemical Communications, p.617–618, 2001.

46 JANA, N. R.; GEARHEART, L.; MURPHY, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold

nanorods. Journal of Physical Chemistry B, v.105, n.19, p.4065-4067, 2001.

47 JANA, N. R.; GEARHEART, L.; MURPHY, C. J. seed-mediated growth approach for shape-controlled synthesis

of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, v.13, n.18, p.1389- 1393, 2001.

48 MURPHY, C. J.; JANA, N. R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced

Materials, v.14, n.1, p.80-82, 2002.

49 JIN, R.; CAO, Y. W.; MIRKIN, C. A.; KELLY, K. L.; SCHATZ, G. C.; ZHENG, J. G. Photoinduced conversion

of silver nanospheres to nanoprisms. Science, v.294, n.5548, p.1901-1903, 2001.

50 HENGLEIN, A.; GIERSIG, M. Formation of colloidal silver nanoparticles: capping action of citrate. Journal of

Physical Chemistry B, v.103, n.44, p.9533-9539, 1999.

51 PILLAI, Z. S.; KAMAT, P.V. What factors control the size and shape of silver nanoparticles in the citrate ion

reduction method? Journal of Physical Chemistry B, v.108, p.945-951, 2004.

52 HENGLEIN, A. radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum,

controlled growth, and some chemical reactions. Langmuir, v.15, n.20, p.6738-6744, 1999.

53 MBHELE, Z.H.; SALEMANE, M.G.; VAN SITTERT, C.G.C.E.; NEDELJKOVIC, J.M.; DJOKOVIC, V.; LUYT,

A.S. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chemistry of Materials, v.15, n.26, p.5019-5024, 2003.

54 PARK, J-E.; PARK, S-G.; KOUKITU, A.; HATOZAKI, O.; OYAMA N. Electrochemical and chemical

interactions between polyaniline and palladium nanoparticles Synthetic Metals, v.141, n.3, p.265-269, 2004.

55 ZENG, R.; RONG, M. Z.; ZHANG, M.Q.; LIANG, H. C.; ZENG, H. M. Laser ablation of polymer-based silver

nanocomposites. Applied Surface Science, v.187, n.3-4, p. 239-247, 2002.

56 LIU, H.; GE, X.; ZHU, Y.; XU, X.; ZHANG, Z.; ZHAN, M. Synthesis and characterization of polyacrylamide–

nickel amorphous nanocomposites by γ-irradiation. Materials Letters, v.46, n.4, p.205-208, 2000.

57 KHANNA, P.K.; LONKER, S.; SUBBARAO, V.V.V.S.; JUN, K-W. Polyaniline–CdS nanocomposite from

organometallic cadmium precursor. Materials Chemistry and Physics, v.87, n.1, p.49-52, 2004.

58 FIRTH, A.V.; HAGGATA, S.W.; KHANNA, P. K.; WILLIAMS, S. J.; ALLEN, J. W.; MAGENNIS, S. W.;

SAMUEL, I. D.W.; COLE-HAMILTON, D. J. Production and luminescent properties of CdSe and CdS nanoparticle–polymer composites. Journal of Luminescence, v.109, n.3-4, p.163-172, 2004.

59 KHANNA, P.K.; GOKHALE, R.; SUBBARAO, V.V.V.S. Poly(vinyl pyrolidone) coated silver nano powder via

displacement reaction. Journal of Materials Science, v.39, n.11, p.3773-3776, 2004.

60 ZHANG, Z.; ZHAO, B.; HU, L. PVP protective mechanism of ultrafine silver powder synthesized by chemical

reduction processes. Journal of Solid State Chemistry, v. 121, n.1, p. 105-110, 1996.

61 HE, R.; QIAN, X.; YIN, J.; ZHU, Z. Formation of silver dendrites under microwave irradiation. Chemical Physics

Letters, v.369, n.3-4, p.454-458, 2003.

62 WU, D.; GE, X.; HUANG, Y.; ZHANG, Z.; YE, Q. γ-Radiation synthesis of silver–polystyrene and cadmium

sulfide–polystyrene nanocomposite microspheres. Materials Letters, v.57, n.22-23, p.3549-3553, 2003.

63 MONTI, O. L. A.; FOURKAS, J. T.; NESBITT, D.J. Diffraction-limited photogeneration and characterization of

silver nanoparticles. Journal of Physical Chemistry B, v.108, n.5, p.1604-1612, 2004.

64 BARROS, R. A; AZEVEDO, W. M.; AGUIAR, F. M. Photo-induced polymerization of polyaniline. Materials

65 BARNES, A.; DESPOTAKIS, A.; WRIGHT, P. V.; WONG, T. C. P.; CHAMBERS, B.; ANDERSON, A. P.

Control of microwave reflectivities of polymer electrolyte-silver-polyaniline composite materials. Electrochimica

Acta, v.43, n.10-11, p.1629-1632, 1998.

66 YU, D.; LIN, W.; LIN, C.; CHANG, L.; YANG, M. – An in situ reduction method for preparing silver/poly(vinyl

alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates, Materials Chemistry and

Physics, v.101, 93–98, 2007.

67 KHANNA, P. K.; SINGH, N.; CHARAN, S.; VISWANATH, A. K. Synthesis of Ag/polyaniline nanocomposite

via an in situ photo-redox mechanism. Materials Chemistry and Physics, v.92, p.214–219, 2005.

68 ZHENG, M.; GU, M.; JIN, Y.; JIN, G. Optical Properties of Silver-Dispersed PVP Thin Film. Materials Research

Bulletin, v.36, p. 853-859, 2001.

69 KIM, T. N.; FENG, Q. L.; KIM, J. O.; WU, J.; WANG, H.; CHEN, G. C.; CUI, F. Z. Antimicrobial effects of

metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Materials Science Materials in Medicine, v.9, n.3,

p.129-134, 1998.

70 CHO, K-H.; PARK, J-E.; OSAKA, T.; PARK, S-G. The study of antimicrobial activity and preservative effects of

nanosilver ingredient. Electrochimica Acta, v.51, p.956–960, 2005.

71 WADHERA, A.; FUNG, M. Systemic argyria associated with ingestion of colloidal silver. Dermatology Online

Journal, v.11, n.1:12, 2005.

72 FUNG, M. C; BOWEN, D. L. Silver products for medical indications: risk-benefit assessment. Journal of

Toxicology and Clinical Toxicology, v.34, p.119-126, 1996.

73 SUN, R. W. Y.; CHEN, R.; CHUNG, N. P.-Y.; HO, C-M.; LIN, C-L. S.; CHE, C-M. Silver nanoparticles

fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, p.5059-5061, 2005.

74 DAMM, C.; NEUMANN, M.; MUSTEDT, H. Proprieties of nanosilver coatings on polymethyl methacrylate. Soft

Materials, v.3, n.2-3, p.71-82, 2006.

75 BRUCHEZ, M. JR.; MORONNE, M.; GIN, P.; WEISS, S.; ALIVISATOS, A. P. Semiconductor nanocrystals as

fluorescent biological labels. Science, v.281, n.5385, p.2013-2016, 1998.

76 CLEMENT, J. L.; JARRETT, P. S. Antibacterial silver. Metal-Based Drugs, v.1, p.467-482, 1994.

77 FENG, Q. L.; J. WU, CHEN, G. Q.; CUI, F. Z.; KIM, T. N.; KIM, J.O. A mechanistic study of the antibacterial

effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, v.52, n.4, p.662-668, 2000.

78 NOVER, L.; SCHARF, K-D, NEUMANN, D. Formation of cytoplasmic heat shock granules in tomato cell

cultures and leaves. Molecular and Cellular Biochemistry, v.3, p.1648-1655, 1983.

79 DAVIES, R. L.; ETRIS, S. F. The development and functions of silver in water purification and disease control.

Catalysis Today, v.36, n.1, p.107-114, 1997.

80 VINCENT, J.L.; BIHARI, D.; SUTER, P.M. The prevalence of nosocomial infection in intensive care units in

Europe: the results of the EPIC study. JAMA (The Journal of the American Medical Association), v.274, p.639– 644,1995.

81 GOUDIE, J.G.; GOUDIE, R. B. Recurrent infection by a stable dwarf colony variant of Staphylococcus aureus.

Journal of Clinical Pathology, v.8, p.284–287,1955.

82 BOOSALIS, G. M.; MCCALL, J. T.; AHRENHOLZ, D. H.; SOLEM, L. D.; MCCAIN, C. J. Serum and urinary

silver levels in the thermal injury patient. Surgery, v.101, p.40–43, 1987.

83 BÖSWALD, M.; MENDE, K.; BERNSCHNEIDER, W.; BONAKDAR, S.; RUDER, H.; KISSLER, H.; SIEBER,

E.; GUGGENBICHLER, J. -P. Biocompatibility testing of a new silver impregnated catheter in vivo. Infection, v.27, p.S38–S42, 1999.

84 GREIL, J.; SPIES, T.; BÖSWALD, M.; BECHERT, T.; LUGAUER, S.; REGENFUS, A.; GUGGENBICHLER,

J. -P. Analysis of the acute toxicity of the Erlanger silver catheter. Infection, v.27, p.S34-S37, 1999.

85 LUNDEBERG, T. Prevention of catheter-associated urinary tract infections by use of silver impregnated catheters.

86 LUNDEBERG, T. Prevention of catheter-associated urinary tract infections by use of silver impregnated catheters.

Lancet, v.2, n.8514, p.1031, 1986.

87 RILEY, D. K.; CLASSEN, D. J.; STEVENS, L. E.; BURKE, J. P. A large randomized clinical trial of a silver

impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. The American Journal of the

Medical Sciences, v.98, p.349–356, 1995.

88 SAMUEL, U.; GUGGENBICHLER, J. P. Prevention of catheter-related infections: the potential of a newnano-

silver impregnated catheter. International Journal of Antimicrobial Agents, v.23S, p.S75–S78, 2004.

89 GUGGENBICHLER, J. –P.; BÖSWALD, M.; LUGAUER, S.; KRALL, T. H. A new technology of

microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection, v.27, p.16–23, 1999.

90 SONDI, I.; S-SONDI, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-

negative bacteria. Journal of Colloid and Interface Science, v.275, p.177–182, 2004.

91 AMRO, N. A.; KOTRA, L. P.; WADU-MESTHRIGE, K.; BULYCHEV, A.; MOBASHERY, S.; LIU, G.-Y.

High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir, v.16, n.6, p.2789-2796, 2000.

92 YOON, K.; BYEON, J. H.; PARK, J.; HWANG, J. – Susceptibility constants of Escherichia coli and Bacillus

subtilis to silver and copper nanoparticles, Science of the Total Environment, v.373, 572–575, 2007.

93 Disponível em <http://www.silver-colloids.com/Pubs/blue-man.html> Acesso em: 21/10/2008.

94 BRAYDICH-STOLLE, L.; HUSSAIN, S.; SCHLAGER, J. J.; HOFMANN, M.-C. In vitro cytotoxicity of

nanoparticles in mammalian germline stem cells. Toxicological Sciences, v.88, n.2, p.412-419, 2005.

95 IONA, S.; KLINGER, F. G.; SISTI, R.; CICCALESE, R.; NUNZIATA, A.; DE FELICI, M. A comparative

study of cytotoxic effects of N-ethyl-N-nitrosourea, Adriamycin, and mono-(2-ethylhexyl) phthalate on mouse primordial germ cells. Cell Biology and Toxicology, v.18, p.131-145, 2002.

96 LEI, JINGHUA. Air purifier with good antibacterial effects. CN Pat.1806886, 26 jul. 2006. 15p.

97 PARK, JIN WOO. Antibacterial and deodorizing paint employing silver nanoparticles and charcoal. KR Pat.

2006055256, 23 mai. 2006. no pp. given.

98 NOH, SEON-WOO. Antibacterial latex foams containing nano-silver particles and method of producing

foams. KR Pat. 2006030460, 13 abr. 2006. 19 pp.

99 HAN, SANG OH. Antibacterial silver nanoparticle-containing nontoxic films and their manufacture. KR Pat.

2006040978, 11 mai. 2006. 15 pp.

100 KIM, HOON KYOUNG; HA, DOO HAN. (Cheil Industries Inc., S. Korea). Antibacterial styrene-based

thermoplastic resin composition employing styrene-based resin and silver nanoparticle antibacterial agent. KR Pat. 2006032385, 17 abr. 2006. no pp. given.

101 GOLDMANN, HELMUT; LANGANKE, DENNIS; FRIEDRICH, VOLKER. (Aesculap A.-G. & Co. K.-G.,

Germany). Antimicrobial implant with a flexible porous structure composed of polyurethane and silver. DE Pat. 102004047568, 13 abr. 2006. 20 pp.

102 KARANDIKAR, BHALCHANDRA M.; GIBBINS, BRUCE L.; CORNELL, KEN A. (Acrymed, Inc., USA).

Antimicrobial silver compositions. US Pat. 2004-592687, 06 jul. 2006. 83 pp.

103 RUPPERT, KLAUS; GRUNDLER, ANDREAS; ERDRICH, ALBERT. (Heraeus Kulzer G.m.b.H., Germany).

Antimicrobial silver nanoparticle additive for polymerizable dental materials. DE Pat. 2005058253, 30 jun. 2005. 13 pp.

104 KIM, JIN GU; KIM, YOUNG JIN; SHIM, JI HYUN. (Oxy Reckitt Benckiser Co., Ltd., S. Korea). Aqueous

composition comprising silver nanoparticles for deodorizing agent of fiber, having antimicrobial and deodorizing functions. KR Pat. 2005120295, 22 dez. 2005. no pp. given.

105 YANG, SI-YOUNG (Polychrom Co., Ltd., S. Korea). Functional microcapsule incorporating silver

106 BURRELL, R. E.; YIN, H. Q.; NAYLOR, A. G.; MOXHAM, P. H.; THEODORE, C.W. C.; BOWLBY, L.S.;

FIELD, D. J. (Nucryst Pharmaceuticals Corp., Can.). Lubricious coatings containing nanocrystalline silver and

polymers for medical surfaces. US Pat. 2002182265, 05 dez. 2002. 12 pp.

107 SHIAU, RU-KAI. (Home Round Paper Co., Ltd., Taiwan). Manufacture of paper products with surface layer

having antibacterial effect. TW Pat. 242527, 01 nov. 2005. 4pp.

108 KONDRAT'EVA, V. S.; URMINSKII, A. V.; MARINCHUK, O. N.; KAMYSHOV, V. N.; EFREMENKO, S. N.

Metal nanoparticle-containing coating compositions with bactericidal properties. RU 2186810, 10 ago. 2002. no

pp. given.

109 GARBAR, A.; DE LA VEGA, F.; MATZNER, E. (Nanopowders Industries Ltd., Israel). Metal nanoparticle-

containing compositions for use as conductive and transparent coatings and inks. WO Pat. 2003106573, 24 dez. 2003. 28 pp.

110 REVINA, A. A.; EGOROVA, E. M. Method for bactericidal coating of water tanks by silver nanoparticles.

RU Pat. 2182934, 27 mai. 2002. no pp. given.

111 BAO, X.; SUN, J.; ZHANG, H. (Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Peop. Rep.

China). Faming Zhuanli Shenqing Gongkai Shuomingshu. Method for in-situ assembling highly dispersed silver

nanoparticles with controllable particle size on Si-based material. CN Pat. 1698954, 23 nov. 2005. 12 pp.

112 RUBNER, M. F.; YANG, S. Y.; QIU, Y.; WINTERTON, L. C.; LALLY, J. M. (Novartis A.-G., Switz.; Novartis

Pharma G.m.b.H.; MIT Massachusetts Institute of Technology). Method for making medical devices having

antimicrobial coatings. WO Pat. 2004056403, 08 jul. 2004. 33 pp.

113 LIN, JIA-PENG; TSENG, YU-CHI; CHIEN, HUAN-SHENG. (Taiwan Textile Research Institute, Taiwan).

Method for manufacturing antibacterial polyester master batches and fibers both containing silver nanoparticles. U.S. Pat. 2006020108, 26 jan. 2006. 5 pp.

114 CHOI, S. H.; LEE, K. P. (Lee, Sang Jin, S. Korea). Method for preparation of silver nanoparticle/organic

polymer using radioactive rays and silver nanoparticle/organic polymer composite. KR Pat. 2004023159, 18 mar. 2004. no pp. given.

115 JI, J.; FU, J.; SHEN, J. (Zhejiang University, Peop. Rep. China). Faming Zhuanli Shenqing Gongkai

Shuomingshu. Method for preparing silver nanoparticles and its solution with polymer as stabilizer. CN Pat. 1653907, 17 ago. 2005. 7 pp.

116 LEE, JEONG-HUN; CHOI, GIL-BAE. Method for the preparation of silver nanoparticles-polymer

composite. KR Pat. 2005047029, 19 mai. 2005. 21 pp.

117 AGBOH, O. C.; PITKETHLY, M. J. (Qinetiq Nanomaterials Limited, UK). Method of manufacture of polymer

composites. WO Pat. 2005073289, 08 nov. 2005. 27 pp.

118 HIRTH, T.; FEHRENBACHER, U.; DIEMERT, J. (Fraunhofer-Gesellschaft zur Foerderung der Angewandten

Forschung e.V., Germany). Molding of polymers filled with fine particles. WO Pat. 2006069696, 06 jul. 2006. 42 pp.

119 WEIHRAUCH, G.; WEIS, N. (Coronet-Werke G.m.b.H., Germany). Monofilaments having antimicrobial

properties, their use as bristle material and brushes comprising the bristles. WO Pat. 2003025266, 27 mar. 2003. 20 pp.

120 JEONG, K.Y. (Kolon Industries, Inc., S. Korea). Polyester film having excellent antibacterial property, which

has coating layer of silver nanoparticles. KR 2005092494, 22 set. 2005. no pp. given.

121 CHEN, T.; XU, H. (Hefei University of Technology, Peop. Rep. China). Faming Zhuanli Shenqing Gongkai

Shuomingshu. Preparation of antibacterial composite nanomaterial of attapulgite-silver. CN Pat. 1568703, 26 jan. 2005. 7 pp.

122 DU, L.; LI, R.; CHEN, L. (Research Institute of Tsinghua University In Shenzhen, Peop. Rep. China). Faming

Zhuanli Shenqing Gongkai Shuomingshu. Preparation of antibacterial packaging film for cigarette. CN Pat. 1800253, 12 jul. 2006. 9 pp.

123 LIU, H.; SUN, K.; WU, R. (Shanghai Jiao Tong University, Peop. Rep. China). Faming Zhuanli Shenqing

Gongkai Shuomingshu. Preparation of nonwoven fabric loaded with antibacterial nanoparticles. CN Pat. 1718876, 11 jan. 2006. 8 pp.

124 KIM, J. W.; LEE, J. S.; KIM, S. J.; KIM, Y. J.; KIM, J.; HAN, S. H.; CHANG, I. S. (Amorepacific Corporation,

S. Korea). Preparation of silver/polymer colloidal nanocomposites for cosmetics. WO Pat. 2005077329, 25 ago.