• Nenhum resultado encontrado

Até o presente momento, este é o primeiro trabalho da literatura que relata a caracterização físico-química e bioativa da manteiga de cacay, bem como sua utilização como indutor enzimático. Além disso, são raros os relatos sobre as propriedades bioativas do óleo de cacay. No que diz respeito à caracterização das amostras, o óleo de cacay se destaca pelo elevado teor de ácidos graxos poli-insaturados e compostos fenólicos totais, o que pode estar correlacionado com os resultados satisfatórios observados nas atividades antioxidante e antibacteriana. Logo, o presente estudo reforça o potencial do óleo de cacay como bioativo para exploração industrial. Tendo em vista a produção de lipase por FES, a utilização da manteiga de cacay como indutor enzimático combinado com o farelo de trigo (suporte sólido não inerte) demonstrou uma produção substancial de lipase após otimização por delineamento experimental, indicando um meio de fermentação em potencial.

REFERÊNCIAS

AACC - American Association of Cereal Chemists International. Method 66-20,

Determination of Granularity of Semolina and Farina. AACC - International Approved

Methods of Analysis, v. 11, 2010.

ABOLLÉ, A.; LOUKOU, K.; HENRI, P. The density and cloud point of diesel oil mixtures with the straight vegetable oils (SVO): Palm, cabbage palm, cotton, groundnut, copra and sunflower. Biomass and Bioenergy, v. 33, p. 1653–1659, 2009.

ALCÂNTARA, M. A.; LIMA, A. E. A.; BRAGA, A. L. M.; TONON, R. V.;

GALDEANO, M. C.; MATTOS, M. C.; BRÍGIDA, A. I. S.; ROSENHAIM, R.; SANTOS, N. A.; CORDEIRO, A. M. T. M. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technology, v. 354, p. 877–885, 2019.

ALFARO, M. J.; PADILLA, F. C.; PÉREZ, M. N. R. Caryodendron orinocense ('nuez de Barinas’) oil : tocopherol content and use in cosmetics. Internacional Journal of

Cosmetic Science, v. 340, p. 335–340, 2000.

ALIMENTARIUS, C. Codex standard for named vegetable oils. Codex Standards, v. 210, p. 1–13, 1999.

ADARAMOLA, B.; ONIGBINDE, A. Influence of extraction technique on the mineral content and antioxidant capacity of edible oil extracted from ginger rhizome. Chemistry

Internacional, v. 3, p. 1–7, 2017.

ANSORGE-SCHUMACHER, M. B.; THUM, O. Immobilised lipases in the cosmetics industry. Chem Soc Rev, v. 42, p. 6475–6490, 2013.

AOAC – Association of Official Analytical Chemistry. Official methods of analysis.

AOAC Internacional, v. 16, 1996.

AOCS - Methods and recommended practices of the AOCS. American Oil Chemist’s

Society, 2009.

ARRANZ, S.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter. Eur. Food Res.

Technol, v. 227, p. 425–431, 2008.

BAHARFAR, R.; AZIMI, R.; MOHSENI, M. Antioxidant and antibacterial activity of flavonoid-, polyphenol-, and anthocyanin-rich extracts from Thymus kotschyanus boiss & hohen aerial parts. Journal of Food Science and Technology, v. 52, p. 6777–6783, 2015. BAROUTIAN, S.; AROUA, M. K.; RAMAN, A. A. A.; SULAIMAN, N. M. N. Density of Palm Oil-Based Methyl Ester. J. Chem. Eng., v. 53, p. 877–880, 2008.

BEHERA, S. S.; RAY R. C. Solid state fermentation for production of microbial

cellulases: Recent advances and improvement strategies. Int J Biol Macromol, v. 86, p. 656–69, 2016.

BENKOVIC, S. J.; HAMMES-SCHIFFER, S. A Perspective on Enzyme Catalysis.

Science, v. 301, p. 1196–1202, 2003.

BINDIYA, P. A.; RAMANA, T. Optimization of lipase production from an indigenously isolated marine Aspergillus sydowii of Bay of Bengal. J. Biochem. Biotechnol, v. 3, p.198–202, 2014.

BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, v. 28, p. 25–30, 1995.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Métodos Físico-

Químicos para Análise de Alimentos. 4. ed. São Paulo: Instituto Adolfo Lutz; 2008.

BURKERT, J. F. M.; MAUGERI, F.; RODRIGUES, M. I. Optimization of Extracellular Lipase Production by Geotrichum sp Using Factorial Desing. Bioresource Technology, v. 91, p. 77–84, 2004.

CACAY oil organic. Purenature, 2019. Disponível em:

<https://www.purenature.co.nz/products/cacay-oil>. Acesso em: 20 jun. de 2019. CASTELO-BRANCO, V. N.; TORRES, A. G. Capacidade antioxidante total de óleos vegetais comestíveis: Determinantes químicos e sua relação com a qualidade dos óleos.

Revista de Nutricão, v. 24, p. 173–187, 2011.

CASTILHO, L. R.; POLATO, C. M. S.; BARUQUE, E. A.; SANT’ANNA JUNIOR, G. L.; FREIRE, D. M. G. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochemical Engineering Journal, v. 4, p. 239– 247, 2000.

CHANIOTI, S.; TZIA, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT - Food Science and Technology, v.79, p.178–189, 2017.

CHE, A. M. M. E. Y. B.; NAZIMAH, M. E. S. A. H.; AMIN, I. Chemical Properties of Virgin Coconut Oil. J Am Oil Chem SOc, v. 86, n. 301, p. 301–307, 2009.

CHOUHAN, S.; SHARMA, K.; GULERIA, S. Antimicrobial Activity of Some Essential Oils Present Status and Future Perspectives. Medicines, v. 4, p. 1–21, 2017.

CIHANGIR, N.; SARIKAYA, E. Investigation of lipase production by a new isolate of

COLLA, L. M.; PRIMAZ, A. L.; BENEDETTI, S.; LOSS, R. A.; LIMA, M.; REINEHR, C. O.; BERTOLIN, T. E.; COSTA, J. A. Surface response methodology for the

optimization of lipase production under submerged fermentation by filamentous fungi.

Braz. J. Microbiol., v. 47, p. 461–467, 2016.

COMACLE, P.; GOVIC, Y. L.; HOCHE-DELCHET, C.; SANDRINI, J.; AGUILAR, C.; BOUYER, B.; BLANCHI, S.; PENN, P. Spondylodiscitis Due to Aspergillus terreus in an Immunocompetent Host: Case Report and Literature Review. Mycopathologia, v. 181, p. 575–581, 2016.

CONDELLI, N.; CARUSO, M. C.; GALGANO, F.; RUSSO, D.; MILELLA, L.; FAVATI, F. Prediction of the antioxidant activity of extra virgin olive oils produced in the

Mediterranean area. Food Chem., v. 177, p. 233–239, 2015.

CONTESINI, F. J.; LOPES, D. B.; MACEDO, G. A.; NASCIMENTO, M. G.;

CARVALHO, P. O. Aspergillus sp. lipase: Potential biocatalyst for industrial use. Journal

of Molecular Catalysis B: Enzymatic, v. 67, p. 163–171, 2010.

CORREIA, I. M. S.; ARAÚJO, G. S.; PAULO, J. B. A.; SOUSA, E. M. B. D. Avaliação das potencialidades e características físico-químicas do óleo de Girassol (Helianthus

annuus L.) e Coco (Cocos nucifera L.) produzidos no Nordeste brasileiro. Sci. Plena, v.

10, p. 1–7, 2014.

CUNHA, M. A. E.; NEVES, R. F.; SOUZA, J. N. S.; FRANÇA, L. F.; ARAÚJO, M. E.; BRUNNER, G.; MACHADO, N. T. Supercritical adsorption of buriti oil (Mauritia

flexuosa Mart.) in γ-alumina: A methodology for the enriching of anti-oxidants. The Journal of Supercritical Fluids, v. 66, p. 181–191, 2012.

DAMASO, M. C. T.; PASSIANOTO, M. A.; FREITAS, D. M. G.; FREIRE, D. C.;

LAGO, R. C. A.; COURI, D. Utilization of agroindustrial residues for lipase production by solid-state fermentation. Brazilian Journal of Microbiology, v. 39, n. 4, p.676–681, 2008. DAS, A.; BHATTACHARYA, S.; SHIVAKUMAR, S.; SHAKYA, S.; SOGANE, S. S. Coconut oil induced production of a surfactant‐compatible lipase from Aspergillus

tamarii under submerged fermentation. J. Basic Microbiol., v. 57, p. 114–120, 2016.

DATTU, Maleka. Cacay (Kahai) oil - The new 'miracle' beauty oil?. Merumaya, 2019. Disponível em: <https://merumaya.com/blogs/news/cacay-oil-the-new-miracle-beauty- oil>. Acesso em: 20 de jun. de 2019.

ESPÍN, J. C.; SOLER-RIVAS, C.; WICHERS, H. J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-

picrylhydrazyl radical. Journal of Agricultural and Food Chemistry, v. 48, n. 3, p. 648– 656, 2000.

FAOUZI, F. L.; BERGADI, F. E.; SAYARI, A.; ELABED, S.; MOHAMMED, I.; HARCHALI, E. H.; IBNSOUDA, S. K. Biochemical characterization of a new thermostable lipase from Bacillus pumilus strain. J. Biochem, v. 40, p. 8–14, 2015.

GEOFFRY, K.; ACHUR, R. N. Screening and production of lipase from fungal organisms.

Biocatalysis and Agricultural Biotechnology, v. 14, p. 241–253, 2018.

GHARIBI, S.; TABATABAEI, B. E. S.; SAEIDI, G. Comparison of essential oil

composition, flavonoid content and antioxidant activity in eight Achillea species. Journal

of Essential Oil Bearing Plants, v. 18, p. 1382–1394, 2015.

GUANI, N. A. A.; CHANNIP, A.; HWA, P. C. H.; JA’AFAR, F.; YASIN, H. M.; USMAN, A. Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes. Food Science & Nutrition, v. 1, p. 1–9, 2018.

GUAN, X.; JIN, S.; LI, S.; HUANG, K.; LIU, J. Process Optimization, Characterization and Antioxidant Capacity of Oat (Avena Sativa L.) Bran Oil Extracted by Subcritical Butane Extraction. Molecules, v. 23, p. 1–15, 2018.

GUERRAND, D. Lipases industrial applications: focus on food and agroindustries. EDP

Sciences, v. 24, n. 4, 2017.

GULATI, R.; SAXENA, R. K.; GUPTA, R. Parametric optimisation for lipase production by Aspergillus terreus and its potential in ester synthesis. Process Biochem., v. 35, p. 459– 464, 1999.

GUO, X.; MA, C.; DU, Q.; WEI, R.; WANG, L.; ZHOU, M.; CHEN, T.; SHAW, C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus

serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie, v. 95, p.

1784–1794, 2013.

GURURAJ, P.; RAMALINGAM, S.; DEVI, G. N.;GAUTAM, P. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase

from Acinetobacter sp. AU07. Brazilian Journal of Microbiology, v. 47, p. 647–657, 2016.

HARTMAN, L.; LAGO, R. C. A. Rapid preparation of fatty acid methyl esters. London: Laboratory Practice, v. 22, p. 475476, 1986.

HASAN, S. D. M. Produção, recuperação e caracterização de proteínas alergênicas da

biomassa de Drechslera (Helmin thosporium) monóceras obtida por fermentação em estado sólido. Campinas: Faculdade de Engenharia Química, Universidade Estadual de

Campinas, 2002.

JAIN, R.; NAIK, S. N. Adding value to the oil cake as a waste from oil processing industry: Production of lipase in solid state fermentation. Biocatalysis and Agricultural

Biotechnology, v. 15, p. 181–184, 2018.

JAVED, S.; AZEEM, F.; HUSSAIN, S.; RASUL, I.; SIDDIQUE, M. H.; RIAZ, M.; AFZAL, M.; KOUSER, A.; NADEEM, H. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, v. 132, p. 23–34, 2018.

KADEMI, A.; LEBLANC, D.; HAUDE, A. Lipases. In: Pandey A, Webb C, Soccol CR, Larroche C, v. 15, p. 297–318, 2006.

KAMINI, R.; MALA, J. G. S.; PUVANAKRISHNAN, R. Lipase production from

Aspergillus niger, by solid-state fermentation using gingelly oil cake. Process Biochemistry, v. 33, p. 505–511, 1998.

KAUSHIK, R.; SARAN, S.; ISAR, J.; SAXENA, R. K. Statistical optimization of culture conditions by response surface methodology for synthesis of lipase with Enterobacter

aerogenes. J. Mol. Catal. B: Enzym., v. 40, p. 121–126, 2006.

KOOLEN, H. H. F.; SILVA, F. M. A.; GOZZO, F. C.; SOUZA, A. Q. L.; SOUZA, A. D. I.; Antioxdant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Research International, v. 51, p. 467–473, 2013.

KOUBAA, M.; MHEMDI, H.; BARBA, F. J.; ANGELOTTI, A.; BOUAZIZ, F.; CHAABOUNI, S. E.; VOROBIEV E. Seed oil extraction from red prickly pear using hexane and supercritical CO2: assessment of phenolic compound composition, antioxidant

and antibacterial activities. J Sci Food Agric, v. 97, p. 613–620, 2016.

KUMAR, S.; KATIYAR, N.; INGLE, P.; NEGI, S. Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production. Bioresour. Technol., v. 102, p. 4909–4912, 2011.

LAI, O.; LEE, Y.; PHUAH, E.; AKOH, C. C. Lipase/Esterase: Properties and Industrial Applications. Encyclopedia of Food Chemistry, v. 2, p. 158–167, 2019.

LEE, L. P.; KARBUL, H. M.; CITARTAN, M.; GOPINATH, S. C.

B.; LAKSHMIPRIYA, T.; TANG, T. Lipase-secreting Bacillus species in an oil-

contaminated habitat: promising strains to alleviate oil pollution. Biomed. Res. Int., v. 1, p. 1–9, 2015.

LIMA, R. P.; LUZ , P. T. S.; BRAGA, M.; BATISTA, P. R. S.; COSTA, C. E. F.; ZAMIAN, J. R.; NASCIMENTO, L. A. S.; ROCHA FILHO, G. N. Murumuru

(Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies. Industrial Crops Prod, v. 97, p. 536–544, 2017.

LIMA, V. M. G.; KRIEGER, N.; MITCHELL, D. A.; FONTANA, J. D.; Activity and stability of a crude lipase from Penicillium aurantiogriseum inaqueous media and organic solvents. Biochem Eng J., v. 18, p. 65–71, 2004.

LÓPEZ, D. N.; GALANTE, M.; RUGGIERI, G.; PIARUCHI, J.; DIB, M. E.; DURAN, N. M.; LOMBARDI, J.; SANCTIS, M.; BOERIS, V.; RISSO, P. H.; SPELZINI, D. Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state

LU, C.; NAPIER, J. A.; CLEMENTE, T. E.; CAHOON, E, B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Current Opinion in Biotechnology, v. 22, p. 252–259, 2011. MADRUGA, M. S.; CAMARA, F. S. The chemical composition of “Multimistura” as a food supplement. Food Chemistry, v. 68, p. 41–44, 2000.

MAHADIK, N. D.; PUNTAMBEKAR, U. S.; BASTAWDE, K. B.; KHIRE, J. M.; GOKHALE, D. V.; Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem, v. 38, p. 715–721, 2002.

MAHANTA, N.; GUPTA, A.; KHARE, S. K. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology, v. 99, p. 1729–1735, 2008.

MAHMOUD, A. G.; KOUTB, M. M. M.; MORSY, F. M.; MAGY, M. M. K.

Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus

terreus. European Journal of Biological Research, v. 5, p. 70–77, 2015.

MALA, J. G. S.; EDWINOLIVER, N. G.; KAMINI, N. R.; PUVANAKRISHNAN, R. Mixed substrate solid state fermentation for production and extraction of lipase from

Aspergillus niger MTCC 2594. The Journal of General and Applied Microbiology, v.

53, p. 247–253, 2007.

MANSOR, T. S. T.; MAN, Y. B. C.; SHUHAIMI, M.; AFIQ, M. J. A.; NURUL, F. K. M. K. Physicochemical properties of virgin coconut oil extracted from different processing methods. International Food Research Journal, v. 19, p. 837–845, 2012.

MARKETS AND MARKETS. Lipase Market worth $590.5 Million by 2020. Disponível em: <https://www.marketsandmarkets.com/>. Acesso em: 02 jan. 2018.

MEDEIROS, E. J. L.; QUEIROGA, R. C. R. E.; SOUZA, A. G.; CORDEIRO, A. M. T. M.; MEDEIROS, A. N.; SOUZA, D. L.; MADRUGA, M. S. Thermal and quality evaluation of vegetable oils used in ruminant feed. J Therm Anal Calorim, v. 112, p. 1515–1521, 2013.

MENG, X.; LI, D.; ZHOU, D.; WANG, D.; LIU, Q.; FAN, S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. Journal of

Ethnopharmacology, v. 194, p. 698–705, 2016.

MESSIAS, J. M.; COSTA, B. Z.; LIMA, V. M.; DEKKER, R. F.; REZENDE, M. I.; KRIEGER, N.; BARBOSA, A. M. Screening Botryosphaeria species for lipases:

production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzym. Microbiol. Technol. v. 45, p. 426–431, 2009.

MESSIAS, J. M.; COSTA, B. Z.; LIMA, V. M. G.; GIESE, E. C.; DEKKER, R. F. H.; BARBOSA, A. M. Lipases microbianas: Produção, propriedades e aplicações

MORAIS JÚNIOR, W. G.; KAMIMURA, E. S.; RIBEIRO, E. J.; PESSELA, B. C.; CARDOSO, V. L.; RESENDE, M. M. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by

submerged fermentation. Protein Expression and Purification, v. 123, p. 26–34, 2016. MUKHTAR, H.; KHURSHEED, S.; MUMTAZ, M. W.; RASHID, U.; AL-RESAYES, S. I. Optimization of lipase biosynthesis from Rhizopus oryzae for biodiesel production using multiple oils. Chem. Eng. Technol., v. 39, p. 1707–1715, 2016.

MUSA, H.; HANA, P. C.; KASIMA, F. H.; GOPINATHA, S. B. C; AHMADC, M. A. Turning oil palm empty fruit bunch waste into substrate for optimal lipase secretion on solid state fermentation by Trichoderma strains. Process Biochemistry, v. 63, p. 35–41, 2017.

NASCIMENTO, P. F. C.; NASCIMENTO, C. A.; RODRIGUES, C. S.; ANTONIOLLI, A. R.; SANTOS, O. P.; BARBOSA JÚNIOR, A. M.; TRINDADE, R. C. Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Revista

Brasileira de Farmacognosia, v. 17, p. 108–113, 2007.

OLIVEIRA, F.; MOREIRA, C.; SALGADO, J. M.; ABRUNHOSA, L.; VENÂNCIO, A.; BELO, I. Olive pomace valorization by Aspergillus species: lipase production using solid- state fermentation. J. Sci. Food Agric., v. 96, p. 3583–3589, 2016.

OLIVEIRA, F.; SALGADO, J. M.; ABRUNHOS, L.; RODRIGUEZ, N. P.;

DOMINGUEZ, J. M.; VENANCIO, A.; BELO, I. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst Eng., v. 40, p. 1123–1132, 2017.

OLIVEIRA, G. F.; FURTADO, N. A. J. C.; FILHO, A. A. S.; MARTINS, C. H. G.; BASTOS, J. K.; CUNHA, W. R. Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Brazilian Journal of Microbiology, v. 38, p. 381–384, 2007.

OROIAN, M; ESCRICHE, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, v. 4, p. 10–36, 2015.

ORTIZ, G. E.; PONCE-MORA, M. C.; NOSEDA, D. G.;CAZABAT, G.; SARAVALLI, C.; LÓPEZ, M. C.; GIL, G. P.; BLASCO, M.; ALBERTÓ, E. O. Pectinase production by

Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical

characterization and its application in olive-oil extraction. Journal of Industrial

Microbiology and Biotechnology, v. 44, p. 197–211, 2017.

ORZUA, M. C.; MUSSATTO, S. I.; CONTRERAS-ESQUIVEL, J. C.; RODRIGUEZ, R.; GARZA, H.; TEIXEIRA, J. A.; AGUILAR, C. N. Exploitation of agro industrial wastes as immobilization Carrier for solid-state fermentation. Industrial Crops and Products, v. 30, p. 24–27, 2009.

PACHECO, S. M.; JÚNIOR, A. C.; MORGADO, A. F.; JÚNIOR, A. F.; AMADI, O. C.; GUISÁN, J. M.; PESSELA, B. Isolation and screening of filamentous fungi producing

extracelular lipase with potential in biodiesel production. Adv. Enzym. Res., v. 3, p. 101– 114, 2015.

PADILLA, F. C.; ALFARO, M. J.; CHÁVES, J. F. Chemical composition of the nogal de Barquisimeto (Caryodendron orinocense euphorbiaceae) seeds. Food Science and

Technology Internacional, v. 4, p. 285–290, 1998.

PADILLA, F. C.; ALVAREZ, M. T.; ALFARO, M. J. Functional properties of barinas nut flour (Caryodendron orinocense Karst., Euphorbiaceae) compared to those of soybean.

Food Chemistry, v. 57, p. 191–196, 1996.

PASCOAL, A.; ESTEVINHO, L. M.; MARTINS, I. M.; CHOUPINA, A. B. Novel sources and functions of microbial lipases and their role in infection mechanisms.

Physiological and Molecular Plant Pathology, v. 104, p. 119–126, 2018.

PEREIRA, A. S.; FONTES-SANT’ANA, G. C.; AMARAL, P. F. F. Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food and Bioproducts Processing, v. 115, p. 68–77, 2019. PÉREZ, M. N. R.; ALFARO, M. J.; PADILLA, F. C. Evaluation of “Nuez de Barinas” (Caryodendron orinocense) oil for possible use in cosmetic. International Journal of

Cosmetic Science, v. 158, p. 151–158, 1999.

POKORNY, D.; FRIEDRICH, J.; CIMERMAN, A. Effect of nutritional factors on lipase biosynthesis by Aspergillus niger. Biotechnology letters, v. 16, p. 363–366, 1994. PRIJI, P.; UNNI, K. N.; SAJITH, S.; BINOD, P.; BENJAMIN, S. Production,

optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat. Biotechnol. Appl. Biochem., v. 62, p. 71–78, 2015.

RADICE, M.; VIAFARA, D.; NEILL, D.; ASANZA, M.; SACCHETTI, G.; GUERRINI, A.; MAIETTI, S. Chemical Characterization and Antioxidant Activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth Seed Oils.

Journal of Oleo Science, v. 1250, p. 1243–1250, 2014.

RAHMAN, R. N.; BAHARUM, S. N.; SALLEH, A. B. Lipase S5 Lipase: an organic solvent tolerant enzyme. J Microbiol., v. 44, p. 583–590, 2006.

RAMALHO, H. F.; SUAREZ, P. A. Z. A. Química dos Óleos e Gorduras e seus Processos de Extração e Refino. Rev. Virtual Quím., v. 5, p. 2–15, 2013.

RAMOS-SANCHEZ, L. B.; CUJILEMA-QUITIO, M. C.; JULIAN-RICARDO, M. C.; CORDOVA, J.; FICKERS, P. Fungal lipase production by solid-state fermentation. J.

Bioprocess. Biotech., v. 5, p. 203, 2015.

RIBEIRO, P. P. C.; SILVA, D. M. L.; ASSIS, C. F.; CORREIA, R. T. P.; DAMASCENO, K. S. F. S. C. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing. PLoS ONE, v. 12, p. 1–12, 2017.

RIGO, E.; NINOW, J. L.; LUCCIO, M. D.; OLIVEIRA, J. V.; POLLONI, A. E.;

REMONATTO, D.; ARBTER, F.; VARDANEGA, R.; OLIVEIRA, D.; TREICHEL, H. Lipase production by solid fermentation of soybean meal with different supplements. Food

Sci. Technol., v. 43, p. 1132-1137, 2010.

RODRIGUES, M. I.; IEMMA, A. F. Planejamento de Experimentos e Otimização de

Processos. 2. ed. Campinas: Cárita, 2009. 238 p.

RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Fortaleza: Embrapa, 2007.

SALIHU, A.; ALAM, Z.; ABDULKARIM, M. I.; SALLEH, H. M. Suitability of using palm oil mill effluent as a medium for lipase production. Afr. J. Biotechnol, v. 10, p. 2044–2052, 2011.

SALIHU, A.; ALAM, Z.; ABDULKARIM, M. I.; SALLEH, H. M. Lipase production: An insight in the utilization of renewable agricultural residues. Resources, Conservation &

Recycling, v. 58, p. 36–44, 2012.

SENEVIRATNE, K. N.; HAPUARACHCHI, C. D.; EKANAYAKE, S. Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions. Food Chemistry, v. 114, p. 1444–1449, 2009.

SETHI, B. K.; NANDA, P. K.; SAHOO, S. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. Brazilian Journal of

Microbiology, v. 47, p. 143–149, 2016.

SHAHIDI, F.; ZHONG, Y. Measurement of antioxidant activity. J. Funct. Foods, v. 18, p. 757–81, 2015.

SILVA, W. O. B.; MITIDIERI, S.; SCHRANK, A.; VAINSTEIN, M. H.; Production and extraction of an extracelular lipase the entomopathogenic fungus Metarhizium anisopliae.

Process Biochemistry, v. 40, p. 321–326, 2005.

SINGH, R.; KUMAR. M.; MITTAL, A.; MEHTA, P. K. Microbial enzymes: industrial progress in 21st century. 3 Biotech, v. 6, p. 174, 2016.

SINGLETON, V. L.; ROSSI, J. A. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am J Enol Viticult, v. 16, p. 144–158, 1965.

SOUZA, J. G. L.;TOLEDO, A. G.; SANTANA, C. B.; SANTOS, C. V.; MALLMANN, A. P.;SILVA, J. P. B.; PINTO, F. G. S. Composição química e atividade antibacteriana do óleo essencial e extratos vegetais das folhas de “Zanthoxylum caribaeum” Lam. frente a sorotipos de “Salmonella”. Revista Brasileira de Saúde e Produção Animal, v. 18, p. 446–453, 2017.

TEH, S.; BIRCH, J. Physicochemical and quality characteristics of cold-pressed hemp , flax and canola seed oils. Journal of Food Composition and Analysis, v. 30, p. 26–31, 2013.

TIMILSENA, Y. P.; VONGSVIVUT, J.; ADHIKARI, R.; ADHIKARI, B.

Physicochemical and thermal characteristics of Australian chia seed oil. Food Chemistry, v. 228, p. 394–402, 2017.

TOHIDI, B.; RAHIMMALEK, M.; ARZANI, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food chemistry, v. 220, p. 153–161, 2017.

TREICHEL, H.; OLIVEIRA, D.; MAZUTTI, M. A.; DI LUCCIO, M.; OLIVEIRA, J. V. A review on microbial lipases production. Food Bioprocess Technol, v. 3, p. 182–196, 2010.

ULLHAH, N.; DAUD, M.; SHABIR, M.; OZKAN, T.; QASIM, M.; Screening identification and characterization of lipase producing soil bacteria from upper dir and Mardan Khyber Pakhtunkhwa. Int. J. Biosci, v. 6, p. 49–55, 2015.

UPRITCHARD, J. E.; ZEELENBERG, M. J.; HUIZINGA, H.; VERSCHUREN, P. M.; TRAUTWEIN, E. A. Modern fat technology: what is the potential for heart health?

Proceedings of the Nutrition Society, v. 64, p. 379–386, 2005.

VIEIRA, J. S. C.; SOUSA, T. L.; ROSAS, L. S.; LIMA, A. L.; RONCONI, C. M.; MOTA, C. J. A. Esterificação e transesterificação homogênea de óleos vegetais contendo alto teor de ácidos graxos livres. Química Nova, v. 41, p. 10–16, 2018.

VISIOLI, F.; POLI, A.; GALLI, C. Antioxidant and Other Biological Activities of Phenols from Olives and Olive Oil. Medicinal Research Reviews, v. 22, p. 65–75, 2002.

WANG, D.; XU, Y.; SHAN, T. Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochem. Eng. J., v. 41, p. 30–37, 2008.

WANG, Q.; HOU, Y.; DING, Y.; YAN, P. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bactéria Pseudoalteromonas sp. Mol. Biol.

Rep., v. 39, p. 9233–9238, 2012.

YANG, W.; HE, Y.; XU, L.; ZHANG, H.; YAN, Y. A new extracellular thermo-solvent stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J. Mol. Catal. B: Enzym., v. 126, p. 76–89, 2016. ZHANG, Y.; MENG, K.; WANG, Y.; HUIYING, L.; YANG, P.; SHI, P.; WU.; FAN, Y.; LI, J.; YAO, B. A novel proteolysis-resistant lipase from keratinolytic Streptomyces

Documentos relacionados