• Nenhum resultado encontrado

Tomados em conjunto, os resultados obtidos no presente estudo são indicativos de que a via de sinalização mTOR está envolvida no mecanismo de ação da cloroquina sobre células dendríticas, uma vez que:

1. Ocorre aumento da expressão de mTOR fosforilada em células dendríticas tratadas com cloroquina.

2. O bloqueio da via de sinalização mTOR, com o inibidor rapamicina, reverteu os efeitos da cloroquina sobre a indução do perfil tolerogênico das células dendríticas e sobre a capacidade dessas células induzirem diminuição da proliferação de células T e sua diferenciação em células com perfil regulador.

3. O bloqueio da via mTOR inibiu a eficácia terapêutica das DCs moduladas com CQ observado pelo aumento da inflamação no Sistema Nervoso Central de animais portadores de Encefalomielite Autoimune Experimental.

Neste projeto mostramos que a via metabólica de sinalização intracelular mTOR é regulada em células dendríticas tratadas com a cloroquina, posicionando esta via como participante do mecanismo de indução de tolerância imunológica. Estes achados revelam o potencial de manipulação sobre esta via no sentido de desenvolvimento de estratégias terapêuticas eficazes no controle das respostas inflamatórias.

REFERÊNCIAS BIBLIOGRÁFICAS

Akira, S.; Uematsu, S. & Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell, Volume 124 , Issue 4 , 783 – 801.

Alarcon, G. S.; McGwin, G.; Bertoli, A. M.; Fessler, B. J.; Calvo-Alén, J.; Bastian, H. M.; Vilá, L. M.; Reveille, J. D. Effect of hydroxychloroquine on the survival of patients with systemic

lupus erythematosus: data from LUMINA, a multiethnic US cohort. Ann Rheum Dis, 2007,

66(9):11:1168-72.

Anguille, S.; Smits, E. L.; Bryant, C.; Van Acker, H. H.; Goossens, H.; Lion, E.; Fromm, P. D.; Hart, D. N.; Van Tendeloo, V. F.; Berneman, Z. N. Dendritic Cells as Pharmacological Tools

for Cancer Immunotherapy. Dendritic Cell-Based Cancer Immunotherapy, Pharmacol Ver,

67:731-753, 2015.

Asamoah, K. A.; Robb, D. A.; Furman, B. L. Chronic chloroquine treatment enhances

insulin release in rats. Diabetes Res. Clin. Pract. 9(3) (1990) 273–278.

Bahri, R.; Naji, A.; Menier, C.; Charpentier, B.; Carosella, E. D.; Rouas-Freiss, N.; Durrbach, A. Dendritic cells secrete the immunosuppressive HLA-G molecule upon CTLA4-Ig

treatment: implication in human renal transplant acceptance. J Immunol.

2009;183(11):7054-62.

Banchereau, J. & Steinman, M. R. Dendritic cells and the control of immunity. Review article. Macmian publishers Ltd. 19 march 1998.

Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y. J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767-811. Batoulis, H.; Addicks, K.; Kuerten, S. Emerging concepts in autoimmune encephalomyelitis

beyond the CD4/TH1 paradigm. Annals of Anatomy - Anatomischer Anzeiger, Volume 193,

Benitez-Ribas, D.; Borrás, F. E.; Del Val, M.; Lasarte, J. J.; Maranón, C.; Martín-Gaio, E.; Sarobe, P.; Toribio, M.; Montoya, M. Dendritic cells: Nearly 40 years later.... Inmunologia, 2012; 3 1(2):49–57.

Blasius, A, L. & Beutler, B. Intracellular Toll-like Receptors. Immunity, Cell Press Rev, vol 32, 2010.

Boltjes, A.& Van Wijk, F. Human dendritic cell functional specialization in steady-state

and inflammation. Front Immunol (2014) 5:131.

Browlee, W. J.; Hardy, T. A.; Fazekas, F.; Miller, D. H. Diagnosis of multiple sclerosis:

progress and challenges. Multiple Sclerosis 1, vol 1, Series, 2016.

Canté-Barrett, K.; Spijkers-Hagelstein, J. A.; Buijs-Gladdines, J. G.; Uitdehaag, J. C.; Smits, W. K.; van der Zwet, J.; Buijsman, R. C.; Zaman, G. J.; Pieters, R.; Meijerink, J. P. MEK and

PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leucemia. Leukemia. 2016 30(9):1832-43.

Cella, M.; Dohring, C.; Samaridis, J.; Dessing, M.; Brockhaus, M.; Lanzavecchia, A.; Colonna, M. A novel inhibitory receptor (ILT3) expressed on manocytes, macrophages, and

dendritic cells involved in antigen processing. J Exp Med. 1997 May 19;185(10):1743-51.

Constantinescu, c. s.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimune

encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of

Pharmacology (2011), 164: 1079-1106.

Dánova, K.; Klapetková, A.; Kayserová, J.; Sedivá, A.; Spisek, R.; Jelinková, P. NF-κB, p38

MAPK, ERK1/2, mTOR, STAT3 and increased glycolysis regulate stability of paricalcitol/dexamethasonegenerated tolerogenic dendritic cells in the inflammatory environment. Oncotarget, vol 6, 14123-14138, 2015.

Diaz-Guerra, M. J.; Castrillo, A.; Martin-Sanz, P.; Boscá, L. Negative regulation by

phosphatidylinositol 3-kinase of inducible nitric oxide synthase expression in macrophages. J Immunol. 1999;162(10):6184-90.

Dolati, S.; Babaloo, Z.; Jadidi-Niaragh, F.; Ayromlou, H.; Sadreddini, S.; Yousefi, M. Multiple

sclerosis: Therapeutic applications of advancing drug delivery systems. Biomedicine &

Pharmacotherapy, 86 (2017) 343-353.

Efeyan, A & Sabatini, D. M. Nutrients versus growth factors in mTORC1 activation. Biochem Soc Trans. 2013: 41(4).

Emami, J.; Gerstein, H. C.; Pasutto, F. M.; Jamali, F. Insulin-sparing effect of

hydroxychloroquine in diabetic rats is concentration dependent, Can. J. Physiol.

Pharmacol. 77 (2) (1999) 118–123

Emmer, P. M.; Van der Vlag, J.; Adema, G. J.; Hilbrands, L. B. Dendritic cells activated by

lipopolysaccharide after dexamethasone treatment induce donor-specific allograft hyporesponsiveness. Transplantation. 2006;81(10):1451-9.

Ezzelarab, M. & Thomson, A. W. Tolerogenic dendritic cells and their role in

transplantation. Seminars in immunology 23 (2011) 252-263.

Farias, A. S.; Spagnol, G. S.; Bordeaux-Rego, P.; Oliveira, C. O.; Fontana, A. G.; de Paula, R. F.; et al. Vitamin D3 induces IDO tolerogenic DCs and enhances Treg, reducing the

severity of EAE. CNS Neurosci Ther 2013; 19: 269–277.

Farias, A. S.; Spagnol, G. S.; Bordeaux-Rego, P.; Oliveira, C. O.; Fontana, A. G.; De Paula, R. F.; Santos, M. P. A.; Pradella, F.; Moraes, A. S.; Oliveira, E. C.; Longuini, A. L. F.; Rezende, A. C. S.; Vaisberg, M. W.; Santos, L. M. B. Vitamin D3 induces IDO(+) tolerogenic DCs

and enhances Treg, reducing the severity of EAE. CNS neuroscience & therapeutics.

2013;19(4):269-77.

Felson, D. T.; Anderson, J. J.; Meenan, R. F. The comparative afficacy and toxicity of

second-line drugs in rheumatoid arthritis. Results of two metaanalyses Arthritis and

Ferreira, G. B.; Vanherwegen, A-S.; Eelen, G.; Gutiérrez, A. C. F.; Lommel, L. V.; Marchal, K.; Verlinden, L.; Verstuyf, A.; Nogueira, T.; Georgiadou, M.; Schuit, F.; Eizirik, D. L.; Gysemas, C.; Carmeliet, P.; Overbergh, L.; Mathieu, C. Vitamin D3 induces tolerance in

human dendritic cells by activation of intravellular metabolic pathways. Cell Reports, vol

10, 711-725. 2015.

Flórez-grau, G.; Zubizarreta, Z. I.; Ccabezón, R.; Villoslada, P.; Benitez-ribas, D. Tolerogenic

dendritic cells as a promising antigen-specific therapy in the treatment of multiple sclerosis and neuromyelitis optica from preclinical to clinical trials. Frontiers in

immunology, 9: 1169 (2018).

Garulli, B.; Stillitano, M. G.; Barnaba, V.; Castrucci, M. R. Primary CD8 T-cell response to

soluble ovalbumin is improved by chloroquine treatment in vivo. Clin Vaccine Immunol.

2008; 15: 1497–1504.

Gerstein, H. C.; Thorpe, K. E.; Taylor, D. W.; Haynes, R. B. The effectiveness of

hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas-a randomized trial. Diabetes Res. Clin. Pract. 55 (3) (2002) 209–219.

Giannoukakis, N.; Phillips, B.; Finegold, D.; Harnaha, J.; Trucco, M. Phase I (safety) study of

autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 2011.

Gibson, T.; Emery, P.; Armstrong, R. D.; Crisp, A. J.; Panayi, G. S. D-penicillamine and

chloroquine treatment of rheumatoid arthritis – a comparative study. British Journal of

Rheumatology; 1987; 26:279-284.

Gladman, D. D.; Urowitz, M. B.; Senecal, J. I.; Fortin, P. J.; Petty, R. F.; Esdaile, J. m.; Carette, S.; Edworthy, S. M.; Smith, C. D.; Thorne, J. C. Aspects of use of antimalarials in systemic

lupus erythematosus. Journal of Rheumatology, 1998; 25: 983-985.

Guermonprez, P.; Valladeau, J.; Zitvogel, L.; Thery, C.; Amigorena, S. Antigen presentation

Guha, M. & Mackman, N. The phosphatidylinositol 3-kinase-Akt pathway limits

lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. The Journal of biological chemistry.

2002;277(35):32124-32.

Haidinger, M.; Poglitsch, M.; Geyeregger, R.; Kasturi, S.; Zeyda, M.; Zlabinger, G. J.; Pulendran, B.; Horl, W. H.; Saemann, M. D.; Weichhart, T. A versatile role of mammalian

target of rapamycin in human dendritic cell function and differentiation. J Immunol

2010;185:3919-3931.

Halaby, M. J.; Kastein, B. K.; Yang, D. Q.

Chloroquine stimulates glucose uptake and glycogen synthase in muscle

cells through activation of Akt. Biochem Biophys Res Commun. 2013 435(4):708-13.

Heath, W. R.; Carbone, F. R. Dendritic cell subsets in primary and secondary T cell

responses at body surfaces. Nature immunology. 2009;10(12):1237-44.

Huang, H.; Dawicki, W.; Zhang, X.; Town, J.; Gordon, J. Tolerogenic dendritic cells induce

CD4+CD25hiFoxp3+ regulatory T cell differentiation from CD4+CD25-/loFoxp3- effector T cells. Journal of immunology (Baltimore, Md : 1950). 2010; 185(9):5003-10.

Hubo, M.; Trinschek, B.; Kryczanowsky, F.; Tuettenberg, A.; Steinbrink, K.; Jonuleit, H.

Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells.

Front Immunol. 2013 4:82.

Jeong, J. Y.; Jue, D. M. Chloroquine inhibits processing of tumor necrosis factor in

lipopolysaccharide-stimulated RAW 264.7 macrophages. J Immunol. 1997; 158:4901-7.

Juszczak, M. & Głabiński, A. [Th17 cells in the pathogenesis of multiple sclerosis]. Postepy Hig Med Dosw (Online) 63: 492-501, 2009.

Karres, I.; Kremer, J. P.; Steckholzer, U.; Jochum, M.; Ertel, W. Chloroquine inhibits

proinflammatory cytokine release into human whole blood. Am J Physiol. 1998;

Ko, H. J.; Cho, M. L.; Lee, S. Y.; Oh, H. J.; Heo, Y. J.; Moon, Y. M.; Kang, C. M.; Kwok, S. K.; Ju, J. H.; Park, S. H,; Park, K. S.; Kim, H. Y. CTLA4-Ig modifies dendritic cells from

mice with collagen-induced arthritis to increase the CD4+CD25+Foxp3+ regulatory T cell population. Journal of autoimmunity. 2010; 34(2):111-20.

Kuhn, A.; Rulnd, G.; Bonsmann, G. Cutaneous lúpus erythematosus: update of therapeutic

options. Part 1. J. American Academy of Dermatology. 2011; 65: 179-193.

Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition in the innate imune response. Biochem. J. (2009) 420, 1–16 (Printed in Great Britain)

Laplante, M. & Sabatini, D. M. mTOR signaling in groth control and disease. Cell, vol 149, 2012

Lawless, S. J.; Kedia-Mehta, N.; Walls, J. F.; McGarrigle, R.; Convery, O.; Sinclair, L. V.; Navarro, M. N.; Murray, J.; Finlay, D. K. Glucose represses dendritic cell-induced T cell

responses. Nat Commun (2017) 8:15620.

Levin, D.; Constant, S.; Pasqualini, T.; Flavell, R.; Bottomly, K. Role of dendritic cells in the

priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol. 1993;151(12):6742-

50.

Li, Y.; Wang, S.; Wang, Y.; Zhou, C.; Chen, G.; Shen, W.; Li, C.; Lin, W.; Lin, S.; Huang, H.; Liu, P.; Shen, X. Inhibitory effect of the antimalarial agent artesunate on collagen-induced

arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Translational research : the journal of laboratory and clinical medicine.

2013;161(2):89-98.

Locasale, J. W. & Cantley, L. C. Genetic selection for enhanced serine metabolism in cancer

Loehberg, C. R.; Strissel, P. L.; Dittrich, R.; Strick, R.; Dittmer, J.; Dittmer, A., Fabry, B.; Kalender, W. A.; Koch, T.; Wachter, D. L.; Groh, N.; Polier, A.; Brandth, I., Hoffmann, I.; Koppitz, F.; Oeser, S.; Mueller, A.; Fasching, P. A.; Lux, M. P.; Bechmann M. W.; Schrauder, M. G. Akt and p53 are potential mediators of reduced mammary tumor growth by

Chloroquine and the mTOR inhibitor RAD001. Biochem Pharmacol. 2012;83(4):480-8.

Loftus, R. M. & Finlay, D. K. Immunometabolism; cellular metabolism turns immune

regulator. J. Biol. Chem. 291, 1–10 (2015).

Lombard-Platlet, S.; Bertolino, P.; Deng, H.; Gerlier, D.; Rabourdin-Combe, C. Inhibition by

chloroquine of the class II major histocompatibility complex-restricted presentation of endogenous antigens varies according to the cellular origin of the antigen-presenting cells, the nature of the T-cell epitope, and the responding T cell. Immunology 1993;80: 566–573.

Lopez-Pelaez, M.; Soria-Castro, I.; Bosca, L.; Fernandez, M.; Alemany, S. Cot/tpl2 activity is

required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression. Eur J Immunol. 2011;41(6):1733-41.

Lu, Y.; Hong, S.; Li, H.; Park, J.; Hong, B.; Wang, L.; Zheng, Y.; Liu, Z.; Xu, J.; He, J.; Yang, J.; Qian, J.; Ui, Q. Th9 cells promote antitumor immune responses in vivo. The Journal of clinica.l investigation. 2012;122(11):4160-71.

Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which

signals /induce tolerance or immunity? Trends in Immunology. 2002; 23(9): 445-449.

Lutz, M. B.; Kukutsch, N.; Ogilvie, A. L. J.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An

advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods. 1999; v. 223, n. 01, p. 77-92.

Lutz, M. Therapeutic potential os semi-mature dendritic cells for tolerance induction. Frontiers in Immunology, vol. 3, 2013.

Mao, Z. & Zhang, W. Role of mTOR in glucose and lipid metabolismo. int J Mol Sci. 2018 13;19(7).

McCarty, D. J.; Carrera, G. F. Intractable rheumatoid arthritis. Treatent with combined

cyclophosphamide, azathioprine, and hydroxychloroquine. JAMA: Journal of the American

Medical Association; 1982; 248:1718-1723.

McKay, F. C.; Edwin, H.; Parnell, G.; Gatt, P.; Schibeci, S. D.; Stewart, G. J.; Booth, D. R. IL-

7Ra, expression and upregulation by IFN-b in dendritic cells subsets is haplotype- dependent. Plos One 8(10): e77508. 2013.

McKenzie, B. S.; Kastelein, R. A.; Cua, D. J. Undertanding the IL-23-IL-17 immune

pathway. TRENDS in Immunology. 2006;27:17-23.

Mellor, A. L.; Chandler, P.; Baban, B.; Hansen, A. M.; Marshall, B.; Pihkala, J.;Cbbold, S.; Adams, E.; Munn, D. H. Specific subsets of murine dendritic cells acquire potent T cell

regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol. 2004;16(10):1391-401.

Mendel, J.; Rosbo, N. K.; Ben-Num, A. A. Myelin oligodendrocyte glycoprotein peptide

induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. European Journal

of Immunology, v. 25, p. 1951-1959, 1995.

Miller, R. M.; Happe, L. E.; Meyer, K. L.; Spear, R. J. Approaches to the management of

agents used for the treatment of multiple sclerosis: consensus statements from a panel of U.S. managed care pharmacists and physicians. J Manag Care Pharm. 2012; 18(1):54-62.

Min, S. Y.; Park, K. S.; Cho, M. L.; Kang, J. W.; Cho, Y. G.; Hwang, S. Y.; Park, M. J.; Yoon, C. H.; Min, J. K.; Lee, S. H.; Park, S. H.; Kim, H. Y. Antigen-induced, tolerogenic CD11c+,

CD11b+ dendritic cells are abundant in Peyer’s patches during the induction of oral tolerance to type II collagen and suppress experimental collagen-induced arthritis.

Arthritis Rheum, 2006; 54(3):887-98.

Momose, Y.; Arai, S.; Eto, H.; Kishimoto, M.; Okada, M. Experience wuith the use of

hydroxychloroquine for the treatment of lúpus erythematosus. J. Dermatology; 2013;

Moser, M. Dendritic cells in immunity and tolerance—do they display opposite functions?. Immunity (2003), vol 19:5–8.

Moser, M.; De Smedt, T.; Sornasse, T.; Tielemans, F.; Chentoufi, A. A.; Muraille, E.; Van Mechelen, M.; Urban, J.; Leo, O. Glucocorticoids down-regulate dendritic cell function in

vitro and in vivo. Eur J Immunol. 1995;25(10):2818-24.

Niedbala, W.; Alves-Filho, J. C.; Fukada, S. Y.; Vieira, S. M.; Mitani, A.; Sonego, F.; Mirchandani, A.; Nascimento, D. C.; Cunha, F.; Liew, F. Y. Regulation of type 17 helper T-

cell function by nitric oxide during inflammation. Proc Natl Acad Sci U S A.

2011;108:9220-5.

Niedbala, W.; Cai, B.; Liu, H.; Pitman, N.; Chang, L.; Liew, F. Y. Nitric oxide induces

CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40.

Proc Natl Acad Sci U S A. 2007;104:15478-83.

O'Connor, R. A.; Prendergast, C. T.; Sabatos, C. A.; Lau, C. W.; Leech, M. D.; Wraith, D. C.; Anderton, S. M. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central

nervous system during experimental autoimmune encephalomyelitis. J Immunol.

2008;181:3750-4.

O'Neill, L. A & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-

like receptor signalling. Nat Rev Immunol. 2007;7(5):353-64.

Oth, T.; Vanderlocht, J.; Van Elssen, C. H. M. J.; Bos, G. M. J.; Germeraad, W. T. V. Pathogen-

Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination. Mediators

of Inflammation, Rev Article, 2016.

Ozinsky, A.; Underhill, D. M.; Fontenot, J. D.; Hajjar, A. M.; Smith, K. D.; Wilson, C. B.; Schroeder, L.; Aderem, A. The repertoire for pattern recognition of pathogens by the

innate imune system is define by cooperation between Toll-like receptors. PNAS, Vol 97,

Palle, P.; Monaghan, K. L.; Milne, S. M.; Wan, E. C. K. Cytokine signaling in multiple

sclerosis and its therapeutic applications. Med Sci (Basel). 2017 Oct 13;5(4).

Park, H.; Li, Z.; Yang, X.; Chang, S.; Nurieva, R.; Wang, Y. H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; Dong, C. A distinct lineage of CD4 T cells regulates tissue inflammation by

producing interleukin 17. Nature Immunology. 2005;6:1133-74

Pena, C.; Garate, D.; Contreras-Levicoy, J.; Aravena, O.; Catalan, D.; Aguillon, J. C.

Dexamethasone preconditioning improves the response of collagen-induced arthritis to treatment with short-term lipopolysaccharide-stimulated collagen-loaded dendritic cells.

Clinical & developmental immunology. 2013;2013:296031.

Petermann, F. & Korn, T. Cytokines and effector T cell subsets causing autoimmune CNS

disease. FEBS Lett. 2011.

Poznanski, S. M.; Barra, N. G; Ashkar, A. A.; Schertzer, J. D. Immunometabolism of T cells

and NK cells: metabolic control of effector and regulatory functions. Inflamm Res. 2018,

doi: 10.1007/s00011-018-1174-3. In press.

Rea, D.; Van Kooten, C.; van Meijgaarden, K. E.; Ottenhoff, T. H.; Melief, C. J.; Offringa, R.

Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood.

2000;95(10):3162-7.

Rintelen, B.; Andel, I.; Sautner, J.; Leeb, B. F. Leflunomide/chloroquin combination therapy

in rheumatoid arthritis: a pilot study. Clin Rheumatol. 2006;25(4):557-9.

Rosborough, B. R.; Raich-Regue, D.; Matta, B. M.; Lee, K.; Gan, B.; Depinho, R. A.; Hackstein, H.; Boothby, M.; Turnsguist, H. R.; Thomson, A. W. Murine dendritic cell

rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction. Blood; 2013;121:3619-30.

Sabatini, D. M. RAFT1: A mammalian protein that binds to FKBP12 in Rapamycin-

Sarbassov, D. D.; Guertin, D. A.; Ali, S. M.; Sabatini, D. M. Phosphorylation and Regulation

of Akt/PKB by the Rictor-mTOR Complex. Science; 2005; 307(5712): 1098-1101.

Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism ans disease. Cell, 2017: 168(6): 960-976.

Schultz, K. R.; Su, W. N.; Hsiao, C. C.; Doho, G.; Jevon, G.; Bader, S.; MacFarlane, D. E.; Gilman, A. L. Chloroquine prevention of murine MHC-disparate acute graft-versus-host

disease correlates with inhibition of splenic response to CpG oligodeoxynucleotides and alterations in T-cell cytokine production. Biol Blood Marrow Transplant. 2002;8(12):648-

55.

Scott, D. L.; Dawes, P. T.; Tunn, E.; Fowler, P. D.; Shadforth, M. F.; Fisher, J.; Clarke, S.; Collins, M.; Jones, P.; Popert, A. J. Combination therapy with gold and hydroxychloroquine

in rheumatoid arthritis: a prospective, randomized, placebo-controlled study. British

Journal of Rheumatology; 1989; 28:128-133.

Sehgal, S. N. Sirolimus: its discovery, biological properties and mechanism of action.

Transplantation Proceedings. vol 35(3) s7-s14. 2003.

Shortman, K. & Liu, Y. J. Mouse and human dendritic cell subtypes. Nature reviews Immunology. 2002;2(9031d53b-6a08-4c76-a730-0e3989041aff):151-212.

Sinclair, L. V.; Rolf, J.; Emslie, E.; Shi, Y. B.; Taylor, P. M.; Cantrell, D. A. Control of amino-

acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

Smith, G. D.; Amos, T. A.; Mahler, R.; Peters, T. J. Effect of chloroquine on insulin and

glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus. Br. Med. J. (Clin. Res. Ed.) 294 (6570) (1987) 465–467.

Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid

organs of mice. I. Morphology, quantitation, Tissue Distribution. The Journal of

Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid

organs of mice. II. Functional Properties in Vitro. The Journal of Experimental Medicine,

Vol. 139, 1993

Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid

organs of mice. III. Functional Properties in Vivo. The Journal of Experimental Medicine,

Vol. 139, 1994

Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. NATURE REVIEWS, IMMUNOLOGY. Vol 15, 2015.

Tai, Y.; Wang, Q.; Korner, H.; Zhang, L.; Wei, W. Molecular mechanisms of T cells

activation by dendritic cells in autoimune diseases. Front Pharmacol. 2018 9:642.

Terness, P.; Oelert, T.; Ehser, S.; Chuang, J. J.; Lahdou, I.; Kleist, C.; Velten, F.; Hammerling, G. J.; Arnold, B.; Opelz, G. Mitomycin C-treated dendritic cells inactivate autoreactive T

cells: Toward the development of a tolerogenic vaccine in autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of

America, 105(47), 18442–18447, 2008.

Thome, R.; Issayama, L. K.; Digangi, R.; Bombeiro, A. L.; da Costa, T. A.; Ferreira, I. T.; de Oliveira, A. L.; Verinaud, L. Dendritic cells treated with chloroquine modulate

experimental autoimmune encephalomyelitis. Immunology and cell biology. 2014;92(2):124-32.

Thome, R.; Lopes, S. C. P.; Costa, F. T. M; Verinaud, L. Chloroquine: Modes of Action of

an Undervalued Drug. Immunology Letters; 2013b.

Thome, R.; Moraes, A. S.; Bombeiro, A. L.; Farias, A. D.; Francelin, C.; da Costa, T. A.; Digangi, R.; dos Santos, L. M.; de Oliveira, A. L.; Verinaud, L. Chloroquine Treatment

Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis. PLoS One. 2013;8(6):e65913a.

Thome, R.; Bonfanti, A. P.; Rasouli, J.; Mari, E. R.; Zhang, G. X.; Rostami, A.; Verinaud, L.

Chloroquine-treated dendritic cells require STAT1 signaling for their tolerogenic activity.

Eur J Immunol. 2018 48(7):1228-1234.

Unger, W. W.; Laban, S.; Kleijwegt, F. S.; van der Slik, A. R.; Roep, B. O. Induction of Treg

by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol. 2009;39(11):3147-59.

Verinaud, L.; Issayama, L. K.; Zanucoli, F.; Bonfanti, A. P.; Thome, R. Nitric oxide plays a

key role in the suppressive activity of tolerogenic dendritic cells. Cellular and Molecular

Immunology. 2015; 12:384-386.

Vézina, C.; Kudelski, A.; Sehgal, S. N. I-Taxonomy of the producing Streptomycete and

isolation of the active principle. The Journal od Antibiotics. Vol 28(10), 721- 726. 1975.

Weber, S. M. & Levitz, S. M. Chloroquine interferes with lipopolysaccharide-induced

TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol.

2000;165(3):1534-40.

Weichhart, T.; Costantino, G.; Poglitsch, M.; Rosner, M.; Zeyda, M.; Stuhlmeier, K. M.; Kolbe, T.; Stulnig, T. M.; Horl, W. H.; Hengstschlager, M.; Muller, M.; Saemann, M. D. The

TSC/mTOR signaling pathway regulates the innate inflammatory response. Immunity

2008;29:565-577.

Wullschleger, S.; Loewith, R.; Hall, M. N. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84.

Yang, T. Y.; Wu, M. L.; Chang, C. I.; Liu, C. I.; Cheng, T. C.; Wu, Y. J. Bornyl cis-4-

Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through

FAK/PI3K/Akt/mTOR and MAPK Signaling Pathways and Inhibition of the Epithelial- to-Mesenchymal Transition. Int J Mol Sci. 2018 19(8).

Yasuda, H.; Leelahavanichkul, A.; Tsunoda, S.; Dear, J. W.; Takahashi, Y.; Ito, S.; Hu, X.; Zhou, H.; Doi, K.; Childs, R.; Klinman, D. M.; Yuen, P. S.; Star, R. A. Chloroquine and

inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury.

American journal of physiology Renal physiology. 2008;294(5):F1050-8.

Zhao, Y. G.; Wang, Y.; Guo, Z.; Gu, A. D.; Dan, H. C.; Baldwin, A. S.; Hao, W.; Wan, Y. Y.

Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.

J Immunol. 2012;189(9):4417-25.

Zhou, F.; Ciric, B.; Zhang, G. X.; Rostami, A. Immune tolerance induced by intravenous

transfer os immature dendritic cells via up-regulating numbers of suppressive IL-10+ IFN-g+- producing CD4+ Tcells. Immunoll Rev. 2013; 56(1):1-8.

Zhu, X.; Pan, Y.; Li, Y.; Jiang, Y.; Shang, H.; Gowda, D. C. Targeting Toll-like receptors by

chloroquine protects mice from experimental cerebral malaria. International

immunopharmacology. 2012;13(4):392-7.

Ziegler, H. K. & Unanue, E. R. Decrease in macrophage antigen catabolism caused by

ammonia and chloroquine is associated with inhibition of antigen presentation to T cells.

Proc Natl Acad Sci USA 1982; 79: 175–178.

Zoncu, R.; Efeyan, A.; Sabatini, D. M. mTOR: from growth signal integration to cancer,

diabetes and ageing. Nature reviews Molecular cell biology. 2011;12(1):21-35.

Zozulya, A. L.; Ortler, S.; Lee, J.; Weidenfeller, C.; Sandor, M.; Wiendl, H.; Fabry, Z.

Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. The Journal of neuroscience: the official journal of the Society

Documentos relacionados