• Nenhum resultado encontrado

Esse trabalho forneceu evidências para novos alvos ou reguladores da família de proteínas S6Ks, sendo estes principalmente: eIF2α e PARP1. As principais conclusões são:

Parte 1 (anexo I)

possíveis novos alvos das S6Ks foram identificados, permitindo estudos futuros que esclareçam novas funções dessas proteínas na via da mTOR;

2. A maior parte das proteínas de interação da S6K1 é citosólica, enquanto da S6K2 é nuclear;

3. S6K1 apresenta maior relevância em processos biológicos como resposta ao estresse, citoesqueleto, metabolismo, remodelamento de cromatina e fosfatases;

4. S6K2 apresenta maior relevância em processos biológicos como transcrição, biogênese de ribossomos, síntese protéica, replicação e reparo de DNA e splicing e processamento de RNA;

Parte 2:

5. Análises in silico mostraram que eIF2α apresenta o sítio predito de fosforilação de S6Ks, RXRXXT/S, o qual está extremamente conservado em diferentes espécies. Outras análises evidenciaram que as S6Ks apresentam score elevado para fosforilar o resíduo S58 da eIF2α;

6. Ensaios de imunoprecipitação revelaram que eIF2α é uma proteína de interação de S6K1 e S6K2;

7. A eIF2α apresenta resíduo anti-RXXT/S fosforilado na presença de insulina; 8. Ativação das S6Ks com insulina e FGF2 reduzem a fosforilação de eIF2α (S52). A ativação de S6Ks através de FGF2 se deu de maneira independente de mTORC1;

9. As formas constitutivamente ativas (CA) de S6K1 e S6K2 foram capazes de reduzir a fosforilação de eIF2α (S52), sendo que o CA de S6K2 também reduziu a expressão de ATG7, um marcador de autofagia;

10. Inibições farmacológicas de mTOR/S6Ks com rapamicina ou PF4708671 foram capazes de retomar a fosforilação de eIF2α (S52);

11. Mimetização de uma fosforilação no resíduo S58 através de uma mutação sítio dirigida (eIF2α S58E) modulou negativamente a fosforilação do resíduo S52, indicando uma regulação negativa entre esses dois resíduos de serina de eIF2α;

12. PARP1 parece co-imunoprecipitar com S6K2, mas não com S6K1;

As conclusões obtidas nesse projeto devem contribuir para um melhor entendimento da via mTOR/S6Ks e sua relação com a homeostase da célula. Não foi descartada a possibilidade de interação das S6Ks com as outras proteínas propostas inicialmente no trabalho, como a FXR1, PPM1B, PRMT5 e WDR77. Estudos futuros necessitam ser realizados para que haja um melhor entendimento dessas interações e de seus efeitos para a célula.

Como perspectivas deste estudo, experimentos adicionais ainda poderão ser realizados para melhor entendimento das interações das S6Ks com as proteínas eIF2α e PARP1. Para tanto, pretendemos ainda mostrar a interação dessas proteínas em situações com a presença de fatores de crescimento, estresse celular e inibição farmacológica da via mTOR/S6Ks. Uma vez que encontramos indícios que possa existir uma regulação negativa do estado de fosforilação de eIF2α no resíduo 52 quando fosforilada no resíduo 58 pelas S6Ks, pretende-se explorar mais esse aspecto realizando a técnica de CRISPR-Cas9, a qual será empregada com o objetivo de modificar o gene endógeno de eIF2α, mimetizando a fosforilação do resíduo 58 e analisando possíveis efeitos na regulação da autofagia e síntese protéica. Por fim, sabe-se que a fosforilação de eIF2α no resíduo 52 é vista aumentada em situações de obesidade e câncer, uma vez que o processo de estresse de retículo endoplasmático está desregulado. Dessa forma, utilizar estratégias que manipulem a fosforilação de eIF2α em seu resíduo serina 52 é interessante para uma melhor compreensão dos processos celulares que estão envolvidos com a obesidade e câncer.

O projeto de mestrado (processo nº 2015/00311-1) foi desenvolvido com o auxílio financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). As opiniões, hipóteses e conclusões ou recomendações expressas neste material são de responsabilidade do(s) autor(es) e não necessariamente refletem a visão da FAPESP.

REFERÊNCIAS

Alvarez Gonzalez R e Jacobson MK. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry. Jun;

2;26(11):3218-24, 1987.

Appenzeller-Herzog C, Hall MN. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol; 22:274-82, 2012.

Arif A, Terenzi F, Potdar AA, Jia J, Sacks J, China A, Halawani D, Vasu K, Li X, Brown JM, Chen J, Kozma SC, Thomas G, Fox PL. EPRS is a critical

mTORC1-S6K1 effector that influences adiposity in mice. Nature. Feb 16;542(7641):357-361, 2017.

Barrientes S, Cooke C and Goodrich D. Glutamic acid mutagenesis of retinoblastoma protein phosphorylation sites has diverse effects on function. Oncogene. Jan; 19;4: 562-570, 2000.

Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J. A selective inhibitor of eIF2alpha

dephosphorylation protects cells from ER stress. Science. Feb; 211;307(5711):935-9, 2005.

Chakrabarti P, Kandror KV. The role of mTOR in lipid homeostasis and diabetes progression. Curr Opin Endocrinol Diabetes Obes. Oct; 22(5):340-6, 2015. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci. Jan; 70(19):3493-511, 2013.

Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. Jul; 16(7):966-75, 2009.

Fenton TR, Gwalter J, Ericsson J, Gout IT. Histone acetyltransferases interact with and acetylate p70 ribosomal S6 kinases in vitro and in vivo. Int J Biochem Cell Biol. 42(2):359–66, 2010.

Ferrari S, Bannwarth W, Morley SJ, Totty NF, Thomas G. Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A. 89(15):7282–6, 1992.

Gagné JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM, Poirier GG. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids

Res. Dec; 36(22):6959-76, 2008.

Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, Tenkerian C, Morita M, Balanathan P, Jean-Jean O, Stambolic V, Trost M, Furic L, Larose L, Koromilas AE, Asano K, Litchfield D, Larsson O, Topisirovic I. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. Apr 4;7:11127, 2016.

Goh ET, Pardo OE, Michael N, Niewiarowski A, Totty N, Volkova D, Tsaneva IR, Seckl MJ, Gout I. Involvement of heterogeneous ribonucleoprotein F in the

regulation of cell proliferation via the mammalian target of rapamycin/S6 kinase 2 pathway. J Biol Chem. May 28;285(22):17065-76, 2010.

Heberle AM, Prentzell MT, van Eunen K, Bakker BM, Grellscheid SN, Thedieck K. Molecular mechanisms of mTOR regulation by stress. Mol Cell Oncol. Dec;

3;2(2):e970489, 2014.

Huletsky A., de Murcia, G., Muller, S., Hengartner, M., Menard, L., Lamarre, D., and Poirier, G.G. The effect of poly(ADP-ribosyl)ation on native and H1-depleted

chromatin. A role of poly(ADP-ribosyl)ation on core nucleosome structure. J. Biol. Chem. 264: 8878-8886, 1989.

Jastrzebski K, Hannan KM, House CM, Hung SS, Pearson RB, Hannan RD. A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates

revealing additional complexity in the signaling network regulating cell growth. Cell Signal. Aug; 23(8):1338-47, 2011.

Jiang BH, Tseng WL, Li HY, Wang ML, Chang YL, Sung YJ, Chiou SH. Poly(ADP-Ribose) Polymerase 1: Cellular Pluripotency, Reprogramming, and Tumorogenesis. Int J Mol Sci. Jul 9;16(7):15531-45, 2015.

Kauppinen TM, Chan WY, Suh SW, Wiggins AK, Huang EJ, Swanson RA. Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc Natl Acad Sci U S A. May 2;103(18):7136-41, 2006.

Kameoka M., Ota K., Tetsuka T., Tanaka Y., Itaya A., Okamoto T., Yoshihara K. Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem J. 346(pt 3):641–649, 2000.

Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling.J Cell Biol. Jun

Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 431:61-81, 2007.

Koh H, Jee K, Lee B, Kim J, Kim D, Yun YH, Kim JW, Choi HS, Chung J. Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene. Sep 9;18(36):5115-9, 1999.

Laplante M e Sabatini DM. mTOR signaling in growth control and disease. Cell. Apr 13;149(2):274-93, 2012.

Laplante M, Sabatini DM. mTOR Signaling. Cold Spring Harb Perspect Biol. Feb 1;4(2), 2012.

Leighton IA, Dalby KN, Caudwell FB, Cohen PT, Cohen P.Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett. Nov 20;375(3):289- 93,1995.

Lehman JA, Calvo V, Gomez-Cambronero J. Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase. J Biol Chem. 278:28130– 28138, 2013.

Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol. Apr;

141(4):671-89, 2015.

Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. Jan 1;441(1):1- 21, 2012.

Malyuchenko NV, Kotova EY, Kulaeva OI, Kirpichnikov MP, Studitskiy VM. PARP1 Inhibitors: antitumor drug design. Malyuchenko NV, Kotova EY, Kulaeva OI, Kirpichnikov MP, Studitskiy VM. Acta Naturae. Jul-Sep; 7(3):27-37, 2015. Miwa M, Ida C, Yamashita S, Tanaka M, Fujisawa J. Poly(ADP-ribose): Structure, Physicochemical Properties and Quantification in vivo, with special reference to poly(ADP-ribose) binding protein modules. Curr Protein Pept Sci. 2016.

Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, et al. Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17. J Biol Chem. 281(42):31188–201, 2006.

Papst PJ, Sugiyama H, Nagasawa M, Lucas JJ, Maller JL, Terada N. Cdc2-cyclin B phosphorylates p70 S6 kinase on Ser411 at mitosis. J Biol Chem. 273:15077– 15084, 1998.

Pavan IC, Yokoo S, Granato DC, Meneguello L, Carnielli CM, Tavares MR, do Amaral CL, de Freitas LB, Paes Leme AF, Luchessi AD, Simabuco FM. Different interactomes for p70-S6K1 and p54-S6K2 revealed by proteomic analysis. Proteomics. Oct; 16(20):2650-2666, 2016.

Pavan, ICB, Silva, FR, Morelli, AP, Simabuco, FM. S6K (S6 Kinase). Encyclopedia of Signaling Molecules. 3ed.: Springer New York, v. , p. 1-10, 2016.

Pardo OE, Seckl MJ.S6K2: The Neglected S6 Kinase Family Member. Front Oncol. 2013 Jul 24;3:191.

Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, Bowen F, Parker PJ, Filonenko VV, Gout IT, Sebire N, Marais R, Downward J, Seckl MJ. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. EMBO J. Jul 12;25(13):3078-88, 2006. Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, Hwang C, Alessi DR. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J. Oct 15;431(2):245-55, 2010.

Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU. Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A. Jun 19;98(13):7029-36, 2001.

Peterson RT, Desai BN, Hardwick JS, Schreiber SL. Protein phosphatase 2Ainteractswith the 70-kDa S6 kinase and is activated by inhibition of FKBP12- rapamycinassociated protein. Proc Natl Acad Sci U S A. 96(8):4438–42, 1999. Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem. Dec

29;275(52):40974-80, 2000.

Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, et al. Phosphorylation and activation of p70s6k by PDK1. Science. 279(5351):707–10, 1998.

Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, Sukhatme VP. Citrate

Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci Rep. Jul 3;7(1):4537, 2017.

Rosner M, Hengstschläger M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene. Nov

3;30(44):4509-22, 2011.

Rossi R, Pester JM, McDowell M, Soza S, Montecucco A, Lee-Fruman KK. Identification of S6K2 as a centrosome-located kinase. FEBS Lett. Aug 21;581(21):4058-64, 2007.

Roy R, Durie D, Li H, Liu BQ, Skehel JM, Mauri F, Cuorvo LV, Barbareschi M, Guo L, Holcik M, Seckl MJ, Pardo OE. hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling. Nucleic Acids Res. Nov 10;42(20):12483-97, 2014.

Sakamaki J, Daitoku H, Yoshimochi K, Miwa M, Fukamizu A. Regulation of FOXO1- mediated transcription and cell proliferation by PARP-1. Biochem Biophys Res Commun. May 8;382(3):497-502, 2009.

Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife. Feb 26;4, 2015.

Maciejewski PM1, Peterson FC, Anderson PJ, Brooks CL. Mutation of serine 90 to glutamic acid mimics phosphorylation of bovine prolactin. J Biol Chem. 1995 Nov 17;270(46):27661-5.

Mark R. Chance, Andrej Sali, Andras Fiser, Zhong-yin Zhang, David S. Lawrence, Stephen K. Burley Structural genomics of protein phosphatases. J Struct Funct Genomics. Sep; 8(0): 121–140, 2007.

Tavares MR, Pavan IC, Amaral CL, Meneguello L, Luchessi AD, Simabuco FM. The S6K protein family in health and disease. Life Sci. Jun; 15;131:1-10, 2015. Tenkerian C, Krishnamoorthy J, Mounir Z, Kazimierczak U, Khoutorsky A, Staschke KA, Kristof AS, Wang S, Hatzoglou M, Koromilas AE. mTORC2 Balances AKT Activation and eIF2α Serine 51 Phosphorylation to Promote Survival under Stress. Mol Cancer Res. Oct;13(10):1377-88, 2015.

Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Klasener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 154:859-74, 2013.

Valenzuela MT, Guerrero R, Nunez MI, Ruiz De Almodovar JM, Sarker M, de Murcia G, et al. PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene.21:1108–1116, 2002.

Wang M-L, Panasyuk G, Gwalter J, Nemazanyy I, Fenton T, Filonenko V, et al. Regulation of ribosomal protein S6 kinases by ubiquitination. Biochem Biophys Res Commun. 369(2):382–7, 2008.

Wenjing Sun,a,f,1 Yang Yu,a,1 Gianpietro Dotti,b Tao Shen,c Xiaojie Tan,a Barbara Savoldo,b Amy K. Pass,a Meijin Chu,c Dekai Zhang,d Xiongbin Lu,e Songbin Fu,f Xia Lin,c and Jianhua Yanga. PPM1A and PPM1B act as IKKβ phosphatases to terminate TNFα-induced IKKβ-NF-κB activation. Cell Signal. Jan; 21(1): 95–102, 2009.

Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti- phosphopeptide antibodies. J Biol Chem. 273(26):16621–9, 1998.

Yu Xue, Jian Ren, Xinjiao Gao, Changjiang Jin, Longping Wen and Xuebiao Yao. GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy. Mol Cell Proteomics. 7: 1598-1608, 2008.

Zhang J, Gao Z, and Ye J. Phosphorylation and Degradation of S6K1 (p70S6K1) in Response to Persistent JNK1 Activation. Biochim Biophys Acta. Dec; 1832(12): 10.1016, 2013.

Zoncu R, Efeyan A, Sabatini DM 2011. mTOR: From growth signal

integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12: 21–35. Zubilewicz A, Hecquet C, Jeanny JC, Soubrane G, Courtois Y, Mascarelli F. Two distinct signalling pathways are involved in FGF2-stimulated proliferation of choriocapillary endothelial cells: a comparative study with VEGF. Oncogene. Mar 22;20(12):1403-13, 2001.

§C 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com

Proteomics 2016, 00, 1–17 DOI 10.1002/pmic.201500249 1

RESEARCH ARTICLE

Different interactomes for p70-S6K1 and p54-S6K2

revealed by proteomic analysis

Isadora C. B. Pavan1, Sami Yokoo2, Daniela C. Granato2, Let´ıcia Meneguello3,

Carolina M. Carnielli2, Mariana R. Tavares1, Camila L. do Amaral1, Lidia B. de Freitas1,

Adriana F. Paes Leme2, Augusto D. Luchessi3 and Fernando M. Simabuco1

1 Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Sa˜ o Paulo,

Brazil

2 Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sa˜ o

Paulo, Brazil

3 Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, Sa˜ o Paulo, Brazil

S6Ks are major effectors of the mTOR (mammalian target of rapamycin) pathway, signaling for increased protein synthesis and cell growth in response to insulin, AMP/ATP levels, and amino acids. Deregulation of this pathway has been related to disorders and diseases associated with metabolism, such as obesity, diabetes, and cancer. S6K family is composed of two main members, S6K1 and S6K2, which comprise different isoforms resulted from alternative splicing or alternative start codon use. Although important molecular functions have been associated with p70-S6K1, the most extensively studied isoform, the S6K2 counterpart lacks information. In the present study, we performed immunoprecipitation assays followed by mass spectrom- etry (MS) analysis of FLAG-tagged p70-S6K1 and p54-S6K2 interactomes, after expression in HEK293 cells. Protein lists were submitted to CRAPome (Contaminant Repository for Affin- ity Purification) and SAINT (Significance Analysis of INTeractome) analysis, which allowed the identification of high-scoring interactions. By a comparative approach, p70-S6K1 inter- acting proteins were predominantly related to “cytoskeleton” and “stress response,” whereas p54-S6K2 interactome was more associated to “transcription,” “splicing,” and “ribosome bio- genesis.” Moreover, we have found evidences for new targets or regulators of the S6K protein family, such as proteins NCL, NPM1, eIF2a, XRCC6, PARP1, and ILF2/ILF3 complex. This study provides new information about the interacting networks of S6Ks, which may contribute for future approaches to a better understanding of the mTOR/S6K pathway.

Keywords:

Cell Biology / Immunoprecipitation / mTOR / S6K

Additional supporting information may be found in the online version of this article at the publisher’s web-site

Received: June 25, 2015 Revised: June 28, 2016 Accepted: August 3, 2016

1 Introduction

Correspondence: Prof. Fernando Moreira Simabuco, Laborato´ rio de Distu´ rbios do Metabolismo, Faculdade de Cieˆ ncias Aplicadas, Universidade de Campinas, R. Pedro Zaccaria, 1300, sala LA 421, Jardim Sa˜ o Paulo, 13484-350 Limeira, Sa˜ o Paulo, Brazil

E-mail: simabuco@gmail.com

Abbreviations: CRAPome, contaminant repository for affinity purification; IIS, Integrated Interactome System; IMP1, insulin- like growth factor 2 mRNA-binding protein 1; mTORC1, mam- malian target of rapamycin complex 1; NCL, nucleolin; NPM1,

The S6K (ribosomal protein S6 kinase) proteins, includ- ing S6K1 and S6K2, are known effectors of the mTORC1 (mammalian target of rapamycin complex 1) pathway, which plays an important role in the cellular control of energy

nucleophosmin; SAINT, significance analysis of interactome; SG, stress granule; SP, SAINT probability

Colour Online: See the article online to view Figs. 1–6, and 8 in

colour.



2 I. C. B. Pavan et al. Proteomics 2016, 00, 1–17

homeostasis [1–3]. mTORC1 integrates signals derived from many environmental stimuli to promote anabolic functions and inhibit cell catabolism [1, 2].

Two genes of S6Ks are known, named RPS6KB1 and RPS6KB2, encoding two different proteins, called p70-S6K1 and p54-S6K2, respectively [4]. Each of these proteins have larger isoforms produced by alternative use of the AUG trans- lation initiation codon, called p85-S6K1 and p56-S6K2, which have an addition of a predicted nuclear localization signal at the N-terminus, suggesting that the localization of these iso- forms are predominantly nuclear [1, 3–5]. A study, however, has shown that the location of p85-S6K1 is cytoplasmic, while p70-S6K1 can be found in cytoplasm and nucleus [6]. The two S6K2 isoforms exhibit a nuclear localization signal at the C- terminus, which also suggests that they are localized in the nucleus [3, 7]. Furthermore, S6K2 proteins present a proline- rich domain at the C-terminus, allowing these isoforms to interact with SH3 (Src homology 3) and WW proteins do- mains [1]. Over the years, studies have exercised major efforts to discover new functions of the mTORC1/S6K1 signaling, revealing that this axis can control many cellular processes and is related to several diseases [1–3]. However, there is a limitation of studies on S6K2, turning it into a neglected S6K isoform [3, 5].

S6K1 is involved in metabolism regulation through the in- teraction with CAD [8], AMPK [9], IRS1 [10, 11], GSK3 [12], and PFK2 [13]. Other studies have shown that S6K1 regulates protein synthesis through interactions with S6 [14], eEF2K [15], PDCD4 [16], EIF4B [17], and FMRP [18]. In addition, there is an involvement of S6K1 in mRNA splicing process by interaction with CBP80 [19] and SKAR [20], as well as in in- flammatory process by interaction with TAK1 [21]. Processes such as cytoskeleton organization may also have involvement of S6K1 by interaction with CDC42 and RAC1 proteins [22]. Additionally, S6K1 also relates to the apoptotic process, due to interactions with BAD [23] and Mdm2 [24]. Besides, S6K1 is able to phosphorylate ERa [25] and cAMP-responsive ele- ment modulator (CREM) [26], and consequently to regulate transcription. Using phospho-proteomics approaches, stud- ies also identified CCTþ, GRP75, and PGK1, which may act as a chaperones, as new targets of S6K1 [27, 28].

Although there are few studies characterizing the inter- actome of S6K2 [3, 5], a recent study has shown that S6K2 presents some nuclear interaction partners of the hnRNPs family [29]. Another study has shown that S6K2, instead of S6K1, presents a localization close to centriole, suggesting a possible role in cell division [30]. It has been also demon- strated that S6K2 is able to phosphorylate histone H3, which may be related to transcriptional regulation [31]. Finally, stud- ies have shown that S6K2 knockout in mice leads to larger animals in comparison to smaller animals generated by S6K1 knockout [1, 10, 32].

The present study explored the different interactomes of p70-S6K1 and p54-S6K2, identifying new interacting proteins involved in the regulation of several cellular processes, such as “transcription,” “protein synthesis,” “splicing and RNA processing,” “stress response,” “inflammation and immu- nity,” “cytoskeleton organization,” “biogenesis of ribosomes,” “DNA replication and repair,” “chromatin remodeling,” and others. These proteins may represent new possible regula- tors or targets of S6Ks, promoting, in this way, advances in understanding the role of these kinases. Based on the com- parative interactome analysis of p70-S6K1 and p54-S6K2, we revealed putative different interaction partners, which may reflect differences in function and subcellular localization of these isoforms.

2 Material and methods

Cells and plasmids

HEK293 and HeLa cells were cultivated in DMEM supple- mented with 10% v/v FBS (fetal bovine serum). Cells were transfected using Lipofectamine PLUS Reagent or Lipofec- tamine 2000 (Thermo Scientific), following the manufac- turer’s instructions. For FLAG-tagged protein expression, a modified pcDNA 3.1 (+) (Thermo Scientific) was gener- ated cloning the FLAG peptide coding sequence upstream of the multiple cloning site, generating the pcDNA-FLAG vec- tor. The full-length S6K1 and S6K2 cDNA (accession num-

Documentos relacionados