• Nenhum resultado encontrado

Su 5.4.1 substituição Molecular

6. Conclusões e perspectivas

O domínio catalítico da fator de virulência PlpD de Pseudomonas aeruginosa foi cristalizado na sua forma apo e sua estrutura foi resolvida pela técnica de SAD utilizando-se seleniometionina como espalhador anômalo em combinação com substituição molecular. A resolução máxima do modelo cristalográfico foi de 2.1 Angstroms. As estatísticas obtidas pelo refinamento convergem para um modelo condizente aos dados experimentais, além disso a validação da estrutura pelo gráfico de Ramachandran tornam possíveis a deposição da estrutura no banco de dados PDB. O processo de refinamento encontra-se em fase final de processamento o que indica que os dados cristalográficos ainda poderão ser melhorados, principalmente o B-factor e as porcentagens nas regiões mais favoráveis do grafico de Ramachandran.

A determinação da estrutura cristalográfica da PAL18 de Pseudomonas aeruginosa permitiu uma análise inédita das estruturas e interações presentes no sítio ativo do fator de virulência PlpD que é expresso em linhagens que não codificam para ExoU. Comparações estruturais com o outro membro da família reveleu diferenças interessantes na região do sítio ativo. Principalmente a presença do resíduo de aspartato que compõe a díade catalítica na estrutura, o que permite o uso de simulações de modelagem molecular e docking, técnicas que podem auxiliar na determinação da formação do complexo enzima-substrato.

Outras diferenças como a posição do resíduo responsável por atuar como oxiânion, fundamental na atividade enzimática, revelam uma provável diferença entre o modo de interação com o substrato das proteínas PlpD e ExoU. Através da comparação lipases humana e bacteriana sugere-se que a região flexível presente no modelo da PAL18 forme a tampa conservada nessa família de enzimas. Essa tampa provavelmente cumpra um papel essencial na proteção contra autocatálise de lipídeos da própria P. aeruginosa, uma vez que essa enzima não necessite de co-fatores eucarióticos para ativação.

Esse projeto iniciou-se a partir de um convite da Dra Sophie Bleves, do laboratório de engenharia de sistemas macromoleculares em Marselha, França. O grupo da Dra identificou e caracterizou inicialmente a proteína PlpD, a determinação estrutural do domínio catalítico dessa proteína juntamente com as investigações biológicas realizadas pelo grupo em Marselha, tem por objetivo a busca de alvos farmacológicos que possam inibir a atividade da

57

enzima importante para o processo infeccioso do patógeno. Além do fator de virulência secretado PAL18 os demais componentes da proteína PlpD também estão sendo investigados pelo grupo da Dra Bleves de modo a fornecer um entendimento global da proteína e que juntamente com a estrutura da PAL18 será compilado em um artigo.

7. Referências:

ALHEDE, M., ET AL., Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology, 2009. 155(Pt 11): p. 3500-8.

ARPIGNY, J.L. AND K.E. JAEGER, Bacterial lipolytic enzymes: classification and properties. Biochem J, 1999. 343 Pt 1: p. 177-83.

AURASS, P., ET AL., bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection. Appl Environ Microbiol, 2009. 75(13): p. 4506-15.

BANERJI, S., P. AURASS, AND A. FLIEGER, The manifold phospholipases A of Legionella pneumophila - identification, export, regulation, and their link to bacterial virulence. Int J Med Microbiol, 2008. 298(3-4): p. 169-81

BANERJI, S. AND A. FLIEGER, Patatin-like proteins: a new family of lipolytic enzymes present in bacteria? Microbiology, 2004. 150(Pt 3): p. 522-5.

BIERBAUM, T.J., S.R. BOUMA, AND W.H. HUESTIS, A mechanism of erythrocyte lysis by lysophosphatidylcholine. Biochim Biophys Acta, 1979. 555(1): p. 102-10.

Bitter, W., E.N. HOUBEN, J. LUIRINK, AND B.J. APPELMELK. (2009). Type VII secretion in mycobacteria: classification in line with cell envelope structure. Trends Microbiol. 17: 337-338. BLEVES S., VIARRE V., SALACHA R., MICHEL G. P., FILLOUX A., VOULHOUX R. (2010). Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int. J. Med. Microbiol.300, 534–543.

BOFILL, C., ET AL., Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie, 2010. 92(3): p. 307-16.

BORLEE, B.R., GOLDMAN, A.D., MURAKAMI, K., SAMUDRALA, R., WOZNIAK, D.J., PARSEK, M.R., 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842.

BREIDENSTEIN EB, DE LA FUENTE-NUNEZ C, HANCOCK RE: Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011, 19(8):419-426.

CHI, L.M. AND W.G. WU, Effective bilayer expansion and erythrocyte shape change induced by monopalmitoyl phosphatidylcholine. Quantitative light microscopy and nuclear magnetic resonance spectroscopy measurements. Biophys J, 1990. 57(6): p. 1225-32.

58

CCP4: M. D. Winn et al. Acta. Cryst. D67, 235-242 (2011) "Overview of the CCP4 suite and current developments"

CLANTIN, B., DELATTRE, A.S., RUCKTOOA, P., SAINT, N., MÉLI, A.C., LOCHT, C., JACOB- DUBUISSON, F., VILLERET, V., 2007. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 17, 957–991.

COSSART, P. & SANSONETTI, P. J. (2004). Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248.

COUTTE, L., WILLERY, E., ANTOINE, R., DROBECQ, H., LOCHT, C., JACOB-DUBUISSON, F., 2003.Surface anchoring of bacterial subtilisin important for maturation function. Mol. Microbiol. 49, 529–539.

CROSS A, ALLEN JR, BURKE J, DUCEL G, HARRIS A, JOHN J, ET AL. Nosocomial infections due toPseudomonas aeruginosa: review of recent trends. Rev Infect Dis. 1983;5:S837–S845.

Cygler, M.; Schrag, J. D. Structure and conformational flexibility of Candida rugosalipase. Biochim. Biophys. 1999 Acta 1441 205–214.

DAUTIN N, BERNSTEIN HD. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol. 2007;61:89–112.

DESSEN, A., Phospholipase A(2) enzymes: structural diversity in lipid messenger metabolism. Structure, 2000. 8(2): p. R15-22.

DESVAUX M., HEBRAUD M., TALON R., HENDERSON I. R. (2009). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17, 139–145.

DHONDT, S., GEOFFROY, P., STELMACH, B.A., LEGRAND, M., AND HEITZ, T. (2000) Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J 23: 431–440. DIAZ MH, HAUSER AR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 78: 1447–1456

DURAND E., VERGER D., REGO A. T., CHANDRAN V., MENG G., FRONZES R., WAKSMAN G. (2009).Structural biology of bacterial secretion systems in gram-negative pathogens – potential for new drug targets. Infect. Disord. Drug Targets 9, 518–547.

Emsley P, COWTA K (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126-2132.

FELTMAN, H., ET AL., Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology, 2001. 147(Pt 10): p. 2659- 69.

FINCK-BARBANÇON, V., GORANSON, J., ZHU, L., SAWA, T., WIENER-KRONISH, J. P., FLEISZIG, S. M., WU, C., MENDE-MUELLER, L. & FRANK, D. W. (1997). ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25, 547–557.

59

FRANK, D.W., The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol, 1997. 26(4): p. 621-9.

FRONZES, R, CHRISTIE PJ, WAKSMAN G (2009) The structural biology of type IV secretion systems. Nat Rev Microbiol 7: 703–714nrmicro2218

GASTEIGER E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D.,

Bairoch A.;

Protein Identification and Analysis Tools on the ExPASy Server;

(In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press

(2005). pp. 571-607

GENDRIN, C., CONTRERAS-MARTEL, C., BOUILLOT, S., ELSEN, S., LEMAIRE, D., SKOUFIAS, D. A., HUBER, P., ATTREE, I., DESSEN, A, (2012) Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathog 8: e1002637.

GHESQUIERE, S.A., M.H. HOFKER, AND M.P. DE WINTHER, The role of phospholipases in lipid modification and atherosclerosis. Cardiovasc Toxicol, 2005. 5(2): p. 161-82.

GHOSH, M., ET AL., Properties of the Group IV phospholipase A2 family. Prog Lipid Res, 2006. 45(6): p. 487-510.

HALAVATY AS, BOREK D, TYSON GH, VEESENMEYER JL, SHUVALOVA L, ET AL. (2012) Structure of the Type III Secretion Effector Protein ExoU in Complex with Its Chaperone SpcU. PLoS ONE 7(11): e49388.

HANCOCK RE. Resistance mechanisms in Pseudomonas aeruginosaand other nonfermentative gram-negative bacteria. Clin Infect Dis 1998

HASS, D., M. GAMPER, and A. ZIMMERMANN. 1992. Anaerobic control in Pseudomons

aeruginosa, p. 177-187. In E. Galli, S. Silver, and B. Witholt (ed.), Pseudomonas: molecular

biology and biotechnology. American Society for Microbiology, Washington, D.C.

HAUSER, A. R., KANG, P. J. & ENGEL, J. N. (1998). PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27, 807– 818.

HENDRIXSON, D.R., DE LA MORENA, M.L., STATHOPOULOS, C., ST GEME 3RD., J.W., 1997. Structural determinants of processing and secretion of theHaemophilus influenzaehapprotein. Mol. Microbiol. 26, 505–518.

HIRSCHBERG, H.J., SIMONS, J.W., DEKKER, N., AND EGMOND, M.R. (2001) Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur J Biochem 268: 5037–5044.

Hodak, H., JACOB-DUBUISSON, F., 2007. Current challenges in autotransport and twopartner protein secretion pathways. Res. Microbiol. 158, 631–637.

HURLEY, B.P. AND B.A. MCCORMICK, Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun, 2008. 76(6): p. 2259-72.

ISTIVAN, T.S. AND P.J. COLOE, Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology, 2006. 152(Pt 5): p. 1263-74.

60

JAEGER, K.E., B.W. DIJKSTRA, AND M.T. REETZ, Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol, 1999. 53: p. 315-51.

JENSEN, P.O., ET AL., Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 2007. 153(Pt 5): p. 1329-38.

KAJAVA, A. V. and STEVEN, A. C. (2006). The turn of the screw: variations of the abundant beta-solenoid motif in passenger domains of Type V secretory proteins J Struct Biol . 155 :306- 15

KASPER, D. L., & HARRISON, T. R. (2005). Harrison's principles of internal medicine. New York: McGraw-Hill, Medical Pub. Division.

KIDA, Y., HIGASHIMOTO, Y., INOUE, H., SHIMIZU, T., KUWANO, K., 2008. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through proteaseactivated receptors. Cell. Microbiol. 10, 1491–1504.

Kim, H.-W., Han, B.W., Yoon, H.-J., Yang, J.K., Lee, B.I., Lee, H.H., Ahn, H.J., and Suh, S.W. (2002). Crystallization and preliminary X-ray crystallographic analysis of peptide deformylase from Pseudomonas aeruginosa. Acta Crystallogr. D Biol. Crystallogr. 58, 1874–1875.

LEE, V.T., ET AL., Pseudolipasin A Is a Specific Inhibitor for Phospholipase A2 Activity of Pseudomonas aeruginosa Cytotoxin ExoU. Infect. Immun., 2007. 75(3): p. 1089-1098.

MACHADO, G.B., ET AL., Exou-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock, 2010. 33(3): p. 315-21.

MAHAJAN-MIKLOS, S., L.G. RAHME, AND F.M. AUSUBEL, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol, 2000. 37(5): p. 981-8

MATHEE, K. ET AL: Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 2008, 105:3100-3105

MAZAR, J., COTTER, P.A., 2007. New insight into the molecular mechanisms of twopartner secretion. Trends Microbiol. 15, 508–515.

MENG G., SURANA N. K., GEME J. W., III, WAKSMAN G. (2006). Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter.EMBO J. 25, 2297–2304.

MERRELL, D. S. and FALKOW, S. (2004). Frontal and stealth attack strategies in microbial pathogenesis. Nature 430, 250–256.

MICHEL, G.P., VOULHOUX, R., 2009. The type II secretory system (T2SS) in Gram-negative bacteria: a molecular nanomachine for secretion of Sec and Tatdependent extracellular proteins. In: Wooldridge, K.G. (Ed.), Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press, Norfolk, pp. 67–92.

61

MOSER, C., ET AL., Muscle Size and Cardiorespiratory Response to Exercise in Cystic Fibrosis. Am. J. Respir. Crit. Care Med., 2000. 162(5): p. 1823-1827.

MURRAY, J.P. and C.R. MCMASTER, Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p. J Biol Chem, 2005. 280(9): p. 8544-52. NAGEM, R. A. P., DAUTER, Z. & POLIKARPOV, I. (2001). Acta Cryst. D57, 996±1002.

NATALE ET AL 2007 Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—Distinct translocases and mechanisms

NATALE P., BRUSER T., DRIESSEN A. J. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim. Biophys. Acta 1778, 1735–1756

NATIONAL NOSOCOMIAL INFECTIONS SURVEILLANCE SYSTEM (2004). National Nosocomial Infections Surveillance (NNIS) system report data summary from January 1992 through June 2004, issued October 2004. American Journal of Infection Control, 32, 470-485. OOMEN, C.J., VAN ULSEN, P., VAN GELDER, P., FEIJEN, M., TOMMASSEN, J., GROS, P., 2004. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257– 1266.

PANG, S.S., GUDDA, L.W., and DUGGLEBU, R.G. (2002). Crystalliza- tion of the FAD- independent acetolactate synthase of Klebsiella pneumoniae. Acta Crystallogr. D Biol. Crystallogr. 58, 1237–1239.

PHASER: Phaser crystallographic software. (2007). A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L.C. Storoni and R.J. Read. J. Appl. Cryst. 40, 658-674.

PHENIX: a comprehensive Python-based system for macromolecular structure solution. P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echoo ls, J. J. Headd, L.-W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger and P. H. Zwart. Acta Cryst. D66, 213-221 (2010).

PHILLIPS, R. M., D. A. SIX, E. A. DENNIS, AND P. GHOSH. 2003. In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J. Biol. Chem. 278:41326-41332.

PLEISS J, FISCHER M, SCHMID RD. Anatomy of lipase binding sites: the scissile fatty acid binding site. 1998. Chem Phys Lipids. 93(1-2):67-80.

PLOTKOWSKI, M.C., ET AL., ExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells. Eur Respir J, 2008. 32(6): p. 1591-8.

POHLNER J., HALTER R., BEYREUTHER K., MEYER T. F. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462.

Post-crystallization treatments for improving diffraction quality of protein crystals. Heras, Begoña; Martin, Jennifer L. Acta Crystallographica (2005) Section D vol. 61. P. 1173-1180 RABIN, S.D. and A.R. HAUSER, Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun, 2005. 73(1): p. 573-82.

62

RICHARD, P., ET AL., Pseudomonas aeruginosa outbreak in a burn unit: role of antimicrobials in the emergence of multiply resistant strains. J Infect Dis, 1994. 170(2): p. 377- 83.

RENGACHARI S, Bezerra GA, Roegler-Berket L, Gruber CC, Sturm C et al. (2012)The structure of monoacylglycerol lipase from Bacillus sp H-257 reveals unexpected conservation of the cap architecture between bacterial and human enzymes.Biochim Biophys Acta: 1012- 1021.

RYDEL TJ, WILLIAMS JM, KRIEGER E, MOSHIRI F, STALLINGS WC, ET AL. (2003) The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 42: 6696–6708.

SALACHA, R., KOVACIC, F., BROCHIER-ARMANET, C., WILHELM, S., TOMMASSEN, J., FILLOUX, A., VOULHOUX, R., BLEVES, S., 2010. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel type V secretion system. Environ. Microbiol. 12, 1498– 1512.

SALIBA, A.M., ET AL., Eicosanoid-mediated proinflammatory activity of Pseudomonas aeruginosa ExoU. Cellular Microbiology, 2005. 7(12): p. 1811-1822.

SANCHEZ, M., ET AL., Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J Colloid Interface Sci, 2010. 341(2): p.240-7.

SATO, H., J.B. FEIX, AND D.W. FRANK, Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemistry, 2006. 45(34): p. 10368-75. SATO, H. & FRANK, D. W. (2004). ExoU is a potent intracellular phospholipase. Mol Microbiol 53, 1279–1290.

SATO, H., FRANK, D. W., HILLARD, C. J. ET AL. (2003). The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22, 2959–2969.

SCHMALZER, K.M., M.A. BENSON, AND D.W. FRANK, Activation of ExoU- phospholipase activity requires specific C-terminal regions. J Bacteriol, 2010. 192(7) p. 1801- 12.

SCHMIDTKE, A.J. and N.D. HANSON, Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2008. 52(11): p. 3922-7.

SCHMIEL, D.H. AND V.L. MILLER, Bacterial phospholipases and pathogenesis. Microbes Infect, 1999. 1(13): p. 1103-12.

SCHMIEL, D.H., ET AL., Phospholipase A of Yersinia enterocolitica contributes to pathogenesis in a mouse model. Infect Immun, 1998. 66(8): p. 3941-51.

SCHUNDER E., ADAM P., HIGA F., REMER K. A., LORENZ U., BENDER J., SCHULZ T., FLIEGER A., STEINERT M., HEUNER K. (2010). Phospholipase PlaB is a new virulence factor of Legionella pneumophila.Int. J. Med. Microbiol. 300, 313–323.

63

SHAVER, C. M. & HAUSER, A. R. (2004). Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72, 6969–6977.

SHERE, K.D., SALLUSTIO, S., MANESSIS, A., D’AVERSA, T.G., GOLDBERG, M.B., 1997. Disruption of IcsP, the major Shigella protease that cleaves IcsA, accelerates actin-based motility. Mol. Microbiol. 25, 451–462.

SHEWRY, P.R. (2003) Tuber storage proteins. Ann Bot (Lond) 91: 755–769.

SITKIEWICZ, I., K.E. STOCKBAUER, AND J.M. MUSSER, Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol, 2007. 15(2): p. 63-9. SLOMIANY, B.L. and A. SLOMIANY, Mechanism of Helicobacter pylori pathogenesis: focus on mucus. J Clin Gastroenterol, 1992. 14 Suppl 1: p. S114-21.

SON, M.S., ET AL., In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun, 2007. 75(11): p. 5313-24. STIRLING, F.R., ET AL., Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell Microbiol, 2006. 8(8): p. 1294-309.

STOVER, C.K., ET AL., Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 2000. 406(6799): p. 959-64

SUGIYAMA, M., ET AL., A novel prokaryotic phospholipase A2. Characterization, gene cloning, and solution structure. J Biol Chem, 2002. 277(22): p. 20051-8.

TAMURA, M., ET AL., Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Commun, 2004. 316(2): p. 323-31.

THE GLOBAL BURDEN OF DISEASE,2004 Update; WHO Library cataloguing-in-publication data

VAN DELDEN, C. AND B.H. IGLEWSKI, Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis, 1998. 4(4): p. 551-60

VAN DEN BERG, B., ET AL., Solution structure of porcine pancreatic phospholipase A2 complexed with micelles and a competitive inhibitor. J Biomol NMR, 1995. 5(2): p. 110-21. VAN DEN BERG, B., Crystal Structure of a Full-Length Autotransporter. J Mol Biol, 2010. 396(3):627-33.

VAN TIENHOVEN, M., ET AL., Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J Biol Chem, 2002. 277(23): p. 20942-8.

VAN WELY, K. H.M., SWAVING, J., Freudl, R. and DRIESSEN, A. J.M. (2001), Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiology Reviews, 25: 437–454. doi: 10.1111/j.1574-6976.2001.tb00586.x.

Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global

phosphorylation analysis by mass spectrometry. Nat Protoc 3: 1630–1638.

WILHELM, S., J. TOMMASSEN, AND K.E. JAEGER, A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. Journal of Bacteriology, 1999. 181(22): p. 6977- 6986.

64

WILSON ET AL 2002 REVIEW: Mechanisms of Bacterial Pathogenesis. J Med PostGrad 78:216-224

XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS Michael Krug, Manfred S. Weiss, Udo Heinemann and Uwe Mueller J. Appl. Cryst. (2012). 45, 568–572.

XIE, M., ET AL., Rat NTE-related esterase is a membrane-associated protein, hydrolyzes phenyl valerate, and interacts with diisopropylfluorophosphate through a serine catalytic machinery. Arch Biochem Biophys, 2003. 416(2): p. 137-46.

YASUYUKI, M. and S. MASANORI, Atomic resolution structure of prokaryotic phospholipase A2: Analysis of internal motion and implication for a catalytic mechanism. Proteins: Structure, Function, and Genetics, 2003. 51(3): p. 453-469.

YASUYUKI, M., K. YUKITERU AND M. SUGIYAMA, The crystal structure of prokaryotic phospholipase A2. J Biol Chem, 2002. 277(22): p. 20059-69.

YEN YT, KOSTAKIOTI M, HENDERSON IR, STATHOPOULOS C. Common themes and variations in serine protease autotransporters. Trends Microbiol. 2008;16(8):370–9.

ZACCHEO, O., ET AL., Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Biol Chem, 2004. 279(23): p. 24024-33.

ZHANG, Y.M. AND C.O. ROCK, Membrane lipid homeostasis in bacteria. Nat Rev Microbiol, 2008. 6(3): p. 222-33.

65

8. Anexos

Documentos relacionados