• Nenhum resultado encontrado

Observou-se a alta ocorrência de fatores de virulência entre os isolados de

Enterococcus spp. encontradas em alimentos, mormente entre E. faecalis. Genes de

virulência foram detectados em isolados de E. gallinarum, E. hirae e E. durans, evidenciando a necessidade de avaliar a virulência de outros Enterococcus spp. em alimentos além de E. faecalis e E. faecium, os mais conhecidos em virtude de ocasionarem moléstias nosocomiais.

Concernente ao estudo correlativo realizado entre isolados de E. faecalis de laticínios e material clínico de urina, observou-se a ocorrência similar a nível estatístico de cylA, cylM, gelE, ace, esp e agg em ambas as fontes de isolamento. Somente cylB e efaA mostraram maior aderência a E. faecalis obtidos de urina e, assim, ressalta-se a iminência dos isolados de alimentos tornarem-se infectantes caso colonizem o TGI ou, ainda, transmitirem horizontalmente os fatores de virulência citados em cenário favorável.

Relativamente à resistência a antimicrobianos, verificou-se maior sensibilidade aos fármacos analisados entre os isolados de laticínios. Contudo, muitos mostraram- se resistentes à tetraciclina e à eritromicina. Estes resultados não devem ser relevados em virtude de onde foram encontrados (leite cru e queijos Minas frescal), caracterizando riscos à saúde de seus consumidores. Ademais, a literatura indica a viabilidade de transmissão desta resistência a outras bactérias através de EGM mesmo in situ.

Sobre às análises multivariadas realizadas com dados obtidos em MALDI- TOF/MS, observou-se um resultado favorável ao seu uso com o intuito de discriminar isolados de E. faecalis oriundos de fontes de isolamento diferentes, como mostrado através dos modelos PLS-DA e HCA.

Referências

AAFCO. Association of American Feed Controls Officials. 2018 AAFCO Midyear

Meeting Agenda Book. Disponível em:

<https://www.aafco.org/Portals/0/SiteContent/Meetings/Midyear/2018/2018_AAFCO_ agenda_book_FINAL.pdf>. Acessado em: 22/08/2018.

Abriouel, H.; Omar, N.B.; Molinos, A.C.; López, R.L.; Grande, J.; Martínez-Viedma, P.; Ortega, E.; Cañamero, M.M.; Galvez, A. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. International Journal of Food Microbiology, v. 123, p. 38-49, 2008.

Anderson, A.C.; Jonas, D.; Huber, I.; Karygianni, L.; Wölber, J.; Hellwig, E.; Arweiler, N.; Vach, K.; Wittmer, A.; Al-Ahmad, A. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Frontiers in Microbiology, v. 6, 2016.

Andreotti, R.; Nicodemo, M.L.F. Uso de Antimicrobianos na Produção de Bovinos

e Desenvolvimento de Resistência. Campo Grande: Embrapa, 2004, 50f.

Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI- TOF MS) in clinical microbiology. Journal of Microbiological Methods, v. 138, p. 20- 29, 2017.

Arias, C.A.; Murray, B.E. The rise of Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology, v. 10, p. 266-278, 2012.

Barreiro, J.R.; Braga, P.A.C.; Ferreira, C.R.; Kostrzewa, M.; Maier, T.; Wegemann, B.; Böettcher, V.; Eberlin, M.N.; Santos, M.V. Nonculture‐based identification of bacteria in milk by protein fingerprinting. Proteomics, v. 12, p. 2739-2745, 2012.

Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clinical Microbiology and Infection, v. 16, p. 1614-1619, 2010.

Bradley, C.R.; Fraise, A.P. Heat and chemical resistance of enterococci. Journal of Hospital Infection, v. 34, p. 191-196, 1996.

Brandl, K.; Plitas, G.; Mihu, C.N.; Ubeda, C.; Jia, T.; Fleisher, M.; Schnabl, B.; DeMatteo, R.P.; Pamer, E.G. Vancomycin-resistant enterococci exploit antibiotic- induced innate imune deficits. Nature, v. 455, p. 804-807, 2008.

Brasil. Agência Nacional de Vigilância Sanitária. Gram-negativos Fermentadores, 2008. Disponível em:

<http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/boas_praticas/MO DULO2/resistencia.htm>. Acessado em: 27/08/2018.

Brasil. Agência Nacional de Vigilância Sanitária. Resistência Microbiana - Mecanismos

e Impacto Clínico, 2007. Disponível em:

<http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_ web/modulo3/gramp_entero4.htm>. Acessado em: 27/08/2018.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Instrução Normativa n. 9 de 27 de junho de 2003.

Castro, M.R.; Fernandes, M.S.; Kabuki, D.Y.; Kuaye, A.Y. Biofilm formation on stainless steel as a function of time and temperature and control through sanitizers. International Dairy Journal, v. 68, p. 9–16, 2017.

Castro, M.S.R. Enterococcus spp e Pseudomonas spp isolados de ambiente de processamento de produtos lácteos: identificação, formação de biofilmes multi- espécies e controle por agentes sanitizantes. 2012. 257 f. Tese (Doutorado em Tecnologia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, São Paulo. 2012.

Chajęcka -Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. Isolated from retail shrimps. Food Science and Technology, v. 69, p. 117-122, 2016.

Chajęcka -Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors of Enterococcus spp. presented in food. Food Science and Technology, v. 75, p. 670-676, 2017.

Chen, C.H.; Xu, X.G. Genetic characteristics of vancomycin resistance gene cluster in

Choi, J-M.; Woo, G-J. Transfer of Tetracycline Resistance Genes with Agreggation Substance in Food-Borne Enterococcus faecalis. Current Microbiology, v. 70, p. 476- 484, 2015.

Chong, P.M.; McCorrister, S.J.; Unger, M.S.; Boyd, D.A.; Mulvey, M.R.; Westmacott, G.R. MALDI-TOF MS detection of carbapenemase activity in clinical isolates of

Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii

compared against the Carba-NP assay. Journal of Microbiological Methods, v. 111, p. 21-23, 2015.

Christ, A.P.; Ramos, S.R.; Cayô, R.; Gales, A.C.; Hachich, E.M.; Sato, M.I.Z. Characterization of Enterococcus species isolated from marine recreational waters by MALDI-TOF MS and Rapid ID API® 20 Strep system. Marine Pollution Bulletin, v. 118, p. 376-381, 2017.

Clark, N.C.; Cooksey, R.C.; Hill, B.C.; Swenson, J.M.; Tenover, F.C. Characterization of glypeptide-resistant enterococci from U.S. hospitals. Antimicrobials Agents and Chemotherapy, v. 37, p. 2311-2317, 1993.

Clewell, D.B.; Francia, M.V.; Flannagan, S.E.; An, F.Y. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid, v. 48, p. 193-201, 2002.

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.

Coburn, P.S.; Hancock, L.E.; Booth, M.C.; Gilmore, M.S. A novel means of self- protection, unrelated to toxin activation, confers immunity to the bactericidal effects of the Enterococcus faecalis cytolisin. Infection and Immunity, v. 67, p. 3339-3347, 1999.

Dal Bello, B.; Rantsiou, K.; Bellio, A.; Zeppa, G.; Ambrosoli, R.; Civera, T.; Cocolin, L. Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. Food Science and Technology, v. 43, p. 1151–1159, 2010.

Devriese, L.A.; Pot, B.; Collins, M.D. Phenotypic identification of the genus

Enterococcus and differentiation of phylogenetically distinct enterococcal species and

species groups. Journal of Applied Bacteriology, v. 75, p. 399-408, 1993.

Di Rosa, R.; Creti, R.; Venditti, M.; D’Armelio, R.; Arciola, C.R.; Montanaro, L.; Baldassarri, L. Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and

Enterococcus faecium. FEMS Microbiology Letters, v. 256, p. 145-150, 2006.

Dingle, T.C.; Butler-Wu, S.M. MALDI-TOF Mass Spectrometry for Microorganism Identification. Clinical and Laboratory Medicine, v. 33, p. 589-609, 2013.

Donskey, C.J.; Chowdhry, T.K.; Hecker, M.T.; Hoyen, C.K.; Hanrahan, J.A.; Hujer, A.M.; Hutton-Thomas, R.A.; Whalen, C.C.; Bonomo, R.A.; Rice, L.B. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. The New England Journal of Medicine, v. 343, p. 1925-1932, 2000.

Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of Glycopeptide Resistance Genotypes and Identification to the Species Level of Clinically Relevant Enterococci by PCR. Journal of Clinical Microbiology, v. 33, p. 24-27, 1995.

Eaton, T. J.; Gasson, M. Molecular Screening of Enterococcus Virulence Determinants and Potential for Genetic Exchange between Food and Medical isolates. Applied Environmental Microbiology, v. 67, p. 1628-1635, 2001.

EFSA. Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 update), EFSA Panel on Biological Hazards (BIOHAZ), European Food Safety Authority (EFSA), Parma, Italy, 2009.

Faculdade de Medicina da Universidade de São Paulo, FMUSP. Guia de Utilização de Anti-Infecciosos e Recomendações para a Prevenção de Infecções Hospitalares. São Paulo: Hospital das Clínicas, 5ª ed., 2011, 192 p.

Fernandes, M.S. Enterococcus spp. e Bacillus cereus isolados do processamento de ricota: Patogenicidade, formação de biofilmes multiespécie e detecção de autoindutores AI-2. 2014. 221 f. Tese (Doutorado em Tecnologia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, São Paulo. 2014.

Fernandes, M.S.; Fujimoto, G.; Souza, L.P.; Kabuki, D.Y.; Silva, M.J.; Kuaye, A.Y. Dissemination of Enterococcus faecalis and Enterococcus faecium in a Ricota Processing Plant and Evaluation of Pathogenic and Antibiotic Resistance Profiles. Journal of Food Science, v. 80, p. 765-775, 2015.

Foulquié Moreno, M.R.; Sarantinopoulos, P.; Tsakalidou, E.; L., De Vuyst. The role and application of enterococci in food and health. International Journal of Food Microbiology, v. 106, p. 1-24, 2006.

Franco, B.D.G.M.; Landgraf, M. Microrganismos Indicadores. In: Microbiologia de Alimentos. São Paulo: Atheneu, p. 27-32, 2008.

Franz, C.M.A.P.; Holzapfel, W.H.; Stiles, M.E. Enterococci at the crossroads of food safety? International Journal of Food Microbiology, v. 47, p. 1-24, 1999.

Franz, C.M.A.P.; Huch, M.; Abriouel, H.; Holzapfel, W.; Gálvez, A. Enterococci as probiotics and their implication in food safety. International Journal of Food Microbiology, v. 151, p. 125-140, 2011.

Franz, C.M.A.P.; Stiles, M.E.; Schleifer, K.H.; Holzapfel, W.H. Enterococci in foods – a conundrum for food safety. International Journal of Food Microbiology, v. 88, p.105-122, 2003.

Franz, C.M.A.P.; Van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews, v. 31, p. 293-310, 2007.

Freitas, A.R.; Sousa, C.; Novais, C.; Silva, L.; Ramos, H.; Coque, M.T.; Lopes, J.; Peixe, L. Rapid detection of high-risk Enterococcus faecium clones by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagnostic Microbiology and Infectious Disease, v. 87, p. 299-307, 2017.

Freitas, A.R.; Tedim, A.P.; Novais, C.; Ruiz-Garbajosa, P.; Werner, G.; Laverde- Gomez, J.A.; Cantón, R.; Peixe, L.; Baquero, F.; Coque, T.M. Global Spread of the

hylEfm Colonization-Virulence Gene in Megaplasmids of the Enterococcus faecium

CC17 Polyclonal Subcluster. Antimicrobial Agents and Chemotherapy, v. 54, p. 2660-2665, 2010.

Furrer, B.; Candrian, U.; Hoefelein, C.; Luethy, J. Detection and identification of Listeria

monocytogenes in cooked sausage products and in milk by in vitro amplification of

haemolysin gene fragments. Journal of Applied Bacteriology, v. 70, p. 372-379, 1991.

Gaieski, D.F.; Mikkelsen, M.E.; Band, R.A.; Pines, J.M.; Massone, R.; Furia, F.F.; Shofer, F.S.; Goyal, M. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Critical Care Medicine, v. 38, p. 1045-1053, 2010.

Gelsomino, R.; Vancanneyt, M.; Cogan, T.M.; Condon, S.; Swings, J. Source of Enterococci in a farmhouse raw-milk cheese. Applied and Environmental Microbiology, v. 68, p. 3560-3565, 2002.

Gilmore, M. S.; Segarra, R. A.; Booth, M. C.; Bogie, C. P.; Hall, L. R.; Clewell, D. B. Genetic Structure of the Enterococcus faecalis Plasmid pADi- Encoded Cytolytic Toxin System and Its Relationship to Lantibiotic Determinants. Journal of Bacteriology, v. 176, p. 7335-7344, 1994

Giraffa, G. Enterococci from foods. Microbiology Reviews, v. 26, p. 163-171, 2002. Giraffa, G. Functionality of enterococci in dairy products. International Journal of Food Microbiology, v. 88, p. 215-222, 2003.

Gomes, B.C.; Esteves, C.T.; Palazzo, I.C.; Darini, A.L.; Felis, G.E.; Sechi, L.A.; Franco, B.D.; De Martinis, E.C. Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiology, v. 25, p. 668-675, 2008.

Griffin, P.M.; Price, G.R.; Schooneveldt, J.M.; Schlebusch, S.; Tilse, M.H.; Urbanski, T.; Hamilton, B.; Venter, D. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry To Identify Vancomycin-Resistant Enterococci and Investigate the Epidemiology of an Outbreak. Journal of Clinical Microbiology, v. 50, p. 2918-2931, 2012.

Haas, W.; Gilmore, M. S. Molecular nature of a novel bacterial toxin: the cytolysin of

Enterococcus faecalis. Medical Microbiology and Immunology, v. 187, p. 183-190,

Haas, W.; Shepard, B.D.; Gilmore, M.S. Two-component regulator of Enterococcus

faecalis cytolysin responds to quorum-sensing autoinduction. Nature, v. 415, p.3-6,

2002.

Hammad, A.M.; Hassan, H.A.; Shimamoto, T. Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control, v. 50, p. 815-820, 2015.

Hammerum, A.M. Enterococci of animal origin and their significance for public health. Clinical Microbiology and Infection, v. 18, p. 619-625, 2012.

Hammerum, A.M.; Lester, C.H.; Heuer, O.E. Are antimicrobial resistant enterococci of animal origin a human hazard? In: Semedo-Lemsaddek, T.; Barreto-Crespo, M.T.; Tenreiro, R (Eds). Enterococcus and Safety. New York: Nova Science Publishers, 2012. p. 199-226.

Hashem, Y.A.; Amin, H.M.; Essam, T.M.; Yassin, A.S.; Aziz, R.K. Biofilm formation in enterococci: genotype-phenotype correlations and inhibition by vancomycin. Scientific Reports, v. 7, p. 5733-5744, 2017.

Haubert, L.; Cruxen, C.E.S.; Fiorentini, A.M.; Silva, W.P. Tetracycline resistance transfer from foodborne Listeria monocytogenes to Enterococcus faecalis in Minas Frescal cheese. International Dairy Journal, v. 87, p. 11-15, 2018.

Heikens, E.; Bonten, M.J.M.; Willems, R.J.L. Enterococcal Surface Protein Esp Is Important for Biofilm Formation of Enterococcus faecium E1162. Journal of Bacteriology, v. 189, p. 8233-8240, 2007.

Hill, E.E.; Herijgers, P.; Claus, P.; Vanderschueren, S.; Herregods, M.C.; Peetermans, W.E. Infective endocarditis: changing epidemiology and predictors of 6-month mortality: a prospective cohort study. European Heart Journal, v. 28, p. 196-203, 2007.

Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, v. 3, p. 421-569, 2012.

Hooper, L.V.; Gordon, J.I. Commensal host-bacterial relationships in the gut. Science, v. 292, p. 1115-1118, 2001.

Hrabák; J.; Chudáčková, E.; Walková, R. Matrix-Assisted Laser Desorption Ionization– Time of Flight (MALDI-TOF) Mass Spectrometry for Detection of Antibiotic Resistance Mechanisms: from Research to Routine Diagnosis. Clinical Microbiology Reviews, v. 26, p. 103-114, 2013.

Huddleston, J. R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infection and Drug Resistance, v. 7, p. 167- 176, 2014.

Hynes, W.L.; Walton, S.L. Hyaluronidases of Gram-positive bacteria. FEMS Microbiology Letters, v. 183, p. 201-207, 2000.

Ike, Y.; Clewell, D. B. Evidence that the Hemolysin/Bacteriocin Phenotype of

Enterococcus faecalis subsp. zymogenes Can Be Determined by Plasmids in Different

Incompatibility Groups as Well as by the Chromosome. Journal of Bacteriology, v. 174, p. 8172-8177, 1992.

Ispirli, H.; Demirbas, F.; Dertli, E. Characterization of functional properties of

Enterococcus spp. isolated from Turkish white cheese. LWT – Food Science and

Technology, v. 75, p. 358-365, 2017.

Jett, B. D.; Huycke, M. M.; Gilmore, M. S. Virulence of enterococci. Clinical Microbiology Reviews, v. 7, p. 462-478, 1994.

Johnson, A.P. The pathogenicity of enterococci. Journal of Antimicrobial Chemotherapy, v. 33, p. 1083-1089, 1994.

Kafil, H.S.; Mobarez, A.M.; Moghadam, M.F.; Hashemi, Z.S.; Yousefi, M. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis. Microbial Pathogenisis, v. 92, p. 30-35, 2016.

Kayaoglu, G.; Orstavik, D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Critical Reviews in Oral Biology & Medicine, v. 15, p. 308-320, 2004.

Koster, C.G.; Brul, S. MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens. Current Opinion in Food Science, v. 10, p. 76-84, 2016. Kristich, C.J.; Li, Y-H.; Cvitkovitch, D.G.; Dunny, G.M. Esp- Independent Biofilm Formation by Enterococcus faecalis. Journal of Bacteriology, v. 186, p. 154-163. 2004.

Kristich, C.J.; Little, J.L. Mutations in the β Subunit of RNA Polymerase Alter Intrinsic Cephalosporin Resistance in Enterococci. Antimicrobial Agents and Chemotherapy, v. 56, p. 2022-2027, 2012.

Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection – Treatment and Antibiotic Resistance. In: Gilmore, M.S.; Clewell, D.B.; Ike, Y.; Shankar, N. (Eds). Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (Internet). Boston: Massachusetts Eye and Ear Infirmary, 2014.

Lasch, P.; Fleige, C.; Stämmler, M.; Layer, F.; Nübel, U.; Witter, W.; Werner, G. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing

Enterococcus faecium and Staphylococcus aureus isolates. Journal of

Microbiological Methods, v. 100, p. 58-69, 2014.

Lebreton, F.; Riboulet-Bisson, E.; Serror, P.; Sanguinetti, M.; Posteraro, B.; Torelli, R.; Hartke, A.; Auffray, Y.; Giard, J.C. ace, Which encodes and adhesin in Enterococcus

faecalis, is regulated by Ers and is involved in virulence. Infection and Immunity, v.

77, p. 2832-2839, 2009.

Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus Diversity, Origins in Nature, and Gut Colonization. In: Gilmore, M.S.; Clewell, D.B.; Ike, Y.; Shankar, N. (Eds). Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary, 2014.

Lopes, M. F. S.; Simões, A. P.; Tenreiro, R.; Marques, J. J. F.; Crespo, M. T. B. Activity and expression of a virulence factor, gelatinase, in dairy enterococci. International Journal of Food Microbiology, v. 112, p. 208-214, 2006.

Lowe, A. M.; Lambert, P. A.; Smith, A. W. Cloning of an Enterococcus faecalis Endocarditis Antigen: Homology with Adhesins from Some Oral Streptococci. Infection and Immunity, v. 63, p. 703-706, 1995.

LPSN. List of Prokaryotic Names with Standing in Nomenclature. Genus Enterococcus. Disponível em: <http://www.bacterio.net/enterococcus.html>. Acessado em: 30/03/2019.

Mandlik, A.; Swierczynski, A.; Das, A.; Ton-That, H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends in Microbiology, v. 16, p. 33-40, 2008.

Mannu, L.; Paba, A.; Daga, E.; Comunian, R.; Zanetti, S.; Duprè, I.; Sechi, L.A. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International Journal of Food Microbiology, v. 88, p. 291-304, 2003.

Medeiros, A.W.; Pereira, R.I.; Oliveira, D.V.; Martins, P.D.; d’Azevedo, P.A.; Van der Sand, S.; Frazzon, J.; Frazzon, A.P.G. Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil. Brazilian Journal of Microbiology, v. 45, p. 327-332, 2014.

Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-Infective Therapy, v. 12, p. 1221-1236, 2014. Mims, C.; Nash, A.; Stephen. Mim’s Pathogenesis of Infectious Disease. 5ª Ed. London: Academic Press, 2001. 438 p.

Monteiro, R.; Vitorino, R.; Domingues, P.; Radhouani, H.; Carvalho, C.; Poeta, P.; Torres, C.; Igrejas, G. Proteome of a methicillin-resistant Staphylococcus aureus clinical strain of sequence type ST398. Journal of Proteomics, v. 75, p. 2892-2915, 2012.

Morrison, D.; Woodford, N.; Cookson, B. Enterococci as emerging pathogens of humans. Journal of Applied Microbiology Symposium Supplement, v. 83, p. 89- 99, 1997.

Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Enterococcus e Outros Cocos Gram Positivos. In: Microbiologia Médica. 6ª ed. Rio de Janeiro: Elsevier, p. 243-247, 2009a.

Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Metabolismo e Genética Bacterianos. In: Microbiologia Médica. 6ª ed. Rio de Janeiro: Elsevier, p. 23-39, 2009b.

Nacef, M.; Chevalier, M.; Chollet, S.; Drider, D.; Flahaut, C. MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. International Journal of Food Microbiology, v. 247, p. 2-8, 2017. Nallapareddy, S.R.; Qin, X.; Weinstock, G.M.; Höök, M.; Murray, B.E. Enterococcus

faecalis Adhesin, Ace, Mediates Attachment to Extracellular Matrix Proteins Collagens

Type IV and Laminin as well as Collagen Type I. Infection and Immunity, v. 68, p. 5218-5224, 2000.

Noble, W.C.; Virani, Z.; Cree, R.G.A. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiology Letters, v. 93, p. 195-198, 1992.

O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infection Drug Resistance, v. 8, p. 217-230, 2015.

Osuka, H.; Nakajima, J.; Oishi, T.; Funayama, Y.; Ebihara, T.; Ishikawa, H.; Saito, K.; Koganemaru, H.; Hitomi, S. High-level aminoglycoside resistance in Enterococcus

faecalis and Enterococcus faecium causing invasive infection: Twelve-year surveillance in the Minami Ibaraki Area. Journal of Infection and Chemotherapy, v. 22, p. 61-63, 2016.

Park, S.Y.; Shin, Y.P.; Kim, C.H.; Park, H.J.; Seong, Y.S.; Kim, B.S.; Seo, S.J.; Lee, H. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. The Journal of Immunology, v. 181, p. 6328-6336, 2008. Paulsen, I.T.; Banerjei, L.; Myers, G.S.; Nelson, K.E.; Seshadri, R.; Read, T.D.; Fouts, D.E.; Eisen, J.A.; Gill, S.R.; Heidelberg, J.F.; Tettelin, H.; Dodson, R.J.; Umayam, L.; Brinkac, L.; Beanan, M.; Daugherty, S.; DeBoy, R.T.; Durkin, S.; Kolonay, J.; Madupu, R.; Nelson, W.; Vamathevan, J.; Tran, B.; Upton, J.; Hansen, T.; Shetty, J.; Khouri, H.; Utterback, T.; Radune, D.; Ketchum, K.A.; Dougherty, B.A.; Fraser, C.M. Role of mobile DNA in the evolution of vancomycin-resistance Enterococcus

faecalis. Science, v. 299, p. 2071-2074, 2003.

Penas, P.P.; Mayer, M.P.A.; Gomes, B.P.F.A.; Endo, M.; Pignatari, A.C.C.; Bauab, K.C.; Pinheiro, E.T. Analysis of Genetic Lineages and Their Correlation with Virulence Genes in Enterococcus faecalis Clinical Isolates from Root Canal and Systemic Infections. Journal of Endodontics, v. 39, p. 858-864, 2013.

Perumal, V.; Venkatesan, A. Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization. Food Science and Technology, v. 78, p. 303-310, 2017. Pesavento, G.; Calonico, C.; Ducci, B.; Magnanini, A.; Lo Nostro, A. Prevalence and antibiotic resistance of Enterocccus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiology, v. 41, p. 1-7, 2014.

Qin, X.; Singh, K.V.; Weinstock, G.M.; Murray, B.E. Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. Journal of Bacteriology, v. 183, p. 3372-3382, 2001.

Qin, X.; Singh, K.V.; Weinstock, G.M.; Murray, B.E. Effects of Enterococcus faecalis fsr Genes on Production of Gelatinase and a Serine Protease and Virulence. Infection and Immunity, v. 68, p. 2579-2586, 2000.

Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resistance Updates, v. 13, p. 151-171, 2010.

Rengaraj, R.; Mariappan, S.; Sekar, U.; Kamalanadhan, A. Detection of Vancomycin Resistance among Enterococcus faecalis and Staphylococcus aureus. Journal of Clinical & Diagnostic Research, v. 10, p. 4-6, 2016.

Riboldi, G.P.; Frazzon, J.; Azevedo, P.A.; Frazzon, A.P.G. Antimicrobial resistance profile of Enterococcus spp. isolated from food in Southern Brazil. Brazilian Journal of Microbiology, v. 40, p. 125-128, 2009.

Rice, L.B.; Lakticová, V.; Helfand, M.S.; Hutton-Thomas, R. In vitro antienterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multiresistant enterococci. The Journal of Infectious Diseases, v. 190, p. 2162-2166, 2004.

Roberts, M.C. Acquired Tetracycline Resistance Genes. In: Dougherty, T.J.; Pucci, M.J. (Eds). Antibiotic Discovery and Development. Springer: New York, 2012, p. 543-568.

Sahm, D.F.; Kissinger, J.; Gilmore, M.S.; Murray, P.R.; Mulder, R.; Solliday, J.; Clarke, B. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, v. 33, p. 1588-1591, 1989.

Saracli, M.A.; Fothergill, A.W.; Sutton, D.A.; Wiederhold, N.P. Detection of triazole resistance among Candida species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Medical Mycology, v. 53, p. 736-742, 2015.

Savic, M.; Lovric, J.; Tomic, T.I.; Vasiljevic, B.; Conn, G.L. Determination of the target nucleosides for members of two families of 16S rRNA methyltransferases that confer resistance to partially overlapping groups of aminoglycoside antibiotics. Nucleic Acids Research, v. 37, p. 5420-5431, 2009.

Schwarz, F.V.; Perreten, V.; Teuber, M. Sequence of the 5 kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid, v. 46, p. 170–187, 2001.

Semedo, T.; Santos, M.A.; Lopes, M.F.S.; Marques, J.J.F.; Crespo, M.T.B.; Tenreiro, R. Virulence Factors in Food, Clinical and Reference Enterococci: A Common Trait in the Genus? Systematic and Applied Microbiology, v. 26, p. 13-22, 2003b.

Semedo, T.; Santos, M.A.; Martins, P.; Lopes, M.F.S.; Marques, J.J.F.; Tenreiro, R.; Crespo, M.T.B. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. Journal of Clinical Microbiology, v. 41, p. 2569-2576, 2003a.

Semedo-Lemsaddek, T.; Mato, R. Pathogenesis and Virulence. In: Semedo- Lemsaddek, T.; Barreto-Crespo, M.T.; Tenreiro, R. (Eds). Enterococcus and Safety. New York: Nova Science Publishers, 2012, p. 227-273.

Shankar, N.; Baghdayan, A.S.; Gilmore, M.S. Modulation of virulence within a pathogenic island in vancomycin-resistant Enterococcus faecalis. Nature, v. 417, p. 746-750, 2002.

Shepard, B.D.; Gilmore, M.S. Differential Expression of Virulence-Related Genes in

Enterococcus faecalis in Response to Biological Cues in Serum and Urine. Infection

and Immunity, v. 70, p. 4344-4352, 2002.

Singh, K. V.; Coque, T. M.; Weinstock, G. M.; Murray, B. E. In vivo testing of an

Enterococcus faecalis efaA mutant and use of efaA homologs for species identication.

FEMS Immunology and Medical Microbiology, v. 21, p. 323-331, 1998.

Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, v. 6, 2015.

Soares, R.O.; Fedi, A.C.; Reiter, K.C.; Caierão, J.; Azevedo, P.A. Correlation between biofilm formation and gelE, esp, and agg genes in Enterococcus spp. clinical isolates. Virulence, v. 5, p. 634-637, 2014.

Teixeira, L.M.; Merquior, V.L.C.; Trabulsi, L.R. Enterococcus faecalis. In: Trabulsi, L.R. Alterthum, F. (Eds). Microbiologia. 5ª ed. São Paulo, Rio de Janeiro, Ribeirão Preto, Belo Horizonte: Atheneu, 2008. p. 215-219.

Thomas, V.C.; Hiromasa, Y.; Harms, N.; Thurlow, L.; Tomich, J.; Hancock, L.E. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Molecular Microbiology, v. 72, p.1022-1036, 2009.

Toĝay, S.Ö.; Keskin, A.Ç.; Açık, L.; Temiz, A. Virulence genes, antibiotic resistance and plamid profiles of Enterococcus faecalis and Enterococcus faecium from naturally fermented Turkish foods. Journal of Applied Microbiology, v. 109, p. 1084-1092, 2010.

Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penadés, J.R.; Lasa, I. The Enterococcal Surface Protein, Esp,

Documentos relacionados