• Nenhum resultado encontrado

CAPÍTULO I – CONSIDERAÇÕES GERAIS

CAPÍTULO 2 – OSMÓLITOS COMPATÍVEIS, PEROXIDAÇÃO LIPÍDICA

5. CONCLUSÕES

Prolina pode ser considerada atenuante indicador de estresse salino em plantas jovens de cana-de-açúcar submetidas ao estresse salino. A cv. IAC 87-3396 apresenta maior peroxidação lipídica sob estresse salino enquanto a cv. SP 81-3250 mostra melhor recuperação, demonstrada pela diminuição dos teores de peróxido de hidrogênio e ácido malondialdeído, além de manter o crescimento das plantas menos alterado em salinidade severa. A cv. IAC 87-3396 é mais suscetível ao estresse salino que a cv. SP 81-3250.

REFERÊNCIAS

AHMAD, R.; JU LIM, C.; KWON, S. Y. Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnology Reports, Daejeon, v. 7, p. 49–57, 2013. Disponível em: <http://dx.doi.org/10.1007/s11816-012-0266-8>

AHMED, I. M.; NADIRA, U. A.; BIBI, N.; CAO, F.; HE, X.; ZHANG, G.; WU, F. Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and

Experimental Botany, Elmsford, v. 111, p. 1-12 ,2015. Disponível em:

<http://dx.doi.org/10.1016/j.envexpbot.2014.10.003>.

BARBOSA, J. C.; MALDONADO, JÚNIOR, W. 2011. AgroEstat - Sistema para análises estatísticas de ensaios agronômicos versão 1.1.0.694. Jaboticabal: FCAV/UNESP.

BATES, L. S.; WALDREN, R. P.; TEARE, I. D. Rapid determination of free proline for water stress studies. Plant Soil, The Hague, v. 39, p. 205-207, 1973.

BENITO, B.; HARO, R.; AMTMANN, A.; CUIN, T.A.; Dreyer, I. The twins K+ and Na+ in plants. Journal of Plant Physiology, Stuttgart, v. 171, p. 723–731, 2014. Disponível em: <http://dx.doi.org/10.1016/j.jplph.2013.10.014>.

BLOISE, R. M.; MOREIRA, G. N. C. Métodos de análise de solos e calcário. Rio de Janeiro: EMBRAPA-SNLCS, 1976. 36p. (EMBRAPA-SNLCS. Boletim Técnico, 55).

CABELLO, J. V.; LODEYRO, A. F.; ZURBRIGGEN, M. D. Novel perspectives for the engeneering of abiotic stress tolerance in plants. Current Opinion in

Biotechnology, London, v. 26, p. 62-70, 2014.

CAKMAK, I.; HORST, J.H. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max).

Physiologia Plantarum, Copenhagen, v. 83, p. 463- 468, 1991.

CARDEN, D. E.; WALKER, D. J.; FLOWERS, T. J.; MILLER, A.J. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant

CARILLO, P.; MASTROLONARDO, G.; NACCA, F.; PARISI, D.; VERLOTTA, A.; FUGGI, A. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology, Victoria, v. 35, p. 412-426, 2008.

CHA-UM, S.; CHUENCHAROEN, S.; MONGKOLSIRIWATANA, C.; ASHRAF, M.; KIRDMANEE, C. Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell, Tissue and Organ Culture, Dordrecht, v. 110, p. 23-33, 2012. Disponível em: <http://dx.doi.org/10.1007/s11240- 012-0126-9>

CHEN, T. H. H.; MURATA, N. Glycinebetaine protects plants against abiotic stress: 8 mechanisms and biotechnological applications. Plant, Cell and Environment, Oxford, v. 34, p. 1-9 20, 2011.

CIA, M. C.; GUIMARÃES, A. C. R.; MEDICI, L. O.; CHABREGAS, S. M.; AZEVEDO, R. A. Antioxidant responses to water deficit by drought-tolerantand -sensitive sugarcane varieties. Annals of Applied Biology, Wellesbourne, v. 161, p. 313–324, 2012. Disponível em: <http://dx.doi.org/10.1111/j.1744-7348.2012.00575.x>.

DEINLEIN, U.; STEPHAN, A.B.; HORIE, T.; LUO, W.; XU, G.; SCHROEDER, J. I..Plant salt-tolerance mechanisms. Trends in Plant Science, Oxford, v. 6, p. 371-9, 2014. Disponível em: <http://dx.doi.org/10.1016/j.tplants.2014.02.001>.

DOLATABADIAN A.; SANAVY, S. A. M. M.; CHASHMI, N. A. The effects of foliar application of ascorbic acid (Vitamin C) on antioxidant enzymes activities, lipid peroxidation and proline accumulation of Canola (Brassica napus L.) under conditions of salt stress. Journal of Agronony Crop Science, Madison, v. 194, p. 206–213, 2008. Disponível em: <http://dx.doi.org/10.1111/j.1439- 037X.2008.00301.x>

GANDONOU, C. B.; BADA, F.; GNANCADJA, S. L.; ABRINI, J.; SKALI-SENHAJI, N. Effects of NaCl on Na+, Cl- and K+ ions accumulation intwo sugarcane (Saccharum sp.) cultivars differing intheir salt tolerance. International Journal of Plant

Physiology and Biochemistry, Ilhas Vitória, v. 3, p. 155-162, 2011. Disponível em:

GARCÍA-MORALES, S.; TREJO-TELLEZ, L. I.; GOMEZ-MERINO, F.C.; CALDANA, C.; ESPINOSA-VICTORIA, D.; HERRERA-CABRERA, E. Growth, photosynthetic activity and potassium and sodium concentration inrice plants under salt stress. Acta

Scientiarum, Maringá, v. 34, p. 317–324, 2012. Disponível em: <http://dx.doi.org/10.4025/actasciagron.v34i3.13687>

GARCÍA, M., MEDINA, E. Crecimiento y acumulación de prolina en dos genotipos decaña de azúcar sometidos a salinización con cloruro de sodio. Revista de la

Facultad de Agronomía de la Universidad del Zulia, Maracaibo, v. 20, p. 168-179,

2003.

GARCIA, M., MEDINA, E. Effect of salt stress on salt accumulation in roots and leaves of two sugarcane genotypes differing in salinity tolerance. Journal of

Tropical Agriculture, Hissar, v. 51, p. 15-22, 2013.

GAY, C.; COLLINS, J.; GEBICKI, J. M. Hydroperoxide assay with the ferric-xylenol orange complex. Analytical Biochemistry, New York, v. 273, p. 149–155, 1999. Disponível em: <http://dx.doi.org/10.1006/abio.1999.4208>.

GRIEVE, C. M.; GRATTAN, S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil, The Hague, v. 70, p. 303–307, 1983. GUERZONI, J. T. S., BELINTANI, N. G., MOREIRA, R. M. P., HOSHINO, A. A., DOMINGUES, D. S., BESPALHOKFILHO, J. C., VIEIRA, L. G. E., 2014. Stress- induced D1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum, Krakow, v. 36, p. 309–2319, 2014. Disponível em: <http://dx.doi.org/10.1007/s11738-014-1579-8>. GUPTA, B.; HUANG, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, v. 1, p. 1-18, 2014. Disponível em: <http://dx.doi.org/10.1155/2014/701596>.

HARE, P. D.; CRESS, W.A.; VAN STADEN, J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. Journal of

HASANUZZAMAN, M.; ALAM, M. M.; RAHMAN, A.; HASANUZZAMAN, M.; NAHAR, K.; FUJITA, M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt- induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research

Internatinal, Juazeiro do Norte, v. 1, p. 1-17, 2014. Disponível em:

<http://dx.doi.org/10.1155/2014/757219>.

IQBAL, N.; UMAR, S.; KHAN, N. A.; KHAN, M. I. R. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism.

Environmental and Experimental Botany, Elmsford, v. 100, p. 34–42, 2014.

JAMES, R. A.; DAVENPORT, R.; MUNNS, R. Physiological characterisation of two genes for Na+exclusion in wheat: Nax1 and Nax2. Plant Physiology, Bethesda, v. 142, p. 1537-1547, 2006. Disponível em: <http://dx.doi.org/10.1104/pp.106.086538>.

JAMES, R. A.; BLAKE, C.; ZWART, A. B.; HARE, C. R. A.; RATHJEN, A. J.; MUNNS, R. Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology, Victoria, v. 39, p. 609–618, 2012. Disponível em: <http://dx.doi.org/10.1071/FP12121>.

JULKOWSKA, M. M.; TESTERINK, C. Tuning plant signaling and growth to survive salt. Trends in Plant Science, Oxford, v. 20, n. 9, p. 586-594, 2015.

KAVIKISHORE, P. B.; SANGAM, S.; AMRUTHA, R. N.; SRILAKSHMI, P.; NAIDU, K. R.; RAO, K. R. S. S.; SREENATH, R.; REDDY, K. J.; THERIAPPAN, P.; SREENIVASALU, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants. Its implications in plant growth and abiotic stress tolerance.

Current Science, Bangalore, v. 88, n. 3, p. 424-436, 2005.

KUIJPER, J. De groei van blad schijf, blad scheede en stengel van het suikerriet.

Archief Suikerind, Nederland, v. 23, p. 528-556, 1915.

KUMAR, T.; KHAN, M. R.; JAN, S. A.; AHMAD, N.; NIAZ ALI, N.; ZIA, M. A.; ROOMI, S.; IQBAL, A.; ALI, G. M. Efficient regeneration and genetic transformation of sugarcane withAVP1 gene. American-Eurasian Journal of Agricultural &

Environmental Sciences, Dubai, v. 14, p. 165-171, 2014. Disponível em:

LIANG, X.; ZHANG, L.; NATARAJAN, S. K.; BECKER, D. F. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, New Rochelle, v. 19, p. 998– 1011, 2013.

MEDEIROS, M. J. L.; SILVA, M. M. A.; GRANJA, M. M. C.; DE SOUZA E SILVA JÚNIOR, G.; CAMARA, T.; WILLADINO, L. Effect of exogenous proline in two sugarcane genotypes grown in vitro under salt stress. Acta Biológica Colombiana, Bogota, v. 20, p. 57-63, 2015. Disponível em: <http://dx.doi.org/10.15446/abc.v20n2.42830>.

MEDEIROS, C. D.; FERREIRA-NETO, J. R. C.; OLIVEIRA, M. T.; RIVAS, R.; PANDOLFI, V.; KIDO, E. A.; BALDANI, J. I. SANTOS, M. G. Photosynthesis, antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiologiae

Plantarum, Krakow, v. 36, n. 2, p. 447-459, 2014.

MOLINARI, H. B. C.; MARUR, C. J.; DAROS, E.; DE CAMPOS, M. K. F.; DE CARVALHO, J. F. R. P.; BESPALHOK, J. C.; PEREIRA, L. F. P.; VIEIRA, L. G. E. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress.

Physiologia Plantarum, Copenhagen, v. 130, p. 218–229, 2007. Disponível em: <http://dx.doi.org/10.1111/j.1399-3054.2007.00909>.

MUNNS, R.; GILLIHAM, M. Salinity tolerance of crops – what is the cost? New

Phytologist, Cambridge, v. 208, p. 668-673, 2015.

MUNNS, R. Genes and salt tolerance: bringing them together. New Phytologist, Cambrigde, v. 167, p. 645–663, 2005. Disponível em: <http://dx.doi.org/10.1111/j.1469-8137.2005.01487.x>.

MUNNS, R. Plant Adaptations to salt and water stress: differences and commonalities. Advances in Botanical Research, New York, v. 57, p. 1-32, 2011. Disponível em: <http://dx.doi.org/10.1016/B978-0-12-387692-8.00001-1>.

MUNNS, R.; TESTER, M. Mechanism of salinity tolerance. Annual Review of Plant

Biology, Palo Alto, v. 59, p. 651-681, 2008. Disponível em:

PŁAŻEK, A.; TATRZAŃSKA, M.; MACIEJEWSKI, M.; KOŚCIELNIAK, J.; GONDEK, K.; BOJARCZUK, J.; DUBERT, F. Investigation of the salt tolerance of new Polish bread and durum wheat cultivars. Acta Physiologiae Plantarum, Krakow, v. 35, p. 2513-2523, 2013. Disponível em: <http://dx.doi.org/10.1007/s11738-013-1287-9>.

RAIJ, B. V.; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. Análise química da fertilidade de solos tropicais. In: RAIJ, B. V.; GHEYI, H. R.; BATAGLIA, O. C. Determinação da condutividade elétrica e de cátions solúveis em extratos aquosos de solos. Campinas, Instituto Agronômico, p.277-284, 2001.

RAIJ, B.; VAN, CANTARELLA, H.; QUAGGIO, J. A.; FURLANI, A. M. C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. rev. e atual. Campinas: Instituto Agronômico/Fundação IAC, 1997. 285p. (Boletim Técnico, 100).

RIVERO, R. M.; MESTRE, T. C.; MITTLER, R.; RUBIO, F.; GARCIA-SANCHEZ, F.; MARTINEZ, V. The combined effect of salinity and heat reveals a specificphysiological, biochemical and molecular response in tomato plants Plant,

Cell and Environment, Oxford, v. 37, p. 1059–1073, 2014. Disponível em: <http://dx.doi.org/10.1111/pce.12199>.

RUAN, Y. L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, Palo Alto, v. 65, p. 33-67, 2014.

SCHOLANDER, P. F.; HAMMEL, H. T.; HEMMINGSEN, E. A.; BRADSTREET, E. D.; Sap pressure in vascular plants. Science, New York, v. 148, p. 339-346, 1965.

SENGAR, K.; SENGAR, R. S.; SINGH, A. Biotechnological and genomic analysis for salinity tolerance in sugarcane. International Journal of Biotechnology and

Bioengineering Research, Baoding, v. 4, p. 407-414, 2013.

SHABALA, S.; POTTOSIN, I. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia

Plantarum, Copenhagen, v. 151, p. 257–279, 2014. Disponível em: <http://dx.doi.org/10.1111/ppl.12165>.

SIRINGAM, K.; JUNTAWONG, N.; CHA-UM, S.; KIRDMANEE, C. Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents insalt-sensitive rice (Oryza sativa L. spp. indica) root sunder iso osmotic conditions.

African Journal of Biotechnology, Bowie, v. 10, p. 1340–1346, 2011. Disponível em: <http://dx.doi.org/10.5897/AJB10.1805>

SIRINGAM, K.; JUNTAWONG, N.; CHA-UM, S.; BORIBOONKASET, T.; KIRDMANEE, C. Salt tolerance enhancement in indicarice (Oryza sativa L. spp. indica) seedlings using exogenous sucrose supplementation. Plant Omics Journal, Melbourne, v. 5, p. 52-59, 2012.

TAS, B.; BASAR, H. Effects of various salt compounds and their combinations on growth and stress indicators in maize (Zea mays L.). African Journal Agricultural

Research, Nigeria, v. 4, p. 156-161, 2009.

TURAN, M. A.; ELKARIM, A. H. A.; TABAN, N.; TABAN, S. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant.

African Journal Agricultural Research, Nigeria, v. 4, p. 893-897, 2009.

VAN HANDEL, E. Direct microdetermination of sucrose. Analytical Biochemistry, Nova York, v. 22, p. 280-283, 1968.

VERMUE, A.; PHILIPPOT, L.; MUNIER-JOLAIN, N.; HENAULT, C.; NICOLARDOT, B. Influence of integrated weed management system on N-cycling microbial communities and N2O emissions. Plant Soil, The Hague, v. 373, p. 501–514, 2013. Disponível em: <http://dx.doi.org/10.1007/s11104-013-1821-y>

KUMARI, A.; DAS, P.; PARIDA, A. K.; AGARWAL, P. K. Proteomics, metabolomics and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant

Science, Lausanne, v. 6, n. 537, 2015.

ZHANG, H.; DONG, H.; LI, W.; SUN, Y.; CHEN, S.; KONG, X. Increased glycine betaine synthesis and salinity tolerancein AhCMO transgenic cotton lines. Molecular

Breeding, Dordrecht, v. 23, p. 289–298, 2009. Disponível em:

CAPÍTULO 3 – TROCAS GASOSAS EM PLANTAS JOVENS DE CANA-DE-

Documentos relacionados