• Nenhum resultado encontrado

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM 6. CONCLUSÕES

No presente trabalho foram desenvolvidos quatro transportadores sólidos de oxigênio à base de titanatos de Ferro e óxido misto de cobre e titânio sintetizados pelo método dos precursores poliméricos. Em seguida, os transportadores de oxigênio foram caracterizados e avaliada a sua reatividade, a fim de selecionar as melhores amostras para aplicar à tecnologia de combustão por recirculação química (CLC). Diante disto, as seguintes conclusões foram pontuadas:

✓ Com a análise dos resultados, é possível constatar que o método dos precursores poliméricos foi eficiente na preparação dos titanatos de ferro e do óxido misto de cobre e titânio.

✓ As técnicas de FRX indicou que os transportadores de oxigênio a base de titanatos de ferro tem como fase ativa o óxido de ferro na forma de hematita (Fe2O3) e para o óxido misto de cobre e titânio o CuO.

✓ As análises de DRX com o refinamento Rietveld indicaram que para todos os transportadores de oxigênio à base de titanatos de ferro houve a formação do Fe2TiO5 (pseudobrokita), Fe2O3 (Hematita) e TiO2 (Rútilo) como principais fases cristalinas, mas com pequenas variações em massa das fases principais. E para o óxido misto de cobre e titânio houve a formação do óxido de cobre (CuO), óxido de titânio (TiO2) e(Ti3O5).

✓ A espectroscopia de Mossbouer revelou que a fase presente nos titanatos de ferro é a peseudobrokita e a hematita com valência em Fe+3 mesmo utilizando Fe+2 e Fe+3 nas sínteses das amostras.

✓ Com relação a análise de TPR, pode-se observar que o método de preparação dos titanatos de ferro não apresenta uma influência significativa na distribuição da fase ativa ao longo dos picos de redução, com uma pequena diferença para o TFNCl, que apresentou um quarto pico de redução.

✓ Quanto à reatividade dos óxidos mistos de cobre e titânio e dos titanatos de ferro com o metano, ambos apresentaram alta conversão do sólido durante as etapas de redução e oxidação, com elevados índices de velocidades.

✓ Pelas características estruturais e pelos testes de reatividade desses materiais, conclui-se que tanto os titanatos de ferro como o óxido misto de cobre e titânio possuem os requisitos necessários para serem utilizados nos processos de combustão por recirculação química (CLC).

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM REFERÊNCIAS

ABAD A.; MATTISSON T.; LYNGFELT A.; RYDÉN M. Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier.

Fuel. V.85, p.1174-1185. 2006.

ABAD, A. et al. Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, [s. l.], v. 85, n. 9, p. 1174–1185, 2006. ABAD, A. et al. The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel, [s. l.], 2007. a.

ABAD, Alberto et al. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy and Fuels, [s. l.], 2007. b. ABAD, Alberto et al. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science, [s. l.], v. 62, n. 1–2, p. 533–549, 2007. c. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0009250906006002>. Acesso em: 11 jul. 2019.

ABAD, Alberto et al. Kinetics of redox reactions of ilmenite for chemical-looping

combustion. Chemical Engineering Science, [s. l.], v. 66, n. 4, p. 689–702, 2011. Disponível em: <https://www.sciencedirect.com/science/article/pii/S000925091000672X>. Acesso em: 27 jun. 2019.

ABANADES, J. C. et al. Emerging CO2capture systems. International Journal of

Greenhouse Gas Control, [s. l.], v. 40, p. 126–166, 2015.

ADÁNEZ-RUBIO, I. et al. Biomass combustion with CO 2 capture by chemical looping with oxygen uncoupling (CLOU). Fuel Processing Technology, [s. l.], 2014. a.

ADÁNEZ-RUBIO, I. et al. Kinetic analysis of a Cu-based oxygen carrier: Relevance of temperature and oxygen partial pressure on reduction and oxidation reactions rates in Chemical Looping with Oxygen Uncoupling (CLOU). Chemical Engineering Journal, [s. l.], 2014. b.

ADÁNEZ, J. et al. Selection of oxygen carriers for chemical-looping combustion. Energy

and Fuels, [s. l.], 2004.

ADÁNEZ, J. et al. Use of Chemical-Looping processes for coal combustion with CO2 capture. In: ENERGY PROCEDIA 2013, Anais... [s.l: s.n.]

ADÁNEZ, J. et al. Chemical looping combustion of solid fuels. Progress in Energy and

Combustion Science, [s. l.], v. 65, p. 6–66, 2018. a.

ADÁNEZ, J. et al. Chemical looping combustion of solid fuels. Progress in Energy and

Combustion Science, [s. l.], v. 65, p. 6–66, 2018. b. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0360128517300199#bib0001>. Acesso em: 4 jul. 2019.

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM

ADANEZ, Juan et al. Progress in chemical-looping combustion and reforming

technologiesProgress in Energy and Combustion Science, 2012. a.

ADANEZ, Juan et al. Progress in Chemical-Looping Combustion and Reforming

technologies. Progress in Energy and Combustion Science, [s. l.], v. 38, n. 2, p. 215–282, 2012. b. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0360128511000505>. Acesso em: 11 jul. 2019.

ADÁNEZ, Juan et al. Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy and Fuels, [s. l.], 2010.

ADÁNEZ, Juan et al. Progress in Combustion and Reforming Technologies . A review . [s. l.], v. 38, p. 215–282, 2012.

AGENCY, International Energy. CO2 Emissions from Fuel Combustion 2017 -

HighlightsInternational Energy Agency. [s.l: s.n.].

ANDACHE, Mahmood; NEMATI KHARAT, Ali; REZAEI, Mehran. Preparation of mesoporous nanocrystalline CuO–ZnO–Al2O3 catalysts for the H2 purification using catalytic preferential oxidation of CO (CO-PROX). International Journal of Hydrogen

Energy, [s. l.], 2019.

AUGUSTE, Manon et al. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Science of The Total Environment, [s. l.], v. 670, p. 129–137, 2019. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0048969719311155>. Acesso em: 11 jul. 2019.

BERGERHOFF, G.; BROWN, I. D. Inorganic Crystal Structure Database. Acta

Crystallographica Section A Foundations of Crystallography, [s. l.], 1981.

BRITO, MARINA MENEZES DE. Redução catalítica seletiva de óxido nítrico por amônia sobre catalisadores de ferro e titânio. [s. l.], p. 1–75, 2015.

CABELLO, Arturo et al. Effect of Operating Conditions and H 2 S Presence on the

Performance of CaMg 0.1 Mn 0.9 O 3−δ Perovskite Material in Chemical Looping Combustion (CLC). Energy & Fuels, [s. l.], 2014.

CELAYA, Javier. Combustión de CH4 en lecho fluidizado con separación inherente de CO2 por medio de transportadores sólidos de oxígeno de base cobre. M.Sc, [s. l.], p. 1–237, 2007. COSTA. Transportadores de oxigênio à base de manganes para utilização em processos

de combustão por recirculação química. 2016. UFRN, [s. l.], 2016. Disponível em:

<https://repositorio.ufrn.br/jspui/bitstream/123456789/22510/1/TransportadoresOxigênioBase _Costa_2016.pdf>

COSTA, T. R. et al. Promising Impregnated Mn-based Oxygen Carriers for Chemical Looping Combustion of Gaseous Fuels. Energy Procedia, [s. l.], v. 114, n. November 2016, p. 334–343, 2017. Disponível em: <http://dx.doi.org/10.1016/j.egypro.2017.03.1906>

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM Fuel Processing Technology, [s. l.], 2012.

CUADRAT, Ana et al. Ilmenite as oxygen carrier in a Chemical Looping Combustion system with coal. In: ENERGY PROCEDIA 2011a, Anais... [s.l: s.n.]

CUADRAT, Ana et al. Ilmenite as oxygen carrier in a chemical looping combustion system with coal. Energy Procedia, [s. l.], v. 4, p. 362–369, 2011. b. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S1876610211000658>. Acesso em: 1 jul. 2019.

DONSKOI, E.; MCELWAIN, D. L. S.; WIBBERLEY, L. J. Estimation and modeling of parameters for direct reduction in iron ore/coal composites: Part II. Kinetic parameters.

Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, [s. l.], 2003.

DR. BOLLAND, Olva. IPCC 2005 -Carbon dioxide captureMIT Carbon Sequestration

Forum X. [s.l: s.n.].

EDELMANNOVÁ, Miroslava et al. Photocatalytic hydrogenation and reduction of CO2 over CuO/ TiO2 photocatalysts. Applied Surface Science, [s. l.], v. 454, p. 313–318, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0169433218314247>. Acesso em: 7 jun. 2019.

EIA. International Energy Outlook 2017 Overview. U.S. Energy Information

Administration, [s. l.], 2017.

FANG, He; HAIBIN, Li; ZENGLI, Zhao. Advancements in development of chemical-looping combustion: A review. International Journal of Chemical Engineering, [s. l.], v. 2009, n. ii, 2009.

FIGUEROA, José D. et al. Advances in CO2 capture technology-The U.S. Department of

Energy’s Carbon Sequestration ProgramInternational Journal of Greenhouse Gas Control, 2008.

GARCÍA-LABIANO, F. et al. Reduction and Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion. Industrial &

Engineering Chemistry Research, [s. l.], 2004.

GAUTHIER, T. et al. CLC, a promising concept with challenging development

issuesPowder Technology, 2017.

GAYÁN, Pilar et al. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, [s. l.], 2012.

HUNGE, Y. M.; YADAV, A. A.; MATHE, V. L. Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chemical Physics Letters, [s. l.], v. 731, p. 136582, 2019. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0009261419305536>. Acesso em: 11 jul. 2019.

IEA. INTERNATIONAL ENERGY statisticsCO2 EMISSIONS FROM FUEL

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM

IEA. Renewable Energy Outlook 2013World Energy Outlook 2013. [s.l: s.n.].

IEA. WEO 2017 Chapter 1: Introduction and scope. IEA: World Energy Outlook, [s. l.], p. 33–61, 2017. a. Disponível em:

<https://www.iea.org/weo2017/%0Ahttp://www.iea.org/media/weowebsite/2017/Chap1_WE O2017.pdf>

IEA. Global Energy and CO2 Status Report 2017. Global Energy and CO2 Status Report

2017, [s. l.], n. March, 2017. b. Disponível em:

<https://www.iea.org/publications/freepublications/publication/GECO2017.pdf>

INTERNATIONAL ENERGY AGENCY. Global Energy and CO2 Status Report. The latest trends in energy and emissions in 2018. World Energy Outlook, [s. l.], 2019.

IPCC. Climate Change 2014: Summary for Policymakers. Climate Change 2014: Impacts,

Adaptation and Vulnerability - Contributions of the Working Group II to the Fifth Assessment Report, [s. l.], 2014.

IPCC. IPCC Special Report 1.5 - Summary for Policymakers. In: Global warming of 1.5°C.

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of

strengthening the global response to the threat of climate change,. [s.l: s.n.].

ISHIDA, M.; ZHENG, D.; AKEHATA, T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Energy, [s. l.], 1987.

ISHIDA, Masaru; JIN, Hongguang. A Novel Combustor Based on Chemical-Looping Reactions and Its Reaction Kinetics. Journal of Chemical Engineering of Japan, [s. l.], 1994.

JERNDAL, E.; MATTISSON, T.; LYNGFELT, A. Thermal Analysis of Chemical-Looping Combustion. Chemical Engineering Research and Design, [s. l.], v. 84, n. 9, p. 795–806, 2006. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0263876206729604>. Acesso em: 11 jul. 2019.

KHAKPOOR, Nima et al. Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion. Energy, [s. l.], v. 169, p. 329–337, 2019. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0360544218324228#fd2>. Acesso em: 3 jul. 2019.

KSEPKO, Ewelina; BABIŃSKI, Piotr; NALBANDIAN, Lori. The redox reaction kinetics of Sinai ore for chemical looping combustion applications. Applied Energy, [s. l.], v. 190, p. 1258–1274, 2017. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S030626191730034X>. Acesso em: 11 jul. 2019.

KSEPKO, Ewelina; SCIAZKO, Marek; BABINSKI, Piotr. Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers. Applied Energy, [s. l.], v. 115, p. 374–383, 2014. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0306261913009227>. Acesso em: 8 maio. 2019.

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM

KU, Young et al. Mechanism of Fe2TiO5 as oxygen carrier for chemical looping process and evaluation for hydrogen generation. Ceramics International, [s. l.], v. 40, n. 3, p. 4599– 4605, 2014. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0272884213010973#bib14>. Acesso em: 11 jul. 2019.

LEION, Henrik et al. The use of ilmenite as an oxygen carrier in chemical-looping combustion. Chemical Engineering Research and Design, [s. l.], 2008.

LEION, Henrik; MATTISSON, Tobias; LYNGFELT, Anders. Use of ores and industrial products as oxygen carriers in chemical-looping combustion. Energy and Fuels, [s. l.], 2009. LEWIS, Warren K.; GILLILAND, Edwin R.; SWEENEY, M. P. Gasification of carbon. Metal oxides in a fluidized powder bed. Chemical Engineering Progress, [s. l.], 1951. LIU, Yu Cheng et al. Feasibility study of Fe-Ti based oxygen carriers for chemical looping combustion. Energy Procedia, [s. l.], v. 61, p. 1398–1401, 2014. Disponível em:

<http://dx.doi.org/10.1016/j.egypro.2014.12.135>

LYNGFELT, Anders et al. 11,000 h of chemical-looping combustion operation—Where

are we and where do we want to go?International Journal of Greenhouse Gas Control,

2019. a.

LYNGFELT, Anders et al. 11,000 h of chemical-looping combustion operation—Where are we and where do we want to go? International Journal of Greenhouse Gas Control, [s. l.], v. 88, p. 38–56, 2019. b. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S1750583619301367#bib0035>. Acesso em: 16 ago. 2019.

M.P. PECHINI. Method of Preparing Lead and Alkaline Earth Titanates and 1967. MARRERO-JEREZ, J. et al. CGO20–CuO composites synthesized by the combustion method and characterized by H2-TPR. Ceramics International, [s. l.], v. 41, n. 9, p. 10904– 10909, 2015. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S027288421500961X#bib24>. Acesso em: 18 out. 2019.

MATTISSON, Tobias; LYNGFELT, Anders. Applications of chemical-looping combustion with capture of CO 2. Control, [s. l.], 2001.

MATTISSON, Tobias; LYNGFELT, Anders; LEION, Henrik. Chemical-looping with oxygen uncoupling for combustion of solid fuels. International Journal of Greenhouse Gas

Control, [s. l.], 2009.

MENDIARA, T. et al. Biomass combustion in a CLC system using an iron ore as an oxygen carrier. International Journal of Greenhouse Gas Control, [s. l.], v. 19, p. 322–330, 2013. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1750583613003459>. Acesso em: 18 jul. 2019.

MENDIARA, T. et al. Reduction and oxidation kinetics of Tierga iron ore for Chemical Looping Combustion with diverse fuels. Chemical Engineering Journal, [s. l.], v. 359, p. 37–46, 2019. Disponível em:

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM

<https://www.sciencedirect.com/science/article/pii/S1385894718322563#ab005>. Acesso em: 18 jul. 2019.

OLIVEIRA, Luiz C. A.; FABRIS, José D.; PEREIRA, Márcio C. Óxidos de ferro e suas aplicações em processos catalíticos: Uma revisão. Química Nova, [s. l.], v. 36, n. 1, p. 123– 130, 2013.

PÉREZ-VEGA, R. et al. Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling.

Applied Energy, [s. l.], v. 237, p. 822–835, 2019. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0306261918318828#!>. Acesso em: 11 jul. 2019.

RIETVELD, H. M. A profile refinement method for nuclear and magnetic structures. Journal

of Applied Crystallography, [s. l.], 1969.

SANTOS, Vera P. et al. High-temperature Fischer-Tropsch synthesis over FeTi mixed oxide model catalysts: Tailoring activity and stability by varying the Ti/Fe ratio. Applied Catalysis

A: General, [s. l.], v. 533, p. 38–48, 2017. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0926860X17300029>. Acesso em: 1 jul. 2019.

SEDOR, Kelly E.; HOSSAIN, Mohammad M.; DE LASA, Hugo I. Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC). Chemical Engineering

Science, [s. l.], 2008.

SEITZ, Guillaume et al. Near the Ferric Pseudobrookite Composition (Fe 2 TiO 5 ).

Inorganic Chemistry, [s. l.], v. 55, n. 5, p. 2499–2507, 2016.

SIERRA-PEREIRA, Cristiane Alves; URQUIETA-GONZÁLEZ, Ernesto Antonio. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel, [s. l.], v. 118, p. 137–147, 2014. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0016236113009952>. Acesso em: 13 maio. 2019.

STEM, Nair et al. Formation of Ti(III) and Ti(IV) states in Ti3O5 nano- and microfibers obtained from hydrothermal annealing of C-doped TiO2 on Si. Thin Solid Films, [s. l.], v. 558, p. 67–74, 2014. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0040609014002120#bb0045>. Acesso em: 29 jul. 2019.

SYMONDS, Robert T. et al. Ilmenite ore as an oxygen carrier for pressurized chemical looping reforming: Characterization and process simulation. International Journal of

Greenhouse Gas Control, [s. l.], v. 81, p. 240–258, 2019. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S1750583618305693#bib0305>. Acesso em: 7 maio. 2019.

TIAN, Xin; WEI, Yijie; ZHAO, Haibo. Using a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping air separation in a paralleled fluidized bed reactor.

Chemical Engineering Journal, [s. l.], 2018. a.

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM

oxygen carrier for chemical looping air separation in a paralleled fluidized bed reactor.

Chemical Engineering Journal, [s. l.], v. 334, p. 611–618, 2018. b. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S1385894717317990>. Acesso em: 11 jul. 2019.

TIJANI, Mansour Mohammedramadan; AQSHA, Aqsha; MAHINPEY, Nader. X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications. Data in

Brief, [s. l.], 2018.

UNFCCC. Status of Ratification of the Kyoto Protocol. Kyoto Protocol, [s. l.], 2014. VENKATACHALAM, P.; KALAIVANI, T.; KRISHNAKUMAR, N. Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Optical

Materials, [s. l.], v. 94, p. 1–8, 2019. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0925346719303386>. Acesso em: 11 jul. 2019.

XU, Zuwei et al. Self-assembly template combustion synthesis of a core–shell CuO@TiO2– Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes.

Combustion and Flame, [s. l.], v. 162, n. 8, p. 3030–3045, 2015. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0010218015001443>. Acesso em: 13 ago. 2019.

YAMAGUCHI, Doki; TANG, Liangguang; CHIANG, Ken. Pre-oxidation of natural ilmenite for use as an oxygen carrier in the cyclic methane–steam redox process for hydrogen

production. Chemical Engineering Journal, [s. l.], 2017. a.

YAMAGUCHI, Doki; TANG, Liangguang; CHIANG, Ken. Pre-oxidation of natural ilmenite for use as an oxygen carrier in the cyclic methane–steam redox process for hydrogen

production. Chemical Engineering Journal, [s. l.], v. 322, p. 632–645, 2017. b. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1385894717305430#f0015>. Acesso em: 1 jul. 2019.

YU, Zhongliang et al. Iron-based oxygen carriers in chemical looping conversions: A review.

Carbon Resources Conversion, [s. l.], v. 2, n. 1, p. 23–34, 2019. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S2588913318300279#b0025>. Acesso em: 18 jul. 2019.

ZAFAR, Q. et al. Reduction and oxidation kinetics of Mn<inf>3</inf>O<inf>4</inf>/Mg-ZrO<inf>2</inf> oxygen carrier particles for chemical-looping combustion. Chemical

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM ANEXO

- DRX refinados

Titanatos de ferro e óxido misto de cobre e titânio calcinados a 900 °C

Fonte: Próprio autor

Titanatos de ferro e titanatos de cobre reduzidos com CH4

Dener Albuquerque, Setembro/2019 Tese de Doutorado – PPGCEM

Titanatos de ferro e titanatos de cobre regenerados pós TGA

Documentos relacionados