• Nenhum resultado encontrado

6. CONCLUSÃO

6.1 PERSPECTIVAS FUTURAS

Considerando os resultados encontrados, pretende-se avaliar outras vias neuroinflamatórias e o seu envolvimento no comportamento doentio, a partir do uso da SBS. Pretendemos também avaliar a associação com o dano inflamatório devido a sepse em órgãos periféricos.

Também se propõe a aplicação da escala de comportamento doentio em outros modelos experimentais de doenças inflamatórias.

REFERÊNCIAS

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801–8.

2. Hutchins NA, Unsinger J, Hotchkiss RS, Ayala A. The new normal: immuno- modulatory agents against sepsis immune suppression. Trends Moleciular Med. 2014;20(4):224–33.

3. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. 4. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J,

et al. The surviving sepsis campaign: Results of an international guideline- based performance improvement program targeting severe sepsis. Intensive Care Med. 2010;36(2):222–31.

5. Sogayar AMC, Machado FR, Rea-Neto A, Dornas A, Grion CMC, Lobo SM a, et al. A Multicentre, Prospective Study to Evaluate Costs of Septic Patients in Brazilian Intensive Care Units. Pharmacoeconomics. 2008;26(5):425–34. 6. Silva E, Dalfior Junior L, Fernandes HDS, Moreno R, Vincent J-L. Prevalência

e desfechos clínicos de infecções em UTIs brasileiras: subanálise do estudo EPIC II. Rev Bras Ter Intensiva. 2012;24(2):143–50.

7. Pytel P, Alexander JJ. Pathogenesis of septic encephalopathy. Curr Opin Neurol. 2009 Jun;22(3):283–7.

8. Basler T, Meier-Hellmann A, Bredle D, Reinhart K. Amino acid imbalance early in septic encephalopathy. Intensive Care Med. 2002;28(3):293–8.

9. Dantzer R. Cytokine, Sickness Behavior, and Depression. Neurol Clin. 2006;24(3):441–60.

10. Johansson P, Svensson E, Alehagen U, Dahlström U, Jaarsma T, Broström A. Sleep disordered breathing, hypoxia and inflammation: associations with sickness behaviour in community dwelling elderly with and without cardiovascular disease. Sleep Breath. 2014 May 25;19(1):263–71. 11. Szentirmai É, Krueger JM. Sickness behaviour after lipopolysaccharide

treatment in ghrelin deficient mice. Brain Behav Immun. 2014 Feb;36:200–6. 12. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment

and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–94.

13. Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of

neurodegeneration. Front Cell Neurosci. 2015;9(February):28.

14. Michels M, Danielski LG, Dal-Pizzol F, Petronilho F. Neuroinflammation: microglial activation during sepsis. Curr Neurovasc Res. 2014 Jan;11(3):262– 70.

15. Moraes CA, Santos G, Spohr TCLDSE, D’Avila JC, Lima FRS, Benjamim CF, et al. Activated Microglia-Induced Deficits in Excitatory Synapses Through IL- 1β: Implications for Cognitive Impairment in Sepsis. Mol Neurobiol. 2015 Sep 27;52:653–63.

16. Michels M, Vieira AS, Vuolo F, Zapelini HG, Mendonça B, Mina F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun. 2015;43:54–9.

17. Cohen J, Vincent J-L, Adhikari NKJ, Machado FR, Angus DC, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15(5):581– 614.

18. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003 Apr 28;29(4):530–8.

19. Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: Time for change. Lancet. 2013;381:774–5.

20. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. N Engl J Med. 2013 Aug 29;369(9):840–51.

21. Duran-Bedolla J, Montes de Oca-Sandoval MA, Saldaña-Navor V, Villalobos- Silva JA, Rodriguez MC, Rivas-Arancibia S. Sepsis, mitochondrial failure and multiple organ dysfunction. Clin Investig Med Médecine Clin Exp.

2014;37(2):E58-69.

22. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):775–87.

23. Gouel-Chéron A, Allaouchiche B, Guignant C, Davin F, Floccard B, Monneret G. Early interleukin-6 and slope of monocyte human leukocyte antigen-DR: A powerful association to predict the development of sepsis after major trauma. PLoS One. 2012;7(3):e33095.

24. Instituto Latino Americano de Sepse. Sepse: um problema de saúde pública. Brasília; 2015. 90 p.

25. Cohen J, Cristofaro P, Carlet J, Opal S. New method of classifying infections in critically ill patients. Crit Care Med. 2004;32(7):1510–26.

26. Instituto Latino Americano de Sepse. Campanha sobrevivendo à Sepse - Relatório Nacional. 2014.

27. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5(1):4–11.

28. Zarbock A, Gomez H, Kellum J a. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. 2014;20(6):588–95.

29. Morris MC, Gilliam E a, Li L. Innate immune programing by endotoxin and its pathological consequences. 2015;5(January):1–8.

30. Manček-Keber M, Jerala R. Postulates for validating TLR4 agonists. Eur J Immunol. 2015;45(2):356–70.

complexes. Exp Mol Med. 2013;45(12):e66.

32. Mele T, Madrenas J. TLR2 signalling: At the crossroads of commensalism, invasive infections and toxic shock syndrome by Staphylococcus aureus. Int J Biochem Cell Biol. 2010;42(7):1066–71.

33. Manukyan MC, Weil BR, Wang Y, Abarbanell AM, Herrmann JL, Poynter J a, et al. The phosphoinositide-3 kinase survival signaling mechanism in sepsis. Shock. 2010;34(5):442–9.

34. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9 Suppl 4:S13–9.

35. Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant. 2015 Feb;30(2):169–77.

36. Vincent J-L, Korkut HA. Defining sepsis. Clin Chest Med. 2008 Dec;29(4):585– 90, vii.

37. Deutschman CS, Tracey KJ. Sepsis: Current dogma and new perspectives. Immunity. 2014;40(4):463–75.

38. Sharshar T, Bozza F, Chrétien F. Neuropathological processes in sepsis. Lancet Neurol. 2014;13(6):534–6.

39. Hosokawa K, Gaspard N, Su F, Oddo M, Vincent J-L, Taccone FS. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: a systematic review. Crit Care. 2014;18(6):1–12.

40. Tsuruta R, Oda Y. A clinical perspective of sepsis-associated delirium. J Intensive Care. 2016 Dec 23;4(18):1–7.

41. Sonneville R, Verdonk F, Rauturier C, Klein IF, Wolff M, Annane D, et al. Understanding brain dysfunction in sepsis. Ann Intensive Care. 2013;3(1):15. 42. Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani

AK, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med. 2010;38(7):1513–20.

43. Tuon L, Comim CM, Petronilho F, Barichello T, Izquierdo I, Quevedo J, et al. Time-dependent behavioral recovery after sepsis in rats. Intensive Care Med. 2008;34(9):1724–31.

44. Barichello T, Martins MR, Reinke A, Constantino LS, Machado RA, Valvassori SS, et al. Behavioral deficits in sepsis-surviving rats induced by cecal ligation and perforation. Brazilian J Med Biol Res. 2007;40:831–7.

45. Gheorghita V, Barbu AE, Gheorghiu ML, Caruntu FA. Endocrine dysfunction in sepsis: A beneficial or deleterious host response? Germs. 2015;5(1):17–25. 46. Licinio J, Wong ML. Interleukin 1 receptor antagonist gene expression in rat

pituitary in the systemic inflammatory response syndrome: pathophysiological implications. Mol Psychiatry. 1997 Mar;2(2):99–103.

47. Dinarello C a. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res. 2004;10(4):201–22.

48. Gordon SM, Jackson JC, Ely EW, Burger C, Hopkins RO. Clinical identification of cognitive impairment in ICU survivors: Insights for intensivists. Intensive Care Med. 2004;30(11):1997–2008.

2009;64(1):61–78.

50. Pavlov V a, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A. 2006;103(13):5219– 23.

51. van Gool W a., van de Beek D, Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010;375:773–5. 52. Dal-Pizzol F, Rojas HA, Dos Santos EM, Vuolo F, Constantino L, Feier G, et al.

Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol. 2013 Aug 12;48(1):62–70.

53. Hopkins RO, Suchyta MR, Snow GL, Jephson A, Weaver LK, Orme JF. Blood glucose dysregulation and cognitive outcome in ARDS survivors. Brain Inj. 2010 Jan;24(12):1478–84.

54. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford University Press; 2007. 851 p.

55. Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal. 2014;20(6):1000–37.

56. Görlach A, Dimova EY, Petry A, Martínez-Ruiz A, Hernansanz-Agustín P, Rolo AP, et al. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015 Dec;6:372–85.

57. Hernandes MS, D ’avila JC, Trevelin SC, Reis PA, Kinjo ER, Lopes LR, et al. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation. 2014;11(1):1–12.

58. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007 Jan;87(1):245–313. 59. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J.

2009;417(1):1–13.

60. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–72.

61. Cobb CA, Cole MP. Neurobiology of Disease Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis. 2015;84:4–21.

62. Exline MC, Crouser ED. Mitochondrial Mechanisms of Sepsis-Induced Organ Failure. Front Biosci. 2008;13:5030–41.

63. Bozza F a, D’Avila JC, Ritter C, Sonneville R, Sharshar T, Dal-Pizzol F. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the

pathophysiology of septic encephalopathy. Shock. 2013;39 Suppl 1(7):10–6. 64. Victor VM, Rocha M, De La Fuente M. Immune cells: Free radicals and

antioxidants in sepsis. Int Immunopharmacol. 2004;4(3):327–47.

65. Vieira A, Michels M, Florentino D, Lauriano AA, Danielski LG, Fortunato JJ, et al. Increased on oxidative brain injury in the diabetic rats following sepsis. Synapse. 2014;68(9):410–8.

66. Wang Y, Lawson M a., Kelley KW, Dantzer R. Primary murine microglia are resistant to nitric oxide inhibition of indoleamine 2,3-dioxygenase. Brain Behav

Immun. 2010;24(8):1249–53.

67. Yadav UCS, Nigam D. Free Radicals in Human Health and Disease. 2015. 119-129 p.

68. Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat. 2005;30(2–3):144–57.

69. Cassol-Jr OJ, Comim CM, Silva BR, Hermani F V., Constantino LS, Felisberto F, et al. Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res. 2010;1348:128–38.

70. Cassol-Jr OJ, Rezin GT, Petronilho FC, Scaini G, Gonçalves CL, Ferreira GK, et al. Effects of N-acetylcysteine/deferoxamine, taurine and RC-3095 on respiratory chain complexes and creatine kinase activities in rat brain after sepsis. Neurochem Res. 2010;35(4):515–21.

71. Comim CM, Cassol-Jr OJ, Constantino LS, Felisberto F, Petronilho F, Rezin GT, et al. Alterations in inflammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats. Neurochem Res. 2011;36(2):304–11.

72. Schwalm MT, Pasquali M, Miguel SP, Dos Santos JP a, Vuolo F, Comim CM, et al. Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol. 2014;49(1):380–5.

73. Liu L, Xie K, Chen H, Dong X. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroin fl ammation , oxidative stress and neuronal apoptosis. Brain Res. 2014;1589:78–92.

74. Vieira GDD, Sousa CM De. Aspectos celulares e fisiológicos da Barreira Hematoencefálica. J Heal Biol Sci. 2013;1(4):166.

75. Candelario-Jalil E, Thompson J, Taheri S, Grossetete M, Adair JC, Edmonds E, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke. 2011;42(5):1345–50. 76. Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G. Multifaceted role of

matrix metalloproteinases (MMPs). Front Mol Biosci. 2015;2(May):1–5. 77. Banks WA, Erickson MA. The blood-brain barrier and immune function and

dysfunction. Neurobiol Dis. 2010;37(1):26–32.

78. Comim CM, Vilela MC, Constantino LS, Petronilho F, Vuolo F, Lacerda-

Queiroz N, et al. Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive Care Med. 2011;37(4):711–8.

79. Biesmans S, Meert TF, Bouwknecht J a., Acton PD, Davoodi N, De Haes P, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm. 2013;2013.

80. Biff D, Petronilho F, Constantino L, Vuolo F, Zamora-Berridi GJ, Dall’Igna DM, et al. Correlation of acute phase inflammatory and oxidative markers with long- term cognitive impairment in sepsis survivors rats. Shock. 2013;40(1):45–8. 81. Granger JI, Ratti P-L, Datta SC, Raymond RM, Opp MR. Sepsis-induced

social behavior and cytokines in brain. Psychoneuroendocrinology. 2013;38(7):1047–57.

82. Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is

associated with exaggerated induction of both pro-inflammatory IL-1β and anti- inflammatory IL-10 cytokines. Brain Behav Immun. 2009;23(3):309–17.

83. Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA,

Schoemaker RG. Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem. 2015;118:74–9. 84. Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, et al.

Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage.

2012;63(1):232–9.

85. Imamura Y, Wang H, Matsumoto N, Muroya T, Shimazaki J, Ogura H, et al. Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience. 2011;187:63–9.

86. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol.

2010;68(3):360–8.

87. Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol.

2007;204(2):733–40.

88. Weberpals M, Hermes M, Hermann S, Kummer MP, Terwel D, Semmler A, et al. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci. 2009;29(45):14177–84.

89. Semmler A, Widmann CN, Okulla T, Urbach H, Kaiser M, Widman G, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry. 2013 Jan;84(1):62–9.

90. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: A review of the interactions between inflammation and mood disorders. Prog Neuro-

Psychopharmacology Biol Psychiatry. 2014;53:23–34.

91. Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH,

Woldeyohannes HO, et al. Novel therapeutic targets in depression: Minocycline as a candidate treatment. Behav Brain Res. 2012;235(2):302–17.

92. Monte AS, de Souza GC, McIntyre RS, Soczynska JK, Dos Santos JV,

Cordeiro RC, et al. Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: Possible involvement of antioxidant and nitrergic pathways. J Psychopharmacol. 2013;27(11):1032–43.

93. Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: An open-label study. Prog Neuro-Psychopharmacology Biol Psychiatry. 2012;37(2):222–6.

94. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al.

Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:15.

95. Marsland AL, Gianaros PJ, Kuan DCH, Sheu LK, Krajina K, Manuck SB. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.

96. Michels M, Steckert A V, Quevedo J, Barichello T, Dal-pizzol F. Mechanisms of long-term cognitive dysfunction of sepsis : from blood-borne leukocytes to glial cells. Intensive Care Med Exp. 2015;3(30):1–13.

97. Hsing CH, Hung SK, Chen YC, Wei TS, Sun DP, Wang JJ, et al. Histone Deacetylase Inhibitor Trichostatin: A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction. Mediators Inflamm. 2015;2015:163140.

98. Buccafusco JJ. Methods of behavior analysis in neuroscience. 2nd ed. Buccafusco JJ, editor. Boca Raton. Boca Raton/FL: CRC Press/Taylor & Francis; 2009. 329 p.

99. Monje ML, Toda H, Palmer TD. Inflammatory Blockade Restores Adult Hippocampal Neurogenesis. Science (80- ). 2003;302:1760–5.

100. Soares AT, Andreazza AC, Rej S, Rajji TK, Gildengers AG, Lafer B, et al. Decreased Brain-Derived Neurotrophic Factor in Older Adults with Bipolar Disorder. Am J Geriatr Psychiatry. 2016;24(8):596–601.

101. Goldstein BI, Collinger KA, Lotrich F, Marsland AL, Gill M-K, Axelson DA, et al. Preliminary Findings Regarding Proinflammatory Markers and Brain-Derived Neurotrophic Factor Among Adolescents with Bipolar Spectrum Disorders. J Child Adolesc Psychopharmacol. 2011 Oct;21(5):479–84.

102. Comim CM, Cassol-Jr OJ, Constantino LC, Petronilho F, Constantino LS, Stertz L, et al. Depressive-like parameters in sepsis survivor rats. Neurotox Res. 2010;17(3):279–86.

103. Comim CM, Constantino LS, Petronilho F, Quevedo J, Dal-Pizzol F. Aversive memory in sepsis survivor rats. J Neural Transm. 2011;118(2):213–7.

104. Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12(2):123–37.

105. Kent S, Bluthé R-M, Kelley KW, Dantzer R. Sickness behavior as a new target for drug development. Trends Pharmacol Sci. 1992;13:24–8.

106. Maes M, Berk M, Goehler L, Song C, Anderson G, Galecki P, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10(1):66.

107. Godbout JP, Chen J, Abraham J, Richwine a F, Berg BM, Kelley KW, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J.

2005;19(10):1329–31.

108. Cunningham C, Maclullich AMJ. At the extreme end of the

psychoneuroimmunological spectrum: Delirium as a maladaptive sickness behaviour response. Brain Behav Immun. 2013 Feb;28:1–13.

109. Johnson RW. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet Immunol Immunopathol. 2002;87(3–4):443–50. 110. Poon DCH, Ho YS, Chiu K, Wong HL, Chang RCC. Sickness: From the focus

neurons. Neurosci Biobehav Rev. 2015;57:30–45.

111. Dantzer R, Connor JCO, Freund GG, Johnson RW, Kelley KW. From

inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

112. Kelley KW, Bluthé RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, et al. Cytokine-induced sickness behavior. Brain Behav Immun. 2003;17(1 SUPPL.):112–8.

113. Poon DCH, Ho YS, Chiu K, Chang RCC. Cytokines: How important are they in mediating sickness? Neurosci Biobehav Rev. 2013;37(1):1–10.

114. Kluger MJ, Kozak W, Conn C a, Leon LR, Soszynski D. Role of fever in disease. Ann N Y Acad Sci. 1998;856:224–33.

115. Hart BL. Beyond Fever: Comparative Perspectives on Sickness Behavior. Encycl Anim Behav. 2010;(2010):205–10.

116. Leon LR, White AA, Kluger MJ. Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice. Am J Physiol. 1998;275:269–77.

117. Ebong S, Call D, Nemzek J, Bolgos G, Newcomb D, Remick D.

Immunopathologic alterations in murine models of sepsis of increasing severity. Infect Immun. 1999;67(12):6603–10.

118. Silveira RC, Procianoy RS. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy. J Pediatr (Rio J). 2015;91(6):S78–83.

119. Gourine A V, Rudolph K, Tesfaigzi J, Kluger MJ, Alexander V, Rudolph K, et al. Role of hypothalamic interleukin-1b in fever induced by cecal ligation and puncture in rats. Am J Physiol. 1998;754–61.

120. Harden LM, Plessis ID, Poole S, Laburn HP. Interleukin (IL)-6 and IL-1β act synergistically within the brain to induce sickness behavior and fever in rats. Brain Behav Immun. 2008;22(6):838–49.

121. Nardi GM, Bet AC, Sordi R, Fernandes D, Assreuy J. Opioid analgesics in experimental sepsis: Effects on physiological, biochemical, and haemodynamic parameters. Fundam Clin Pharmacol. 2013;27(4):347–53.

122. Stare J, Siami S, Trudel E, Prager-Khoutorsky M, Sharshar T, Bourque CW. Effects of Peritoneal Sepsis on Rat Central Osmoregulatory Neurons Mediating Thirst and Vasopressin Release. J Neurosci. 2015;35(35):12188–97.

123. Siami S, Polito A, Porcher R, Hissem T, Blanchard A, Boucly C, et al. Thirst Perception and Osmoregulation of Vasopressin Secretion Are Altered During Recovery From Septic Shock. Romanovsky AA, editor. PLoS One. 2013 Nov 6;8(11):e80190.

124. Michalaki M, Margeli T, Tsekouras A, Gogos CH, Vagenakis AG,

Kyriazopoulou V. Hypothalamic-pituitary-adrenal axis response to the severity of illness in non-critically ill patients: Does relative corticosteroid insufficiency exist? Eur J Endocrinol. 2010;162(2):341–7.

125. Cassol-Jr OJ, Comim CM, Petronilho F, Constantino LS, Streck EL, Quevedo J, et al. Low dose dexamethasone reverses depressive-like parameters and memory impairment in rats submitted to sepsis. Neurosci Lett.

126. McCusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(Pt 1):84–98.

127. Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation.

2014;11(1):151.

128. Munster BC van, Aronica E, Zwinderman AH, Eikelenboom P, Cunningham C, Rooij SEJA de. Neuroinflammation in delirium: a postmortem case-control study. Rejuvenation Res. 2011 Dec;14(6):615–22.

129. Swardfager W, Rosenblat JD, Benlamri M, McIntyre RS. Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev. 2016;64:148–66.

130. Biesmans S, Matthews LJR, Bouwknecht JA, De Haes P, Hellings N, Meert TF, et al. Systematic Analysis of the Cytokine and Anhedonia Response to

Peripheral Lipopolysaccharide Administration in Rats. Biomed Res Int. 2016;2016:1–14.

131. Aubert A, Dantzer R. The taste of sickness: Lipopolysaccharide-induced finickiness in rats. Physiol Behav. 2005;84(3):437–44.

132. Combrinck MI, Perry VH, Cunningham C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience. 2002;112(1):7–11.

133. Huet O, Ramsey D, Miljavec S, Jenney A, Aubron C, Aprico A, et al. Ensuring animal welfare while meeting scientific aims using a murine pneumonia model of septic shock. Shock. 2013;39(6):488–94.

134. Shrum B, Anantha R V, Xu SX, Donnelly M, Haeryfar SMM, McCormick JK, et al. A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes. 2014;7(1):233.

135. Mai SHC, Sharma N, Kwong AC, Dwivedi DJ, Khan M, Grin PM, et al. Body temperature and mouse scoring systems as surrogate markers of death in cecal ligation and puncture sepsis. Intensive Care Med Exp. 2018 Dec 27;6(1):20.

136. Cai KC, van Mil S, Murray E, Mallet JF, Matar C, Ismail N. Age and sex

differences in immune response following LPS treatment in mice. Brain Behav Immun. 2016;58:327–37.

137. Kolmogorova D, Murray E, Ismail N. Monitoring Pathogen-Induced Sickness in Mice and Rats. Curr Protoc Mouse Biol. 2017;7:65–76.

138. Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, De Oliveira FMJ, Burth P, Bozza PT, Faria MVC, et al. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis. PLoS One. 2016;11(4):1–18.

139. d’Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-

Documentos relacionados