• Nenhum resultado encontrado

SUMÁRIO 1 INTRODUÇÃO

8 CONSIDERAÇÕES FINAIS

8.1 S UGESTÕES PARA TRABALHOS FUTUROS

A continuidade deste estudo pode ser realizada em diversas frentes, relacionadas ao método de solução, à abordagem do meio poroso e a possíveis desdobramentos do problema.

Dentro do campo numérico, o problema pode ser investigado por meio de outras abordagens, como o método dos volumes finitos, de modo a corroborar os resultados obtidos neste trabalho, além de avaliar as vantagens e desvantagens da utilização do LBM na solução do problema. Com relação ao LBM, podem ser consideradas a implementação de retículos não regulares (GUO e SHU, 2013), a introdução do comportamento não newtoniano do fluido diretamente na função de equilíbrio (YOSHINO et al., 2007; WANG e HO, 2008) e a utilização de modelos com melhor estabilidade numérica, como o modelo de regularização proposto por Latt e Chopard (2006). Desta forma, espera-se uma maior eficiência computacional do modelo numérico, devido à redução de malha em regiões com menores gradientes de velocidade e à manutenção do fator de relaxação (λlb) dentro dos níveis de estabilidade numérica, uma vez que λlb não dependeria da taxa de cisalhamento. Além disso, a investigação experimental do problema se mostra indispensável para validar os resultados obtidos no presente trabalho.

Com respeito ao meio poroso, pode-se analisar o problema considerando diferentes formas geométricas e disposições dos obstáculos, de modo a avaliar o efeito da estrutura do meio poroso sobre o escoamento na região livre do canal. Além do mais, pode-se avaliar a utilização da abordagem homogênea do meio poroso, a qual, em tese, reduz o custo computacional das simulações, uma vez que a complexidade geométrica do problema é reduzida. Para tanto, é necessário considerar modelos que descrevam o escoamento de fluidos não newtonianos em meio poroso, como os propostos por Shenoy (1993), Nakayama e Shenoy (1993) e Silva et al. (2016) para o escoamento de fluido de lei de potência, e por Vradis et al. (1993), para o fluido de Bingham.

Por fim, buscando retratar de forma mais fiel alguns dos exemplos citados na introdução deste trabalho, pode-se considerar a utilização de modelos de fluido mais complexos, introduzindo efeitos de tixotropia e elasticidade, mais de uma fase escoando através do canal (escoamento bifásico líquido-sólido, líquido-líquido e líquido-gás), escoamento turbulento e convecção forçada, levando em conta a troca de calor entre o

REFERÊNCIAS

AL-NIMR, M. A.; ALKAM, M. K. A modified tubeless solar collector partially

filled with porous substrate. Renewable Energy, v. 13, n. 2, p. 165-173, 1998.

ARIEL, P. D. On exact solutions of flow problems of a second grade fluid

through two parallel porous walls. International journal of engineering science, v. 40,

n. 8, p. 913-941, 2002.

ATTIA, H. A.; SAYED-AHMED, M. E. Hall effect on unsteady MHD Couette

flow and heat transfer of a Bingham fluid with suction and injection. Applied

Mathematical Modelling, v. 28, n. 12, p. 1027-1045, 2004.

ATTIA, H. A. Time varying flow of a power law fluid in a porous medium

between parallel porous plates with heat transfer under an exponential decaying pressure gradient. Journal of Porous Media, v. 11, n. 5, 2008.

AVINASH, K.; RAO, J. A.; KUMAR, V. K. R.; SREENADH, S. Bingham Fluid

Flow through a Tapered Tube with Permeable Wall. Journal of Applied Fluid

Mechanics, v. 6, n. 1, p. 143-148, 2013.

BANHART, J. Manufacture, characterisation and application of cellular

metals and metal foams. Progress in materials science, v. 46, n. 6, p. 559-632, 2001.

BARNES, H. A. The yield stress - a review or ‘παντα ρει’ - everything flows?.

Journal of Non-Newtonian Fluid Mechanics, v. 81, n. 1, p. 133-178, 1999.

BARNES, H. A. A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics Aberystyth, England, 2000.

BEAVERS, G. S.; JOSEPH, D. D. Boundary conditions at a naturally

permeable wall. Journal of fluid mechanics, v. 30, n. 01, p. 197-207, 1967.

BEAVERS, G. S.; SPARROW, E. M.; MAGNUSON, R. A. Experiments on

coupled parallel flows in a channel and a bounding porous medium. Journal of Basic

Engineering, v. 92, n. 4, p. 843-848, 1970.

BEHREND, O.; HARRIS, R.; WARREN, P. B. Hydrodynamic behavior of

lattice Boltzmann and lattice Bhatnagar-Gross-Krook models. Physical Review E, v.

50, n. 6, p. 4586, 1994.

BHATNAGAR, P. L.; GROSS, E. P.; KROOK, M. A model for collision

processes in gases. I. Small amplitude processes in charged and neutral one- component systems. Physical review, v. 94, n. 3, p. 511, 1954.

BIRD, R. B.; ARMSTRONG, R.; HASSAGER, O. Dynamics of polymeric

liquids. Vol. 1: Fluid mechanics. John Wiley and Sons Inc., New York, NY, 1987.

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Transport phenomena. JohnWiley & Sons, New York, 2002.

BRITANNICA. Disponível em: <https://media1.britannica.com/eb- media/57/94557-004-CF63D396.jpg>. Acesso em: 07/04/16.

Brown, G. O. The history of the Darcy-Weisbach equation for pipe flow

resistance. Environmental and Water Resources History, v. 38, n. 7, p. 34-43, 2002.

CHANDESRIS, M.; JAMET, D. Boundary conditions at a planar fluid--

porous interface for a Poiseuille flow. International Journal of Heat and Mass Transfer,

v. 49, n. 13, p. 2137-2150, 2006.

CHANDESRIS, M.; JAMET, D. Boundary conditions at a fluid-porous

interface: An a priori estimation of the stress jump coefficients. International journal

of heat and mass transfer, v. 50, n. 17, p. 3422-3436, 2007.

CHANDESRIS, M.; JAMET, D. Jump conditions and surface-excess

quantities at a fluid/porous interface: a multi-scale approach. Transport in porous

media, v. 78, n. 3, p. 419-438, 2009.

CHAPMAN, S.; COWLING, T. G. The mathematical theory of non-uniform

gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, 1970.

CHEN, S.; DOOLEN, G. D. Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, v. 30, n. 1, p. 329-364, 1998.

CHEN, Y.-L.; ZHU, K.-Q. Couette--Poiseuille flow of Bingham fluids between

two porous parallel plates with slip conditions. Journal of Non-Newtonian Fluid

Mechanics, v. 153, n. 1, p. 1-11, 2008.

CHEN, Y.-L.; CAO, X.-D.; ZHU, K.-Q. A gray lattice Boltzmann model for

power-law fluid and its application in the study of slip velocity at porous interface.

Journal of Non-Newtonian Fluid Mechanics, v. 159, n. 1, p. 130-136, 2009.

CHEVALIER, T.; CHEVALIER, C.; CLAIN, X.; DUPLA, J. C.; CANOU, J.; RODTS, S.; COUSSOT, P. Darcy’s law for yield stress fluid flowing through a porous

medium. Journal of Non-Newtonian Fluid Mechanics, v. 195, p. 57-66, 2013.

CHHABRA, R. P.; RICHARDSON, J. F. Non-Newtonian flow and applied

rheology: engineering applications. Butterworth-Heinemann, 2008.

CIVAN, F. Porous media transport phenomena. John Wiley & Sons, 2011. CLOÈTE, M. Modelling of non-Newtonian fluid flow through and over

porous media with the inclusion of boundary effects. Tese de Doutorado. Stellenbosch

University, 2013.

DARCY, H. Les fontaines publiques de la ville de Dijon: exposition et

application. Victor Dalmont, 1856.

DULLIEN, F. A. Porous media: fluid transport and pore structure. Academic press, 1992.

EL-SHEHAWY, E.; EL-DABE, N.; EL-DESOKY, I. Slip effects on the

peristaltic flow of a non-Newtonian Maxwellian fluid. Acta Mechanica, v. 186, n. 1-4,

p. 141-159, 2006.

ERVIN, V. J.; JENKINS, E. W.; SUN, S. Coupled generalized nonlinear Stokes

flow with flow through a porous medium. SIAM Journal on Numerical Analysis, v. 47,

n. 2, p. 929-952, 2009.

FADILI, A.; TARDY, P. M.; PEARSON, J. A. A 3D filtration law for power-

law fluids in heterogeneous porous media. Journal of Non-Newtonian Fluid Mechanics,

v. 106, n. 2, p. 121-146, 2002.

FRISCH, U.; HASSLACHER, B.; POMEAU, Y. Lattice-gas automata for the

Navier-Stokes equation. Physical review letters, v. 56, n. 14, p. 1505, 1986.

GLOBO. Disponível em:

<http://g1.globo.com/Noticias/Ciencia/foto/0,,32855969-FMM,00.jpg>. Acesso em: 07/04/16.

GOBIN, D., GOYEAU, B.; NECULAE, A. Convective heat and solute transfer

in partially porous cavities. International Journal of Heat and Mass Transfer, v. 48, n.

10, p. 1898-1908, 2005.

GOBIN, D.; GOYEAU, B. Natural convection in partially porous media: a

brief overview. International Journal of Numerical Methods for Heat & Fluid Flow, v.

GOYEAU, B.; LHUILLIER, D.; GOBIN, D.; VELARDE, M. D. Momentum

transport at a fluid--porous interface. International Journal of Heat and Mass Transfer,

v. 46, n. 21, p. 4071-4081, 2003.

GUO, Z.; SHU, C. Lattice boltzmann method and its applications in

engineering (advances in computational fluid dynamics). World Scientific Publishing

Company, 2013.

HANSPAL, N. S.; WAGHODE, A. N.; NASSEHI, V.; WAKEMAN, R. J.

Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transport

in Porous Media, v. 64, n. 1, p. 73-101, 2006.

HE, X.; LUO, L. S. Lattice Boltzmann model for the incompressible Navier--

Stokes equation. Journal of Statistical Physics, v. 88, n. 3-4, p. 927-944, 1997a.

HE, X.; LUO, L. S. Theory of the lattice Boltzmann method: From the

Boltzmann equation to the lattice Boltzmann equation. Physical Review E, v. 56, n.

6, p. 6811, 1997b.

IRGENS, F. Rheology and Non-Newtonian Fluids. Springer, 2014.

JAMES, D. F.; DAVIS, A. M. Flow at the interface of a model fibrous porous

medium. Journal of Fluid Mechanics, v. 426, p. 47-72, 2001.

KAMISLI, F. Laminar flow of a non-Newtonian fluid in channels with wall

suction or injection. International journal of engineering science, v. 44, n. 10, p. 650-

661, 2006.

KIM, S. H.; PITSCH, H. A generalized periodic boundary condition for lattice

Boltzmann method simulation of a pressure driven flow in a periodic geometry.

Physics of Fluids (1994-present), v. 19, n. 10, p. 108101, 2007.

KREMER, G. M. Uma Introdução à Equação de Boltzmann. Edusp, 2005. KUZNETSOV, A. V. Fluid mechanics and heat transfer in the interface

region between a porous medium and a fluid layer: a boundary layer solution.

Journal of Porous Media, v. 2, n. 3, p. 309-321, 1999.

LAGE, J. L. The fundamental theory of flow through permeable media from

Darcy to turbulence. Transport phenomena in porous media, v. 2, 1998.

LAKSHMI, K. B.; RAJU, G.; PRASAD, N. Unsteady Mhd Flow of a Non-

Newtonian Fluid Down and Open Inclined Channel with Naturally Permeable Bed.

LATT, J.; CHOPARD, B. Lattice Boltzmann method with regularized pre-

collision distribution functions. Mathematics and Computers in Simulation, v. 72, n. 2,

p. 165-168, 2006.

LEARNTODRILL. Disponível em: <

http://www.learntodrill.com/sites/default/files/free-stuff-intro-to-drilling.jpg>. Acesso em: 07/04/16.

LIAO, Q.; JEN, T. C. A New Pressure Boundary Condition of Lattice

Boltzmann Method (LBM) for Fully Developed Pressure-Driven Periodic Incompressible Fluid Flow. ASME 2008 International Mechanical Engineering

Congress and Exposition. p. 1655-1662, 2008.

LIQTECH. Disponível em:

<http://www.liqtech.dk/img/user/image/Liqtech_Crossflow.JPG>. Acesso em: 07/04/16. MAHMOUD, M. A. Slip velocity effect on a non-Newtonian power-law fluid

over a moving permeable surface with heat generation. Mathematical and Computer

Modelling, v. 54, n. 5, p. 1228-1237, 2011.

MARTINS, A. L. Quantificação das Forças Resistivas no Escoamento de

Soluções Poliméricas em Meios Porosos e Seu Impacto na Engenharia de Poços de Petróleo. Tese de Doutorado, COPPE/UFRJ, 2004.

MARTINS-COSTA, M. L.; ANGULO, J. A. P.; DA COSTA MATTOS, H. S.

Power-law fluid flows in channels with a permeable wall. Journal of Porous Media, v.

16, n. 7, 2013.

MCNAMARA, G. R.; ZANETTI, G. Use of the Boltzmann equation to simulate

lattice-gas automata. Physical Review Letters, v. 61, n. 20, p. 2332, 1988.

MEIRA, R. E. C. P.; DE LAI, F. C., NEGRÃO, C. O.; JUNQUEIRA, S. L. M.

Escoamento de fluido de perfuração através de um canal parcialmente poroso heterogêneo utilizando a técnica LBM. In: Rio Oil and Gas Expo and Conference, Rio

de Janeiro, RJ, 2014.

MILLER, W. The lattice Boltzmann method: a new tool for numerical

simulation of the interaction of growth kinetics and melt flow. Journal of crystal

growth, v. 230, n. 1, p. 263-269, 2001.

MITSOULIS, E. Flows of viscoplastic materials: models and computations. Rheology reviews, p. 135-178, 2007.

MOREINSPIRATION. Disponível em: <http://www.moreinspiration.com/image/original?file=1533831c-884d-4c1c-ae2e- a7dc27d675cf.jpg>. Acesso em: 07/04/16.

MOROSUK, T. V. Entropy generation in conduits filled with porous medium

totally and partially. International journal of heat and mass transfer, v. 48, n. 12, p. 2548-

2560, 2005.

MOSTHAF, K.; HELMIG, R.; OR, D. Modeling and analysis of evaporation

processes from porous media on the REV scale. Water Resources Research, v. 50, n.

2, p. 1059-1079, 2014.

NABOVATI, A.; SOUSA, A. Fluid flow simulation at open--porous medium

interface using the lattice Boltzmann method. International journal for numerical

methods in fluids, v. 56, n. 8, p. 1449-1456, 2008.

NABOVATI, A.; AMON, C. H. Hydrodynamic boundary condition at open-

porous interface: a pore-level lattice boltzmann study. Transport in porous media, v.

96, n. 1, p. 83-95, 2013.

NAKAYAMA, A.; SHENOY, A. V. Non‐darcy forced convective heat transfer

in a channel embedded in a non‐Newtonian inelastic fluid‐saturated porous medium.

The Canadian Journal of Chemical Engineering, v. 71, n. 1, p. 168-173, 1993.

NEALE, G.; NADER, W. Practical significance of Brinkman's extension of

Darcy's law: coupled parallel flows within a channel and a bounding porous medium. The Canadian Journal of Chemical Engineering, v. 52, n. 4, p. 475-478, 1974.

NIELD, D. A. Modelling fluid flow and heat transfer in a saturated porous

medium. Advances in Decision Sciences, v. 4, n. 2, p. 165-173, 2000.

NIELD, D. A.; BEJAN, A. Convection in porous media. Springer, 2006. OCHOA-TAPIA, J. A.; WHITAKER, S. Momentum transfer at the boundary

between a porous medium and a homogeneous fluid - I. Theoretical development.

International Journal of Heat and Mass Transfer, v. 38, n. 14, p. 2635-2646, 1995a. OCHOA-TAPIA, J. A.; WHITAKER, S. Momentum transfer at the boundary

between a porous medium and a homogeneous fluid – II. Comparison with experiment. International Journal of Heat and Mass Transfer, v. 38, n. 14, p. 2647-2655,

1995b.

PASCAL, J. Instability of power-law fluid flow down a porous incline. Journal of non-newtonian fluid mechanics, v. 133, n. 2, p. 109-120, 2006.

PATANKAR, S. Numerical heat transfer and fluid flow. CRC Press, 1980. PHILLIPS, T. N.; ROBERTS, G. W. Lattice Boltzmann models for non-

Newtonian flows. IMA journal of applied mathematics, v. 76, n. 5, p. 790-816, 2011.

PRASAD, V. Convective flow interaction and heat transfer between fluid and

porous layers. In: Convective heat and mass transfer in porous media, p. 563-615,

Springer Netherlands, 1991.

QIAN, Y. H.; D'HUMIÈRES, D.; LALLEMAND, P. Lattice BGK models for

Navier-Stokes equation. EPL (Europhysics Letters), v. 17, n. 6, p. 479, 1992.

RAKOTOMALALA, N.; SALIN, D.; WATZKY, P. Simulations of viscous

flows of complex fluids with a Bhatnagar, Gross, and Krook lattice gas. Physics of

Fluids (1994-present), v. 8, n. 11, p. 3200-3202, 1996.

RAO, A. R.; MISHRA, M. Peristaltic transport of a power-law fluid in a

porous tube. Journal of Non-Newtonian Fluid Mechanics, v. 121, n. 2, p. 163-174, 2004.

SADIQ, I. M. R.; USHA, R. Effect of permeability on the instability of a non-

Newtonian film down a porous inclined plane. Journal of Non-Newtonian Fluid

Mechanics, v. 165, n. 19, p. 1171-1188, 2010.

SAHIMI, M. Flow and transport in porous media and fractured rock: from

classical methods to modern approaches. John Wiley & Sons, 2011.

SAHRAOUI, M.; KAVIANY, M. Slip and no-slip velocity boundary

conditions at interface of porous, plain media. International Journal of Heat and Mass

Transfer, v. 35, n. 4, p. 927-943, 1992.

SÉRO-GUILLAUME, O.; MARGERIT, J. Modelling forest fires. Part I: a

complete set of equations derived by extended irreversible thermodynamics.

International Journal of Heat and Mass Transfer, v. 45, n. 8, p. 1705-1722, 2002.

SHENOY, A. V. Darcy-Forchheimer natural, forced and mixed convection

heat transfer in non-Newtonian power-law fluid-saturated porous media. Transport

in Porous Media, v. 11, n. 3, p. 219-241, 1993.

SILVA, R. A.; DE LEMOS, M. J. Turbulent flow in a channel occupied by a

porous layer considering the stress jump at the interface. International Journal of Heat

SILVA, R. A.; ASSATO, M.; DE LEMOS, M. J. Mathematical modeling and

numerical results of power-law fluid flow over a finite porous medium. International

Journal of Thermal Sciences, v. 100, p. 126-137, 2016.

SILVA, W. P. D.; SILVA, C. M.; CAVALVANTI, C. G.; SILVA, D. D.; SOARES, I. B.; OLIVEIRA, J. A.; SILVA, C. D. LAB fit curve fitting: a software in

portuguese for treatment of experimental data. Revista Brasileira de Ensino de Física,

v. 26, n. 4, p. 419-427, 2004.

SPIEGEL, M. R. Schaum's outline of theory and problems of vector analysis

and an introduction to tensor analysis. Schaum, 1959.

SPIEGEL, M. R. Mathematical handbook of formulas and tables. Schaum, 1968.

SUCCI, S. The Lattice-Boltzmann Equation. Oxford University Press, Oxford, 2001.

SUKOP, M. C.; THORNE, D. T. Lattice Boltzmann modeling: an introduction

for geoscientists and engineers. Springer, 2007.

TALON, L.; BAUER, D. On the determination of a generalized Darcy

equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme. The European Physical Journal E, v. 36, n. 12, p. 1-10, 2013.

TANG, G.; WANG, S. B.; YE, P. X.; TAO, W. Q. Bingham fluid simulation

with the incompressible lattice Boltzmann model. Journal of Non-Newtonian Fluid

Mechanics, v. 166, n. 1, p. 145-151, 2011.

THOMPSON, R. L.; SOARES, E. J. Viscoplastic dimensionless numbers. Journal of Non-Newtonian Fluid Mechanics, 2016.

TSANGARIS, S.; NIKAS, C.; TSANGARIS, G.; NEOFYTOU, P.. Couette flow

of a Bingham plastic in a channel with equally porous parallel walls. Journal of non-

newtonian fluid mechanics, v. 144, n. 1, p. 42-48, 2007.

VAFAI, K.; KIM, S. J. Fluid mechanics of the interface region between a

porous medium and a fluid layer—an exact solution. International Journal of Heat and

Fluid Flow, v. 11, n. 3, p. 254-256, 1990.

VALDÉS-PARADA, F. J.; GOYEAU, B.; OCHOA-TAPIA, J. A. Jump

momentum boundary condition at a fluid--porous dividing surface: Derivation of the closure problem. Chemical engineering science, v. 62, n. 15, p. 4025-4039, 2007.

VALDÉS-PARADA, F. J.; AGUILAR-MADERA, C. G.; OCHOA-TAPIA, J. A.; GOYEAU, B. Velocity and stress jump conditions between a porous medium and a

fluid. Advances in Water Resources, v. 62, p. 327-339, 2013.

VIGGEN, E. M. The lattice Boltzmann method with applications in acoustics. Dissertação de Mestrado. NTNU. 2009.

VRADIS, G. C.; PROTOPAPAS, A. L. Macroscopic conductivities for flow of

Bingham plastics in porous media. Journal of Hydraulic Engineering, v. 119, n. 1, p.

95-108, 1993.

WANG, C. H.; HO, J. R. Lattice Boltzmann modeling of Bingham plastics. Physica A: Statistical Mechanics and its Applications, v. 387, n. 19, p. 4740-4748, 2008.

WHITE, F. M. Fluid mechanics. McGraw-Hill, Boston, v. 4 ed, 1999.

WIKIPÉDIA. Disponível em:

<https://en.wikipedia.org/wiki/Permeable_paving#/media/File:Permeable_paver_demon stration.jpg>. Acesso em: 07/04/16.

WISEGEEK. Disponível em: <http://images.wisegeek.com/blood-vessel.jpg>. Acesso em: 07/04/16.

WOLF-GLADROW, D. A. Lattice-gas cellular automata and lattice

Boltzmann models: An Introduction. Springer, 2000.

WOLFRAM, S. Statistical mechanics of cellular automata. Reviews of modern physics, v. 55, n. 3, p. 601, 1983.

YAMAMOTO, K.; HE, X.; DOOLEN, G. D. Simulation of combustion field

with lattice Boltzmann method. Journal of statistical physics, v. 107, n. 1-2, p. 367-383,

2002.

YANG, J.; JIA, Y. X.; SUN, S.; MA, D. J.; SHI, T. F.; AN, L. J. Enhancements

of the simulation method on the edge effect in resin transfer molding processes.

Materials Science and Engineering: A, v. 478, n. 1, p. 384-389, 2008.

YOSHINO, M., HOTTA, Y., HIROZANE, T.; ENDO, M. A numerical method

for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. Journal of non-newtonian fluid mechanics, v. 147, n. 1, p. 69-78, 2007.

ZHANG, J.; KWOK, D. Y. Pressure boundary condition of the lattice

Boltzmann method for fully developed periodic flows. Physical review E, v. 73, n. 4,

Documentos relacionados