• Nenhum resultado encontrado

 Realizar tratamento térmico de solubilização visando aumentar a fração volumétrica da fase α (CFC) na superliga Co-30Cr-20Fe, antes dos experimentos de carbonitretação.

 Realizar experimentos em temperaturas iguais ou pouco abaixo de 380°C, no entanto, por tempos mais longos (acima de 20 horas) visando a obtenção de camadas de fase S de maior espessura e resistência ao desgaste.

 Efetuar ensaios de microabrasão com cargas mais baixas.

 Realizar experimentos de nitretação nas mesmas condições de carbonitretação aqui usadas, para estudar e comparar os efeitos dos intersticiais C e N.

 Utilizar outras ferramentas para caracterização das camadas carbonitretadas, tais como, nanoindentação, Thermocalc para averiguar as temperaturas de transformações, difração de raios X com incidência rasante e refinamento de Rietveld.

REFERÊNCIAS

AHANGARANI, Sh.; SABOUR, A. R.; MAHBOUBI, F. Surface modification of

30CrNiMo8 low-alloy steel by active screen setup and conventional plasma nitriding methods. Applied Surface Science, v. 254, n. 5, p. 1427-143, July 2007.

ARAÚJO, F. O. et al. Deposição de filme metálico em amostras de vidro em gaiola catódica. Revista Brasileira de Aplicações de Vácuo, v. 27, n. 3, p. 149-152, Set. 2008.

BALAGNA, C.; SPRIANO, S.; FAGA, M. G. Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance. Materials Science and

Engineering, v. 32, n. 7, p. 1868-1877, Oct. 2012.

BALDISSERA, C. S. Caracterização microestrutural e resistência à corrosão de ligas Co-Cr-Mo utilizadas em próteses dentárias. 2007. 142 f. Tese (Doutorado em

Engenharia Mecânica) – Universidade Estadual Paulista, Guaratinguetá, 2007. BELL, T. et al. Gaseous and plasma nitrocarburizing of steels. In: ASM Handbook: Heat-treating. USA: ASM International, 1991. v. 4, p. 954.

BOGAERTS, A. et al. Gas discharge plasmas and their applications.

Spectrochimica Acta Part B Atomic Spectroscopy, v. 57, n. 4, p. 609-658, Apr.

2002.

BORGIOLI, F. et al. Glow discharge nitriding of AISI 316L austenitic stainless steel: Influence of treatment temperature, Surface and Coatings Technology, v. 200, fasc. 18, p. 5505-5513, July 2006.

BRAGATTO JÚNIOR, L. Avaliação comportamento mecânico e tribológico

através de ensaios de esclerometria retilínea de superligas de cobalto. 2016.

Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Espírito Santo. Vitória, 2016.

BRESCIANI FILHO, E. Seleção de metais não ferrosos. 2° ed. São Paulo: Unicamp, 1997.

BUHAGIAR, J. 25 years of S-phase. Surface Engineering, v. 26, n. 4, p. 229-232, May. 2010.

CAMPBELL, F. C. Manufacturing technology for aerospace structural materials. 1 ed. Great Britain: Elsevier, 2006. p. 213-225.

CARON, R. N. et al. Effects of Composition, Processing, and Structure on Properties of Nonferrous Alloys: Cobalt and Cobalt Alloys. In: ASM Handbook: Materials

CASTELETTI, L. C. et al. Análise da austenita expandida em camadas nitretadas em aços inoxidáveis austenítico e superaustenítico. In: 19º Congresso Brasileiro

de Engenharia e Ciência dos Materiais – CBECiMat, 2010. Campos do Jordão,

SP.

CHAPMAN, B. N. Glow discharge processes: sputtering and plasma etching. New York (USA): John Wiley & Sons, 1980. p. 105-178.

CHEN, J.; LI, X. Y.; DONG, H. Improving the wear properties of Stellite 21 alloy by plasma surface alloying with carbon and nitrogen. Wear, v. 264, n. 3, p.157-165, 2008.

CHEN, J.; LI, X. Y.; DONG, H. Formation and characterisations of S phase in plasma carburised high carbon Stellite 21 CoCr alloy. Surface Engineering, v. 26, n. 4, p. 233-241, May. 2010.

CISQUINI, P. Influência dos parâmetros de nitrocementação a plasma na

resistência à corrosão e ao desgaste do aço AISI 304. 2014. 118f. Dissertação

(Mestrado em Engenharia Metalúrgica e de Materiais) – Instituto Federal do Espírito Santo. Vitória, 2014.

Cobalto e as famosas ligas de Stellite. Disponível em:

<http://www.infosolda.com.br/artigos/metalurgia/243-cobalto-e-as-famosas-ligas-de- stellite.html>. Acesso e 03 mar. 2015

CROOK, P. Haynes International. Inc. Cobalt and Cobalt Alloys. In: ASM Handbook: Properties and selection - nonferrous alloys and special-purpose materials. USA:

ASM International, 1992. v. 2, p. 1404-1407.

DAUDT, N. F. Influência dos parâmetros de processo na deposição de nitreto

de titânio por plasma em gaiola catódica. 2012. 122f. Dissertação (Mestrado em

Ciência e Engenharia dos Materiais) – Universidade Federal do Rio Grande do Norte, Natal, RN, 2012.

DAVIS, J.R. ASM Specialty Handbook: nickel, cobalt, and their alloys. USA: ASM International, 2000. p. 349-362.

DEAL, A.; OTHON, M.; TARTE, L. L.; MORRA, M. Tensile property investigation of cast and wrought Co-Cr-Fe. Microsc Microanal 13 (Suppl 2), p. 942-943, 2007. DEANTONIO, D. A. et al. Heat Treating of Superalloys. In: ASM Handbook: Heat treating. USA: ASM International, 1991. v. 4, p. 1757.

DONACHIE, M. J.; DONACHIE, S. J. Superalloys a technical guide. 2° ed. USA: ASM International, 2002. p. 8-9.

DONG, H. S-phase surface engineering of Fe–Cr, Co–Cr and Ni–Cr alloys.

EDENHOFER, B. Physical and metallurgical aspects of ion nitriding. Part 1. Heat

Treatment of Metals, v.1, p. 23-28, 1974.

GALLO, S. C.; DONG, H. On the fundamental mechanisms of active screen plasma nitriding. Vacuum, v. 84, n. 2, p. 321-325. 2010.

GHAZVINIZADEH, H. et al. Effect of mold preheating on the microstructure of the investment cast ASTM F-75 implant alloy. IJE Transactions A: Basics, v. 24, n. 1, p. 49-53, 2011.

GIACCHI, J. V. et al. Microstructural characterization of as-cast biocompatible Co– Cr–Mo alloys. Materials Characterization, v. 62, n.1, 2011.

GIACCHI, J. V.; FORNARO, O.; PALACIO, H. Microstructural evolution during solution treatment of Co–Cr–Mo–C biocompatible alloys. Materials

Characterization, v. 68, p.49-57, 2012.

GOMES, R. J. N. Efeito da temperatura na resistência ao desgaste de ligas à

base de cobalto. 2012. 82f. Dissertação (Mestrado em Engenharia e Ciência dos

Materiais) – Universidade Federal do Paraná. Curitiba, 2012.

GONTIJO, L. C. et al. X-ray diffraction characterisation of expanded austenite and ferrite in plasma nitrided stainless steels. Surface Engineering, v. 26, fasc, 4, p. 265-270, may. 2010.

GRÜN, R.; GÜNTHER, H. J. Plasma nitriding in industry - problems, new solutions and limits. Materials Science & Engineering. A, Structural Materials: Properties Microstructure and Processing, v.140, p. 435-441, Jul. 1991.

HERRERA, M. et al. Effect of C content on the mechanical properties of solution treated as-cast ASTM F-75 alloys. Journal of Materials Science: Materials in Medicine, v.16, n. 7, p. 607-611, 2005.

JOVANOVIĆ. M. T. et al. Processing and some applications of nickel, cobalt and titanium-based alloys. Metalurgija - Journal of Metallurgy, p. 91-106, 2007. KAKLAMANI, G. et al. Active screen plasma nitriding enhances cell attachment to polymer surfaces. Applied Surface Science, v. 273, p. 787-798, 2013.

KENNAMETAL STELLITE. Stellite 250. Disponível em:

<http://www.stellite.com/IndustrialApplications/Conversion/SteelIndustry/Stellite250/ta bid/239/Default.aspx>. Acesso em 25 abr. 2015.

LI, C. X.; BELL, T. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corrosion Science, v. 46, n. 6, p.1527-1547, 2004.

LI, X. Y. et al. Microstructural characterisation of a plasma carburised low carbon Co– Cr alloy. Surface Engineering, v. 23, n.1, p.45-51, Jan. 2007.

LIU, R. et al. Surface modification of a medical grade Co-Cr-Mo alloy by low-

temperature plasma surface alloying with nitrogen and carbon, Surface & Coatings

Technology, v. 232, p. 906-911, Oct. 2013.

LIU, R. Surface modification of ASTM F-1537 Co-Cr alloy by low temperature plasma surface alloying. 2013. 100f. Thesis (Master of Research) - University of Birmingham. 2013.

LIU, R.; YAO, X. M. High-performance wear/ Corrosion-resistant superalloys. In:

Aerospace Materials Handbook, 2013. p. 151-231.

LUO, X. et al. Tribocorrosion behavior of S-phase surface engineered medical grade Co–Cr alloy, Wear, v. 302, n. 1-2, p. 1615-1623, Apr. 2013.

MANCHA, H et al. M23C6 carbide dissolution mechanisms during heat treatment of

ASTM F-75 implant alloys. Metallurgical and Materials Transactions A, v. 32A, p. 979-984, Apr. 2001.

MARQUES, F. et al. Influence of heat treatments on the micro-abrasion wear resistance of a superduplex stainless steel. Wear, v. 271, n. 9, p.1288-1294, 2011. MEETHAM, G.W.; VAN DE VOORDE, M. H. Materials for high temperature: engineering applications: Springer, 2000. p. 83.

MONTERO-OCAMPO, C.; RODRIGUEZ, A. S. Effect of carbon content on the resistance to localized corrosion of as-cast cobalt-based alloys in an aqueous chloride solution. Journal of Biomedical Materials Research, v. 29, p. 441-453, 1995.

NSOESIE, S. et al. High-temperature hardness and wear resistance of cobalt-based Tribaloy alloys. International Journal of Material and Mechanical Engineering, v. 2, n. 3, p. 48-56, 2013.

OMORI, T. et al. FCC/HCP martensitic transformation and high-temperature shape memory properties in Co-Si alloys. Materials Transactions, v. 47, n. 9, p. 2377- 2380, Sept. 2006.

PELL-WALPOLE, W. T.; et al. Co (Cobalt) Ternary Alloy Phase Diagrams. In: ASM

Handbook: Alloys phase diagrams. USA: ASM International, 1992. v. 3, p. 1602.

PICHON, L. et al. CoCrMo alloy treated by floating potential plasma assisted nitriding and plasma based ion implantation: Influence of the hydrogen content and of the ion energy on the nitrogen incorporation, Surface and Coatings Technology, v. 204, n.18-19, p. 2913-2918, Jun. 2010.

RAMÍREZ-VIDAURRI, L.E. et al. Cooling rate and carbon content effect on the

fraction of secondary phases precipitate in as-cast microstructure of ASTM F75 alloy.

RAZIM, C. et al. Phases in Wrought Heat-Resistant Alloys. In: ASM Handbook: Metallography and microstructures. USA: ASM International, 1985. v. 9, p. 601-606. REED, C. R. The Superalloys Fundamentals and Applications. USA: Cambridge University Press, 2006. p. 1-14.

RIVIÈRE, J. P. et al. Microstructure of expanded austenite in ion-nitrided AISI 316L single crystals. Surface and Coatings Technology, v. 201, fasc.19, p. 8210-8214, Mar. 2007.

ROSENTHAL, R. et al. Phase characterization in as-cast F-75 Co–Cr–Mo–C alloy.

Journal of Materials Science, v. 45, n. 15, p. 4021-4028, 2010.

RUTHERFORD, K. L.; HUTCHINGS, I. M. Theory and application of a micro-scale abrasive wear test. Journal of testing and evaluation - JTEVA, v. 25, p. 250-260, March 1997.

SALDÍVAR‐GARCÍA, A. J.; LÓPEZ, H. F. Microstructural effects on the wear resistance of wrought and as‐cast Co‐Cr‐Mo‐C implant alloys. Journal of

Biomedical Materials Research Part A, v. 74, n. 2, p. 269-274, 2005.

SARKAR, J. Sputtering materials for VLSI and thin film devices. 1° ed. USA: Elsevier, 2014. p. 93-106.

SIBLEY, S. F. et al. Cobalt-Base Alloys. In: ASM Handbook: Properties and

selection - nonferrous alloys and special-purpose materials. USA: ASM International, 1992. v. 2, p.1407.

SILVA, J. P. C. Análise do comportamento de desgaste microabrasivo do aço

inoxidável AISI 316l: coeficiente, modo e regime de desgaste. 2015. 148 f.

Dissertação (Mestrado em Engenharia Metalúrgica e de Materiais) – Instituto Federal do Espírito Santo. Vitória, 2015.

SOUSA, R. M. et al. Nitretação em gaiola catódica: influência do tempo de tratamento. Revista Matéria, v. 13, n. 1, p. 119-24, 2007.

SOUSA, R. R. M. et al. Cathodic cage nitriding of samples with different dimensions.

Materials Science & Engineering, v. 465, n. 1, p. 223-227, 2007.

STOLOFF, N. S. Wrought and P/M Superalloys: Cobalt-Base Superalloys. In: ASM

Handbook: Properties and selection - irons steels and high performance alloys.

USA: ASM International, 1990. v. 1, p. 2316 e 2350-2352.

TAUFFER, L.R. O efeito da carga normal no comportamento tribológico de uma

superliga de cobalto no ensaio pino-disco. 2014. 65f. Dissertação (Mestrado em

Engenharia Mecânica) – Universidade Federal do Espírito Santo. Vitória, 2014. TREZONA, R. I.; HUTCHINGS, I. M. Three-body abrasive wear testing of soft materials. Wear, v. 233, p. 233-235, 1999.

TSCHIPTSCHIN, A. P.; PINEDO, C. E. Estrutura e propriedades do aço inoxidável austenítico AISI 316L Grau ASTM F138 nitretado sob plasma à baixa temperatura.

Revista Escola de Minas, v. 63, n. 1, p. 137-141, Mar. 2010.

VARANO, R. et al. The effect of microstructure on the wear of cobalt-based alloys used in metal-on-metal hip implants. Engineering in Medicine, v. 220, part H, p. 145-159, 2006.

VARANO, R. Structure-propern investiga tlon of Co-Cr-Mo alloys used in metal-

metal total hip replacements. 1998. Thesis (Master of Engineering) - McGill

University Montreal. Canada, 1998.

WANG, Q.; HUANG, C.; ZHANG, L. Microstructure and Tribological Properties of Plasma Nitriding Cast CoCrMo Alloy, Journal of Materials Science & Technology, v. 28, n. 1, p. 6 -66, Jan. 2012.

WANG, Q.; ZHANG, L.; SHEN, H. Microstructure analysis of plasma nitrided

cast/forged CoCrMo alloys, Surface & Coatings Technology, v. 205, n. 7, p. 2654- 2660, Dec. 2010.

YAMAKAMI, W. J. Resistencia mecânica e microestrutural de duas ligas

odontológicas a base de cobalto. 1994, 120f. Dissertação (Mestrado em

Engenharia Mecânica) – Universidade Estadual de Campinas. Campinas, 1994. ZHANG, S.; ZHAO, D. Aerospace materials handbook: Taylor &Francis Group, 2013. p. 22-152.

ZHAO, C. et al. Study on the active screen plasma nitriding and its nitriding

Documentos relacionados