• Nenhum resultado encontrado

8.   Considerações finais

8.2   Sugestões para trabalhos futuros

Com base na pesquisa desenvolvida, algumas sugestões são apresentadas para trabalhos futuros:

Ž Desenvolver modelos numéricos de elementos finitos tridimensionais (3D) de edifícios com sistemas de isolamento. Estes modelos possibilitariam a análise sísmica de edifícios considerando terremotos nas três direções.

Ž Estudos paramétricos devem ser conduzidos a fim de encontrar os parâmetros ótimos dos sistemas de isolamento, visando reduzir a resposta dinâmica dos edifícios com a mínima resposta dos deslocamentos da base.

Ž Avaliar o desempenho da nova geração de sistemas de isolamento sísmico, baseados em materiais inteligentes, tais como: suportes de elastômero magneto-reológico e suportes de elastômero com ligas de memória de forma (shape memory alloys).

Ž Analisar as metodologias de isolamento propostas na proteção sísmica de outros tipo de estruturas, como por exemplo: pontes, estruturas offshore, usinas nucleares entre outros.

Ž O sistema de excitação utilizado neste trabalho permite reproduzir apenas sinais aleatórios e sinais harmônicos. Desta forma sugerem-se projetos de pesquisa que busquem dimensionar sistemas de excitação em múltiplas direções, destinados a simular sinais reais de terremotos impostos em modelos laboratoriais de escala reduzida.

Referências Bibliográficas

[1] SPENCER JR, B.F., NAGARAJAIAH, S. “State of the art structural control”, Journal of Structural Engineering, v. 129, n. 7, pp. 845-856, 2003.

[2] MATSAGAR, V., JANGID, R.S. “Base isolation for seismic retrofitting of structures”, Practice periodical on structural design and construction, v. 13, n.

14, pp. 175-185, 2008.

[3] PATIL, S.J, REDDY, G.R. “State of the art review-Base Isolation systems for structures”, International Journal of Emerging Technology and Advance Engineering, v. 2, n. 7, pp. 438-453, 2012.

[4] PALAZZO, B., PETTI, L. “Combined control strategy: base isolation and tuned mass damping”, ISET Journal of Earthquake Technology, v. 36, n. 2-4, pp.121-137, 1999.

[5] JANGID, R.S., DATTA T.K. “Seismic behavior of base-isolated buildings: a state-of-the-art review”, Proceedings of the ICE - Structures and Buildings, v.

110, n. 2, pp. 186-203, 1995.

[6] KUNDE, M.C., JANGID, R.S. “Seismic behavior of isolated bridges: a-state-of-the-art review”, EJSE Electronic Journal of Structural Engineering, v.3, pp. 140-170, 2003.

[7] LEE, G.C., OU, Y.C., LIAG, Z., NIU, T., SONG, J. Principles and performance of roller seismic isolation bearings for highway bridges. Technical Report MCEER-07-0019, University at Buffalo, New York, 2007.

[8] GUR, S., MISRHA, S.K., CHAKRABORTY, S. “Performance assessment of buildings isolated by shape-memoryalloy-alloy rubber bearing: Comparison with elastomeric bearing under near-fault earthquakes”, Structural Control Health Monitoring, http://dx.doi.org/10.1002/stc.1576, Junho 2013.

[9] LI, Y., LI, J., LI, W., SAMALI, B. “Development and characterization of a magnetorheological elastomer based adaptive seismic isolator”. Smart Materials and Structures, v. 22, n. 3, 035005, 2013.

[10] LEE, G.C., OU, Y.C., NIU, T., SONG, J., LIAG, Z. “Characterization of a Roller Seismic Isolation Bearing with Supplemental Energy Dissipation for Highway Bridges”, Journal of Structural Engineering, v. 136, n. 5, pp. 502-510, 2010.

[11] BARBAT, A.H., BOZZO, L.M. “Seismic analysis of base isolated buildings”, Archives of Computational Methods in Engineering, v. 4, n. 2, pp.153-192, 1997.

[12] SUY, H.M.R. Nonlinear dynamics analyses of a structure with a friction-base seismic base isolation systems. M.Sc. Dissertation. Eindhoven University of Technology, Eindhoven, Netherlands, 2005.

[13] JANGID, R.S. “Seismic Response of Sliding Structures to bidirectional earthquake excitation”, Earthquake Engineering and Structural Dynamics. v. 25, n. 11, pp. 1301-1306, 1996.

[14] PARK, K., JUNG, H.J., LEE, I.W. “A comparative study on aseismic performance of base isolation systems for multi-span continuous brigde”, Engineering structures, v. 24, pp. 1001-1013, 2002.

[15] SU, L., AHMADI, G., TADJBAKHSH, I.G. “Comparative study of base isolation systems”, Journal of Engineering Mechanics, v. 115, n. 9, pp.1976–1992, 1989.

[16] ORDOÑEZ, D., FOTI, D., BOZZO, L. “Comparative study of the inelastic response of Base isolated buildings”, Earthquake Engineering and Structural Dynamics, v. 32, n. 1, pp. 151-164, 2003.

[17] YOUNIS, C.J., TADJBKHSH, I.G. “Response of sliding rigid structure to base isolation”, Journal of Engineering Mechanics, v. 110, n. 3, pp.417-432, 1984.

[18] JANGID, R.S. “Optimum friction pendulum system for near-fault motions”, Engineering structures, v. 27, n. 3, pp. 349-359, 2004.

[19] CALIÒ, I., MARLETTA, M., VICIPROVA, F. “Seismic response of multi-storey buildings base-isolated by friction devices with restoring properties”. Computer and structures, v. 81, n. 28-28, pp. 2589-2599, 2003.

[20] MOSTAGHEL, N., KHODAVWEDIAN, M. “Dynamics of resilient-friction base isolator (R-FBI)”, Earthquake Engineering and Structural Dynamics, v. 15, n. 3, pp. 379–390, 1987.

[21] NAEIM, F., KELLY J.M. “Isolation system components”, Wiley, Design of Seismic Isolated Structures.1 ed., Chapter 3. New York, USA, 1999.

[22] TAJIRIAN, F.F., KELLY, J.M., AIKEN, I.D. “Seismic Isolation for Advanced Nuclear Power Stations”. Earthquake Spectra, v. 6, n. 1, pp. 371-401, 1990.

[23] WEN, Y. “Method for random vibration of hysteretic systems”, Journal of the engineering mechanics division, v. 102, n. 2, pp.249-263, 1976.

[24] MALANGONE, P., FERRAIOLI, M. “A modal procedure for seismic analysis of non-linear base-isolated multistory structures”. Earthquake Engineering and Structural Dynamics, v. 27, n. 4, pp. 397-412, 1998.

[25] LIN, T.W., HONE C.C. “Base isolation by rolling rods under basement”, Earthquake engineering and structural dynamic, v. 22, n. 3, pp. 261-273, 1993.

[26] LIN, T.W., CHERN, C.C., HONE C.C. “Experimental study of base isolation by free rolling rods”, Earthquake engineering and structural dynamic, v. 24, n. 12, pp. 1645-1650, 1995.

[27] JANGIG, R.S. “Stochastic seismic response of structures isolated by rolling rods”, Structural Engineering,v. 22, n. 8, pp.937-946, 2000.

[28] JANGID, R.S. AND LONDHE, Y.B. “Effectiveness of Elliptical Rolling Rods for Base Isolation”, Journal of Structural Engineering, v. 124, n. 4, 469–472, 1998.

[29] CHUNG, L.L., YANG, C. Y., CHEN, H. M., LU, L.Y.(2009), “Dynamic behavior of nonlinear rolling isolation system”, Structural Control and Health Monitoring. v. 16, n. 1, pp.32–54, 2009.

[30] LEE, G.C., LIANG, Z. “Design Principles of Seismic Isolation”, Abbas Moustafa, Earthquake resistant structures – design, assessment and rehabilitation, 1 ed., Chapter 3. Rijeka, Croatia, 2012.

[31] NAGARAJAIAH, S., REINHORN, A.M., CONSTANTINOU M.C. “Non-linear dynamic analysis of 3-D base-isolated structures”, Journal of Structural Engineering, v. 117, n. 7, pp. 2035-2055, 1991.

[32] DEB, S.K., PAUL, D.K., THAKKAR, S.K. “Simplified non-linear dynamic analysis of base isolated buildings subjected to general plane motion”, Engineering computations, v. 14, n. 5, pp. 542-557, 1997.

[33] BARBAT A.H., MOLINARES, N., CODINA, R. “Effectiveness of block iterative schemes in computing the seismic response of building with nonlinear base isolation”, Computer & structures, v. 58, n. 1, pp. 133-141, 1996.

[34] SU, L., AHMADI, G. “A comparative study of performance of various base isolation systems, part II: Sensibility analysis”, Earthquake Engineering and Structural Dynamic, v. 19, n. 1, pp. 21-33, 1990.

[35] LIN, B.C., TADJBAKHSH, I.G., PAPAGEORGIOU, A.S., AHMADI, G.

“Performance of earthquake isolation systems”, Journal of engineering mechanics, v. 116, n. 2, pp. 446-447, 1990.

[36] CLOUGH, R.W., PENZIEN, J. Dynamics of Structures, 3 ed, New York, McGraw-Hill International, 2003.

[37] NIGAM , N. C., JENNINGS, P. C. Digital Calculation of Response Spectra from Strong-motion Earthquake Records, Report, Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, CA, 1968.

[38] MATSAGAR, V.A.; JANGID, R.S. “Seismic response of base-isolated structures during impact with adjacent”, Engineering Structures, v.25 , n.10 , pp. 1311-1323, 2003.

[39] BARATTA, A., CORBI, I. “Optimal design of base-isolators in multi-storey buildings”, Computer & Estructures, v. 82, n. 23-26, pp.2199-2209, 2004.

[40] JANGID, R.S. “Optimum lead–rubber isolation bearings for near-fault motions”, Engineering structures, v. 29, n. 10, pp. 349-359, 2007.

[41] PELDOZA, E.J. Sistemas híbridos para o controle de vibrações em edifícios sobre ação sísmica, Dissertação de M.Sc. COPPE/UFRJ, Rio de Janeiro, Brasil, 2011.

[42] AMARANTE, J.C. Instabilidade estrutural de reservatório d’água elevado sob ação sísmica, Dissertação de M.Sc. COPPE/UFRJ, Rio de Janeiro, Brasil, 2004.

[43] BLANDÓN, N. A. Dissipação de energia em estruturas de edifícios sob ação sísmica, Tese de D.Sc. COPPE/UFRJ, Rio de Janeiro, Brasil, 2003.

[44] CARNEIRO, R. Contribuição ao estudo do isolamento de vibrações em estruturas submetidas a excitações sísmicas. Dissertação de M.Sc. Universidade de Brasília, Brasil, 2001.

[45] WU, B., WANG, Q.Y., SHI, P.F., OU, J.P., GUAN X.C. “Real-time substructure test of JZ20-2NW offshore platform with semi-active MR dampers”. International Conference on Earthquake Engineering.Taipei, Taiwan, October 12-13, 2006 [46] RENTERÍA, G. “Secuencia de la construcción del viaducto helicoidal”, Reporte

técnico. GRISA Ingenieros S.A, Bogotá, Colombia, 2010.

[47] CHANG, C.M., WANG, Z., SPENCER, B.F. Application of base isolation control. Proc. SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, v. 7292, pp. 1-12, 2009.

[48] FORNI, M. “Seismic isolation of nuclear power plants”, Contribution to the

“Italy in Japan 2011” initiative Science, Technology and Innovation, pp.1-8, 2011.

[49] ELNASHAI, S.A., DI SARNO, L. Fundamentals of earthquake engineering, 1 ed, New York, John Wiley & Sons, Ltd, 2003.

[50] SEN, T.K. Fundamentals of seismic loading on structures, 1 ed, Singapore, John Wiley & Sons, Ltd, 2009.

[51] DATTA, T.K. Seismic analysis of structures. 1 ed, Singapore, John Wiley & Sons Ltd, 2010.

[52] KAPPOS, A.J. Dynamic loading and design of structures. 1 ed, London, Spon Press is an imprint of the Taylor & Francis Group, 2002.

[53] KIM, M.C., JUNG, H.J., LEE, W.I. “Solutions of eigenvalue problems for non-classically damped systems with multiple frequencies”, Journal of Sound and Vibrations, v. 219, n. 2, pp. 207-222, 1999.

[54] ZHOU, X.Y., YU, R.F., DONG, LIANG. “The complex-complete-quadratic-combinations (CCQC) method for responses of classically damped linear MDOF system”, 13th World conference on earthquake engineering, 848, Vancouver, B.C, Canada, 1-6 August, 2004.

[55] MA, F., MORZFELD, M., IMAN, A. “The decoupling of damped linear systems in free or forced vibrations”, Journal of Sound and Vibrations, v. 329, n. 15, pp.

3182-3202, 2010.

[56] FOSS, K.A. “Co-ordinate which uncouple the equations of motion of damped linear dynamic systems”, Journal Applied Mechanics, v. 25, pp. 361-364, 1958.

[57] The Mathworks (2010). The language of technical computing MATLAB.

[58] WANG, J. Seismic Isolation Analysis of a Roller Isolation System. Tese de doutorado, University of New York at Buffalo, USA. 2004.

[59] SINHA, P., RAI, D.C. “Development and performance of single-axis shake table for earthquake simulation”, Current science, v. 96, n. 12, 1611-1620, 2009.

[60] BLONDET, M., ESPARZA, C. “Analysis of shaking table-structure interaction effects during seismic simulation tests”, Earthquake Engineering and Structural Dynamics. v. 16, n. 4, pp. 473-490, 1988.

[61] BUCHER, H.F., MAGLUTA, C. “Application of joint time-frequency distribution for estimation of time-varying modal damping ratio”, Structural Engineering and Mechanics, v. 37, n. 2, pp. 131-148, 2011.

[62] BEIJERS, C., NOORDMAN, B; BOER, A. “Numerical modeling of rubber vibration isolators: identification of material parameters”. Eleventh International congress on sound and vibration. pp. 3193-3200, St. Petersburg, July 2004.

[63] RAO, P.B., JANGIND, R.S. “Experimental study of base isolated structures”, ISET Journal of Earthquake of Base-Isolated structures. v. 38, n. 408. pp. 1-15, 2001.

[64] AVALLONE, E.A., BAUMEISTER, T. Marks' Standard Handbook for Mechanical Engineers, 11th Edition, McGraw-Hill, New York, 2007.

[65] SHAMPINE, L.F., HOSEA, M.E. “Analysis and Implementation of TR-BDF2”, Applied Numerical Mathematics, v. 20, n. 1-2, pp. 21-31, 1996.

[66] DE JALÓN, J.G., BAYO, EDUARDO. “Numerical integration of the equations motion”, Springer-Verlag, Kinematic and dynamic simulation of multibody systems: the real-time challenge.1 ed., Chapter 7. New York, USA, 1994.

[67] MONFORTON, G. R., WU, T. S. “Matrix analysis of semi-rigidly connected frames”, Journal of Structural Division, v. 89, n. 6, pp. 13-42, 1963.

[68] CHOPRA, A.K. Dynamics of structures: Theory and applications to earthquake engineering. 3 ed, New Jarsey, Pearson Prencite Hall, 2007.

[69] NAEIM, F., KELLY J.M. “Companion software and earthquake data files”, Wiley, Design of Seismic Isolated Structures.1 ed., Appendix. New York, USA, 1999.

[70] MORALES, C.A. “transmissibility concept to control base motion in isolated structures”, Engineering structures, v. 25, n. 10, pp.1325-1331, 2003.

[71] AASHTO. Guide Specifications for Seismic Isolation Design, American Association of State Highway and Transportation Officials, Washington, DC, USA, 2000.

APÊNDICE A

Resultados adicionais do estudo

paramétrico dos Sistemas E+SE e E+SR

Os resultados a seguir foram obtidos através de simulações numéricas das equações de movimento dos sistemas E+S.E e E+S.R. Nestas simulações foram utilizados os seis sinais de terremotos previamente selecionados. As respostas sísmicas máximas do sistema E+S.E e E+S.R foram comparadas com as respostas máximas do sistema do edifício E. Assim, valores menores que um, representam reduções e valores superiores a um indicam amplificações da resposta sísmica.

Tabela A1 - Resposta sísmica do sistema E+S.E, sendo 75.4 / e 1.45 %

Resposta Nível Terremotos

1 2 3 4 5 6

0

1.32 0.57 1.38 0.35 1.45 0.31 1.44 0.68 2.32 0.58 2.61 0.55 0.95 0.42 0.21 0.09 0.42 0.11 1.62 0.77 0.67 0.20 1.05 0.23 1 0.61 0.21 0.18 0.03 0.17 0.04 2 0.39 0.17 0.16 0.01 0.10 0.02 3 0.31 0.13 0.15 0.02 0.07 0.02 4 0.29 0.11 0.14 0.02 0.07 0.02 1 0.80 0.27 0.47 0.04 0.35 0.06 2 0.46 0.19 0.34 0.02 0.19 0.04 3 0.35 0.16 0.28 0.02 0.14 0.03 4 0.31 0.14 0.26 0.02 0.13 0.03 1 1.12 0.47 0.49 0.05 0.28 0.08 2 1.14 0.47 0.52 0.05 0.28 0.08 3 1.41 0.57 0.66 0.07 0.34 0.10 4 2.52 0.98 1.20 0.13 0.61 0.19

1 1.32 0.61 1.00 0.06 0.53 0.11 2 1.30 0.61 1.02 0.06 0.52 0.11 3 1.58 0.73 1.28 0.08 0.64 0.13 4 2.79 1.25 2.29 0.14 1.13 0.23

Tabela A2 - Resposta sísmica do sistema E+S.E, sendo 12979 / e 10 %

Resposta Nível Terremotos

1 2 3 4 5 6

0

0.02 0.01 0.11 0.07 0.04 0.06 0.01 0.01 0.09 0.06 0.04 0.06 1.37 1.20 1.29 1.40 1.05 1.60 1.62 1.27 1.85 1.56 1.46 1.77

1 1.17 0.71 2.01 0.75 0.59 0.92

2 0.99 0.66 2.51 0.51 0.43 0.76

3 0.97 0.63 2.83 0.55 0.41 0.83

4 1.02 0.61 3.13 0.65 0.45 0.95

1 1.02 0.57 2.44 0.57 0.66 0.84

2 0.78 0.53 2.62 0.43 0.48 0.72

3 0.75 0.56 2.75 0.41 0.45 0.74

4 0.80 0.56 2.98 0.43 0.47 0.78

1 3.37 2.19 9.14 1.86 1.43 2.85

2 3.49 2.24 9.95 1.94 1.47 2.97

3 4.42 2.77 13.03 2.50 1.84 3.88 4 7.90 4.77 23.62 4.52 3.29 7.10

1 0.02 0.01 0.11 0.07 0.04 0.06

2 0.01 0.01 0.09 0.06 0.04 0.06

3 1.37 1.20 1.29 1.40 1.05 1.60

4 1.62 1.27 1.85 1.56 1.46 1.77

Tabela A3 - Resposta sísmica do sistema E+S.E, sendo 1x10 /

Resposta Nível Terremotos

1 2 3 4 5 6

0

0.02 0.01 0.06 0.10 0.06 0.06 0.02 0.01 0.05 0.08 0.05 0.09 1.50 1.52 1.31 1.51 2.04 2.28 2.46 1.84 1.77 2.36 2.37 3.82 1 1.21 0.94 1.36 0.97 1.12 1.21 2 0.99 0.82 1.39 0.75 0.75 0.84 3 0.93 0.77 1.39 0.73 0.63 0.85 4 0.90 0.70 1.40 0.74 0.60 0.89 1 1.56 0.81 1.58 0.80 1.07 1.46 2 1.10 0.71 1.38 0.54 0.72 1.08 3 0.96 0.67 1.26 0.47 0.62 0.99 4 0.91 0.61 1.21 0.44 0.59 0.93 1 0.98 0.79 1.39 0.76 0.71 0.89 2 0.94 0.76 1.39 0.74 0.66 0.86 3 0.92 0.74 1.39 0.74 0.62 0.87 4 0.91 0.71 1.40 0.74 0.61 0.89

1 1.05 0.73 1.34 0.51 0.68 1.08 2 0.99 0.70 1.29 0.48 0.64 1.02 3 0.94 0.66 1.24 0.46 0.61 0.97 4 0.93 0.63 1.23 0.45 0.60 0.95

Tabela A4 - Resposta sísmica do sistema E+S.R, sendo 5° e 0.8 /

Resposta Nível Terremotos

1 2 3 4 5 6

0

1.96 0.54 1.14 0.36 1.42 0.31 1.69 0.55 1.32 0.37 1.24 0.28 1.04 0.79 0.60 0.49 1.77 1.32 1.30 1.16 0.96 0.88 2.35 1.64 1 0.45 0.29 0.49 0.22 0.59 0.41 2 0.24 0.29 0.29 0.11 0.31 0.22 3 0.25 0.17 0.34 0.08 0.26 0.28 4 0.38 0.27 0.49 0.11 0.39 0.35 1 0.47 0.34 0.50 0.17 0.61 0.38 2 0.25 0.26 0.34 0.09 0.32 0.21 3 0.24 0.21 0.33 0.07 0.26 0.19 4 0.29 0.27 0.44 0.09 0.35 0.22 1 0.18 0.14 0.25 0.06 0.20 0.18 2 0.20 0.15 0.28 0.07 0.21 0.20 3 0.26 0.20 0.32 0.09 0.27 0.26 4 0.33 0.24 0.43 0.10 0.35 0.32

1 0.20 0.18 0.27 0.06 0.21 0.16 2 0.22 0.19 0.30 0.06 0.23 0.17 3 0.25 0.22 0.35 0.07 0.27 0.19 4 0.27 0.25 0.40 0.08 0.32 0.21