• Nenhum resultado encontrado

• Diversos trabalhos futuros ainda s˜ao necess´arios para a conclus˜ao deste trabalho com a finalidade de caracterizar redes de Bragg volum´etricas. Entre elas:

• Investigar a condic¸˜oes necess´arias para as estruturas operarem como guias de onda de Bragg;

• Realizar gravac¸˜oes com outros valores de gravac¸˜ao, m´ascaras de fase;

• Ampliar a an´alise da relac¸˜ao dos dados de gravac¸˜ao com o comportamento dos CCs na VBG;

• Utilizar as VBGs em LiF em aplicac¸˜oes como seletor de comprimento de onda, de forma a verificar a longevidade e outros usos.

REFER ˆENCIAS

ATKINS, P.; De Paula, J. Atkins’ physical chemistry. [S.l.]: Oxford University Press, 2006. 1064 p.

BALDACCHINI, G. Colored LiF: An optical material for all seasons. J. Lumin., v. 100, n. 1-4, p. 333–343, 2002. Dispon´ıvel em:

https://linkinghub.elsevier.com/retrieve/pii/S002223130200460X. Acesso em: 04/08/2017.

BALDACCHINI, G.; BIGOTTA, S.; MONTEREALI, R. Emission decay times of F2 color centers in heavily irradiated LiF crystals. J. Lumin., v. 94-95, p. 299–303, dec 2001.

Dispon´ıvel em: http://linkinghub.elsevier.com/retrieve/pii/S002223130100309X. Acesso em: 04/08/2017.

BALDACCHINI, G. et al. Radiative and nonradiative processes in the optical cycle of the center in LiF. Phys. Rev. B - Condens. Matter Mater. Phys., v. 54, n. 24, p. 17508–17514, dec 1996. Dispon´ıvel em: https://link.aps.org/doi/10.1103/PhysRevB.54.17508. Acesso em: 04/08/2017.

BALDACCHINI, G. et al. Emission decay times of F3+ and F2 color centers in LiF crystals. J. Lumin., v. 87, p. 580–582, 2000. Dispon´ıvel em:

https://linkinghub.elsevier.com/retrieve/pii/S0022231399003014. Acesso em: 04/08/2017.

BALDACCHINI, G. et al. Optical bands of F2 and F3+ centers in LiF. J. Phys. Chem. Solids, v. 61, n. 1, p. 21–26, 2000. Dispon´ıvel em:

https://linkinghub.elsevier.com/retrieve/pii/S002236979900236X. Acesso em: 04/08/2017.

BALDACCHINI, G.; MONTEREALI, R. M.; TSUBOI, T. Energy transfer among color centers in LiF crystals. Eur. Phys. J. D, v. 261-264, n. 17, p. 261–264, 2001. Dispon´ıvel em: http://www.springerlink.com/index/10.1007/s100530170030. Acesso em: 11/08/2017.

BASIEV, T. T.; ERMAKOV, I. V.; PUKHOV, K. K. Optical and nonradiative transitions involving triplet states of laser-active F-3(+) colour centres in LiF crystals. Quantum Electron., v. 27, n. 4, p. 304–308, 1997. Dispon´ıvel em: http://stacks.iop.org/1063- 7818/27/i=4/a=A07?key=crossref.41181636db70f32a9e79419dd73e4532. Acesso em: 03/05/2019.

BASIEV, T. T.; MIROV, S. B.; TER-MIKIRTYCHEV, V. V. Two-step photo-ionization and photophysics of color centers in LiF crystals. In: OSIKO, V. V. (Ed.). Proc. SPIE - Int. Soc. Opt. Eng. [s.n.], 1992. v. 1839, p. 227–264. Dispon´ıvel em:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.131775. Acesso em: 03/05/2019.

BASSANI, F.; GRASSANO, U. Fisica dello stato solido. [S.l.]: Bollati Boringhieri, 2000. 568 p.

BAUMEIER, B. et al. Electronic structure of alkali-metal fluorides, oxides, and nitrides: Density-functional calculations including self-interaction corrections. Phys. Rev. B - Condens. Matter Mater. Phys., v. 78, n. 12, 2008. Dispon´ıvel em:

https://link.aps.org/doi/10.1103/PhysRevB.78.125111. Acesso em: 03/05/2019.

BECKER, M. et al. Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry. Opt. Express, v. 16, n. 23, p. 19169–19178, 2008.

BECKER, M. et al. Fiber Bragg grating inscription with DUV femtosecond exposure and two beam interference. Proc. SPIE, v. 7386, n. June 2009, p. 73862Y–73862Y–10, 2009. ISSN 0277786X. Dispon´ıvel em:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=784001. Acesso em: 04/08/ 2017.

BOEHLER, R. et al. Melting of LiF and NaCl to 1 Mbar: Systematics of Ionic Solids at Extreme Conditions. Phys. Rev. Lett., v. 78, n. 24, p. 4589–4592, 1997. Dispon´ıvel em: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=784001. Acesso em: 03/05/2019.

BREWER, R. G.; DEVOE, R. G. Laser Spectroscopy of Solids II. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. 21–36 p. (Topics in Applied Physics, 2). Dispon´ıvel em: http://www.hindawi.com/journals/lc/1983/135784.abs.html

http://link.springer.com/10.1007/3-540-50154-1. Acesso em: 03/05/2019.

BUCKLEY, J. R. et al. Femtosecond fiber lasers with pulse energies above 10nJ. Opt. Lett., v. 30, n. 14, p. 1888, 2008. Dispon´ıvel em: https://www.osapublishing.org/ab-

stract.cfm?URI=ol-30-14-1888. Acesso em: 03/05/2019.

CHUNG, T.-Y. et al. Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. Opt. Lett., v. 31, n. 2, p. 229–231, 2006. Dispon´ıvel em: https://www.osapublishing.org/abstract.cfm?URI=ol-31-2-229. Acesso em:

04/08/2017.

CHUNG, T. Y. et al. Unexpected properties of a laser resonator with volumetric Bragg grating end mirrors. In: Conf. Lasers Electro-Optics 2006 Quantum Electron. Laser Sci. Conf. CLEO/QELS 2006. [s.n.], 2006. Dispon´ıvel em: http://ieeexplore.ieee.org/document/ 4627580/. Acesso em: 04/08/2017.

CONTRERAS, V.; TOIVONEN, J.; MARTINEZ, H. Enhanced self-mixing interferometry based on volume Bragg gratings and laser diodes emitting at 405-nm wavelengths. Opt. Lett., v. 42, n. 11, p. 2221, 2017. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ol-42-11-2221. Acesso em: 03/05/2019.

DENNIS, M. L.; DIELS, J.-C. M.; LAI, M. Femtosecond ring dye laser: a potential new laser gyro. Opt. Lett., v. 16, n. 7, p. 529, 2008. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ol-16-7-529. Acesso em: 03/05/2019.

DRUON, F. et al. Diode-pumped Yb:Sr 3Y(BO 3) 3 femtosecond laser. Opt. Lett., v. 27, n. 3, p. 197, 2002. Dispon´ıvel em:

ECKHARD, T. et al. Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager. Appl. Opt., v. 54, n. 13, p. D15, 2015. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ao-54-13-D15. Acesso em: 03/05/2019.

FARADAY, M. XX. Experimental researches in electricity. fourth series. Philos. Trans. R. Soc. London, v. 123, p. 507–522, jan 1833. Dispon´ıvel em:

http://www.royalsocietypublishing.org/doi/10.1098/rstl.1833.0022. Acesso em: 03/05/2019.

FLUOVIEW, O.; MICROSCOPY, C. Theory of Confocal Microscopy. 2011. 4–7 p. Dispon´ıvel em: http://fluoview.magnet.fsu.edu/theory/index.html. Acesso em: 2018-06-28.

GELESSUS, A.; THIEL, W.; WEBER, W. Multipoles and Symmetry. J. Chem. Educ., v. 72, n. 6, p. 505, jun 1995. Dispon´ıvel em: http://pubs.acs.org/doi/abs/10.1021/ed072p505. Acesso em: 03/05/2019.

GELLERMANN, W. Color center lasers. J. Phys. Chem. Solids, v. 52, n. 1, p. 249–297, 1991. Dispon´ıvel em: https://linkinghub.elsevier.com/retrieve/pii/002236979190068B. Acesso em: 03/05/2019.

GELLERMANN, W. et al. Formation, optical properties, and laser operation of F2- centers in LiF. J. Appl. Phys., v. 61, n. May, p. 1297–1303, 1987. Dispon´ıvel em:

http://aip.scitation.org/doi/10.1063/1.338107. Acesso em: 04/08/2017.

GROBNIC, D. et al. Femtosecond Laser Fabrication of Bragg Gratings in Borosilicate

Ion-Exchange Waveguides. IEEE Photonics Technol. Lett., v. 18, n. 13, p. 1403–1405, 2006. Dispon´ıvel em: http://ieeexplore.ieee.org/document/1643237/. Acesso em: 24/07/2017.

GYULAF, Z. Zum Quanten¨aquivalent bei der lichtelektrischen Leitung in NaCl-Kristallen. Zeitschrift f ¨ur Phys., v. 32, n. 1, p. 103–110, 1925. Dispon´ıvel em:

http://link.springer.com/10.1007/BF01331650. Acesso em: 03/05/2019.

HARRIS, D. C.; BERTOLUCCI, M. D. Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. [S.l.]: Courier Corporation, 1989. 550 p.

HEMMER, M. et al. Volume Bragg Grating assisted broadband tunability and spectral narrowing of Ti:Sapphire oscillators. Opt. Express, v. 17, n. 10, p. 8212–8219, 2009. Dispon´ıvel em: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-10-8212. Acesso em: 03/05/2019.

HILL, K.; MELTZ, G. Fiber Bragg grating technology fundamentals and overview. J. Light. Technol., v. 15, n. 8, p. 1263–1276, 1997. Dispon´ıvel em:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=618320.

HODDESON, L. et al. Out of the Crystal Maze: Chapters from The History of Solid State Physics. [S.l.]: Oxford Univ. Press, 1993. 697 p.

HUGHES, A. E. et al. No. R 5604. [S.l.], 1967.

HUHEEY, J. E.; KEITER, E. A.; KEITER, R. L. Inorganic Chemistry: Principles of Structure and Reactivity. 4th. ed. [S.l.]: Pearson Education India, 2006. 964 p.

IVANOV, S. A. et al. Characteristics of PTR Glass with Novel Modified Composition. Radiophys. Quantum Electron., v. 57, n. 8-9, p. 659–664, 2015. Dispon´ıvel em: http://link.springer.com/10.1007/s11141-015-9551-z. Acesso em: 03/05/2019.

JACOBSSON, B. et al. Widely tunable Yb:KYW laser with a volume Bragg grating. Opt. Eng. Opt. EXPRESS, v. 43, n. 3, p. 2017–2021, 2007. Dispon´ıvel em:

http://ieeexplore.ieee.org/document/4452716/. Acesso em: 03/05/2019.

JACOBSSON, B.; PASISKEVICIUS, V.; LAURELL, F. Opt. Express, v. 15, n. 20, p. 9284–9292, 2007. Dispon´ıvel em:

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-15-9387. Acesso em: 04/08/2017.

KARAM, L. Z. et al. Validation of a Sterilization Methods in FBG Sensors for in vivo

Experiments. In: Lat. Am. Opt. Photonics Conf. Washington, D.C.: OSA, 2012. p. LT2A.7. Dispon´ıvel em: https://www.osapublishing.org/abstract.cfm?URI=LAOP-2012-LT2A.7. Acesso em: 04/08/2017.

KAWAMURA, K. et al. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses. Appl. Phys. B, v. 71, n. 1, p. 119–121, jul 2000. ISSN 0946-2171. Dispon´ıvel em:

http://link.springer.com/10.1007/s003400000335. Acesso em: 04/08/2017.

KITTEL, C. Introduction to Solid State Physics. [S.l.: s.n.], 2005. 330–330 p.

KOGELNIK, H. Coupled Wave Theory for Thick Hologram Gratings. Bell Syst. Tech. J., v. 48, n. 9, p. 2909–2947, 1969. Dispon´ıvel em:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6774000. Acesso em: 03/05/2019.

KRUG, P. A.; STOLTE, R.; ULRICH, R. Measurement of index modulation along an optical fiber Bragg grating. Opt. Lett., v. 20, n. 17, 1995. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ol-20-17-1767. Acesso em: 03/05/2019.

KULI ´NSKI, T. et al. Emission characteristics of an LiF: F2 colour centre laser in the visible. Opt. Commun., Cambridge University Press, Cambridge, v. 35, n. 1, p. 120–124, oct 1980. Dispon´ıvel em:

https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book part http://linkinghub.elsevier.com/retrieve/pii/0030401880903739. Acesso em: 03/05/2019.

KUROBORI, T.; SAKAI, T.; AOSHIMA, S. A narrow band, green-red colour centre laser in LiF fabricated by femtosecond laser pulses. Phys. Status Solidi Appl. Mater. Sci., v. 204, n. 3, p. 699–705, 2007. Dispon´ıvel em: http://doi.wiley.com/10.1002/pssa.200673865. Acesso em: 03/05/2019.

LENARD, P. ¨Uber sekund¨are Kathodenstrahlung in gasf¨ormigen und festen K¨orpern. Ann. Phys., v. 320, n. 13, p. 485–508, 1904. Dispon´ıvel em:

http://doi.wiley.com/10.1002/andp.19043201304. Acesso em: 03/05/2019.

LIAO, C. J. et al. Lasing action of Nd:GdVO 4 at 1070nm by Volumetric Bragg Grating. In: Conf. Lasers Electro-Optics, 2007, CLEO 2007. [s.n.], 2007. Dispon´ıvel em:

MARTYSHKIN, D. V. et al. Mid-IR volumetric Bragg grating based on LiF color center crystal. Opt. Mater. Express, Oxford Univ. Press, v. 2, n. 9, p. 1209–1218, 2012. Dispon´ıvel em: https://www.osapublishing.org/ome/abstract.cfm?uri=ome-2-9-1209. Acesso em:

03/05/2019.

MCCOMB, T.; SUDESH, V.; RICHARDSON, M. Volume Bragg grating stabilized spectrally narrow Tm fiber laser. Opt. Lett., v. 33, n. 8, p. 881–883, 2008. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ol-33-8-881. Acesso em: 03/05/2019.

MIROV, S. B.; BASIEV, T. Progress in Color Center Lasers. IEEE J. Sel. Top. Quantum Electron., v. 1, n. 1, p. 22–30, 1995. Dispon´ıvel em:

http://ieeexplore.ieee.org/document/468375/. Acesso em: 03/05/2019.

MOHARAM, M. G.; YOUNG, L. Criterion for Bragg and Raman-Nath diffraction regimes. Applied Optics, v. 17, n. 11, p. 1757–1759, 1978. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ao-17-11-1757. Acesso em: 03/05/2019.

MONTECCHI, M. et al. Optical characterization of low-energy electron-beam-colored LiF crystals by spectral transmittance measurements. J. Appl. Phys., v. 86, n. 7, p. 3745–3750, 1999. Dispon´ıvel em: http://aip.scitation.org/doi/10.1063/1.371245. Acesso em:

03/05/2019.

MONTEREALI, R. M. et al. Visible photoluminescence of aggregate colour centres in lithium fluoride thin films for low-energy proton beam radiation detectors at high doses. J. Lumin., v. 200, n. April, p. 30–34, 2018. Dispon´ıvel em:

https://linkinghub.elsevier.com/retrieve/pii/S0022231318302102. Acesso em: 03/05/2019.

MOURA, C. C. de et al. Regeneration characteristics of FBG written for the visible spectral range. In: IEEE. 2017 25th Opt. Fiber Sensors Conf. 2017. p. 1–4. Dispon´ıvel em:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2257678. Acesso em: 03/05/2019.

MULLIKEN, R. S. Report on Notation for the Spectra of Polyatomic Molecules. J. Chem. Phys., v. 23, n. 11, p. 1997–2011, nov 1955. Dispon´ıvel em:

http://aip.scitation.org/doi/10.1063/1.1740655. Acesso em: 03/05/2019.

MULLIKEN, R. S. Erratum: Report on notation for the spectra of polyatomic molecules (The Journal of Chemical Physics (1955) 23 (1997)). J. Chem. Phys., v. 24, n. 5, p. 1118, 1956. Dispon´ıvel em: http://aip.scitation.org/doi/10.1063/1.1742716. Acesso em: 03/05/2019.

NAHUM, J. Optical Properties and Mechanism of Formation of Some F-Aggregate Centers in LiF. Phys. Rev., v. 158, n. 3, p. 814–825, 1967. Dispon´ıvel em:

https://link.aps.org/doi/10.1103/PhysRev.154.817. Acesso em: 03/05/2019.

NAHUM, J.; WIEGAND, D. A. Optical Properties of Some F-Aggregate Centers in LiF. Phys. Rev., v. 154, n. 3, p. 817–830, 1967. Dispon´ıvel em:

https://link.aps.org/doi/10.1103/PhysRev.154.817. Acesso em: 03/05/2019.

NAKANO, Y.; MURATA, K. Measurements of phase objects using the Talbot effect and moire techniques. Appl. Opt., v. 23, n. 14, p. 2296–2299, 1984. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ao-23-14-2296. Acesso em: 03/05/2019.

PAIPULAS, D. et al. Volumetric modifications in fused silica using Gaussian and Bessel femtosecond laser beams. Pacific Rim Laser Damage 2013 Opt. Mater. High Power Lasers, v. 8786, 2013. Dispon´ıvel em:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2020258. Acesso em: 03/05/2019.

PALIK, E. (Ed.). Handbook of Optical Constants of Solids. [S.l.]: Elsevier, 1985. 1096 p.

PEREZ, A.; DAVENAS, J.; DUPUY, C. Ionisation induced defects in alkali halide single crystals. Nucl. Instruments Methods, v. 132, p. 219–227, jan 1976. Dispon´ıvel em: http://linkinghub.elsevier.com/retrieve/pii/0029554X76907382. Acesso em: 04/08/2017.

PICCININI, M. et al. Lithium fluoride colour centres-based imaging detectors for proton beam characterization at high doses. 2016. Dispon´ıvel em:

https://linkinghub.elsevier.com/retrieve/pii/S1350448715301244. Acesso em: 03/05/2019.

PICCININI, M. et al. Proton beam dose-mapping via color centers in LiF thin-film detectors by fluorescence microscopy. Epl, v. 117, n. 3, 2017. Dispon´ıvel em: http://stacks.iop.org/0295- 5075/117/i=3/a=37004?key=crossref.c32265fd7df261eb9e82139583e099ca. Acesso em: 03/05/2019.

POWELL, R. C. Symmetry, Group Theory, and the Physical Properties of Crystals. New York, NY: Springer New York, 2010. (Lecture Notes in Physics, v. 824).

RAJESH, S.; BELLOUARD, Y. Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy. Opt. Express, v. 18, n. 20, p. 21490–7, sep 2010. Dispon´ıvel em: http://www.ncbi.nlm.nih.gov/pubmed/20941045. Acesso em: 04/08/2017. REALE, L. et al. X-ray microscopy of plant cells by using LiF crystal as a detector. Microsc. Res. Tech., v. 71, n. 12, p. 839–848, 2008. Dispon´ıvel em:

http://doi.wiley.com/10.1002/jemt.20625. Acesso em: 03/05/2019.

SHU, H. et al. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method. Appl. Opt., v. 48, n. 1, p. 22–27, 2009. Dispon´ıvel em: https://www.osapublishing.org/abstract.cfm?URI=ao-48-1-22. Acesso em: 03/05/2019.

SIRLETO, L. et al. Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer. Opt. Eng., v. 41, n. 11, p. 2890–2898, 2002. Dispon´ıvel em: http://link.aip.org/link/?JOE/41/2890/1. Acesso em: 03/05/2019.

SONDER, E.; TEMPLETON, L. C. RADIATION F-CENTER PRODUCTION IN LiF AT AND ABOVE ROOM TEMPERATURE. Radiat. Eff., v. 16, n. 1-2, p. 115–125, 1972. Dispon´ıvel em: http://www.tandfonline.com/doi/abs/10.1080/00337577208232029. Acesso em: 03/05/2019.

SPENCE, D.; KEAN, P.; SIBBETT, W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt. Lett., v. 16, n. 1, p. 42–44, 1991. Dispon´ıvel em:

SZYMBORSKI, K. The Physics of Imperfect Crystals-A Social History. Hist. Stud. Phys. Sci., v. 14, n. 2, p. 317–355, jan 1984. ISSN 00732672. Dispon´ıvel em:

http://hsns.ucpress.edu/cgi/doi/10.2307/27757536. Acesso em: 03/05/2019.

TER-MIKIRTYCHEV, V. V.; TSUBOI, T. Stable room-temperature tunable color center lasers and passive Q-switchers. Prog. Quantum Electron., v. 20, n. 3, p. 219–268, jan 1996.

Dispon´ıvel em: https://linkinghub.elsevier.com/retrieve/pii/0079672796000018. Acesso em: 03/05/2019.

TER-MIKIRTYCHEV, V. V.; TSUBOI, T. On the nature of the 735 nm luminescence band in coloured LiFcrystals. Can. J. Phys., v. 75, n. 11, p. 813–819, nov 1997. Dispon´ıvel em: http:// www.nrcresearchpress.com/doi/10.1139/p97-029. Acesso em: 03/05/2019.

TJ ¨ORNHAMMAR, S. et al. Thermal limitations of volume Bragg gratings used in lasers for spectral control. J. Opt. Soc. Am. B, v. 30, n. 6, p. 1402, jun 2013. ISSN 0740-3224.

Dispon´ıvel em: http://dx.doi.org/10.1364/JOSAB.30.001402

https://www.osapublishing.org/abstract.cfm?URI=josab-30-6-1402. Acesso em: 03/05/2019.

TJ ¨ORNHAMMAR, S.; PASISKEVICIUS, V.; LAURELL, F. Numerical Determination of Limiting Powers for Volume Bragg Gratings Used in Lasers for Spectral Control. Adv. Solid-State Lasers Congr. Tech. Dig., OSA, JTh2A.06, p. JTh2A.06, 2013. Dispon´ıvel em: https://www.osapublishing.org/abstract.cfm?URI=ASSL-2013-JTh2A.06. Acesso em: 03/05/2019.

TOMASSETTI, G. et al. Two-beam interferometric encoding of photoluminescent gratings in LiF crystals by high-brightness tabletop soft x-ray laser. Appl. Phys. Lett., v. 85, n. 18, p. 4163–4165, 2004. Dispon´ıvel em: http://aip.scitation.org/doi/10.1063/1.1812841. Acesso em: 03/05/2019.

TSUBOI, T.; TER-MIKIRTYCHEV, V. V. Characteristics of the LiF : F3+ color center laser. Opt. Commun., v. 116, n. 4-6, p. 389–392, 1995. Dispon´ıvel em:

https://linkinghub.elsevier.com/retrieve/pii/003040189500065G. Acesso em: 03/05/2019.

VALLE, G. D.; OSELLAME, R.; LAPORTA, P. Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A Pure Appl. Opt., v. 013001, n. 11, p. 1–18, 2009. Dispon´ıvel em: http://stacks.iop.org/1464-

4258/11/i=1/a=013001?key=crossref.8b7b2f5a68913d4922bdef8e19740c28. Acesso em: 03/ 05/2019.

VENUS, G. et al. Spectral narrowing and stabilization of interband cascade laser by volume Bragg grating. Appl. Opt., v. 55, n. 1, p. 77–80, 2016. Dispon´ıvel em:

http://dx.doi.org/10.1364/AO.55.000077. Acesso em: 03/05/2019.

VINCENTI, M. A. et al. Spectroscopic investigation of F, F2 and F3+ color centers in gamma irradiated lithium fluoride crystals. IOP Conf. Ser. Mater. Sci. Eng., v. 15, n. May 2016, p. 012053, nov 2010. Dispon´ıvel em: http://stacks.iop.org/1757-

899X/15/i=1/a=012053?key=crossref.5d36fb0cc5ce08112566cac005fe0ba8. Acesso em: 03/ 05/2019.

VOLODIN, B. L. et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett., v. 29, n. 16, p. 1891, 2004. Dispon´ıvel em:

https://www.osapublishing.org/abstract.cfm?URI=ol-29-16-1891. Acesso em: 03/05/2019.

WANG, F. et al. Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating. Opt. Express, v. 18, n. 9, p. 8937, apr 2010. Dispon´ıvel em:

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-9-8937.

WHEATON, B. R. Philipp Lenard and the Photoelectric Effect, 1889-1911. Hist. Stud. Phys. Sci., v. 9, n. 1978, p. 299–322, 2012. Dispon´ıvel em:

http://hsns.ucpress.edu/cgi/doi/10.2307/27757381. Acesso em: 03/05/2019.

WYMAN BEALL FOWLER. PHYSICS OF COLOR CENTERS. [S.l.]: Academic Press, 1968. 655 p.

YE, C. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston: Kluwer Academic Publishers, 2005. 361 p.

ZHANG, X. et al. Diffraction of volume Bragg gratings under high flux laser irradiation. v. 22, n. 7, p. 8291–8297, 2014. Dispon´ıvel em:

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-7-8291. Acesso em: 03/05/2019.

ANEXO A -- TABELAS DE GRUPOS DE SIMETRIA

Tabela 14: Grupo de ponto D2hreferente ao CC F2. D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz) Func¸˜oes

lineares, rotac¸˜oes Func¸˜oes quadr´aticas Func¸˜oes c´ubicas Ag 1 1 1 1 1 1 1 1 - x2, y2, z2 - B1g 1 1 -1 -1 1 1 -1 -1 Rz xy - B2g 1 -1 1 -1 1 -1 1 -1 Ry xz - B3g 1 -1 -1 1 1 -1 -1 1 Rx yz - Au 1 1 1 1 -1 -1 -1 -1 - - xyz B1u 1 1 -1 -1 -1 -1 1 1 z - z3, y2z, x2z B2u 1 -1 1 -1 -1 1 -1 1 y - yz2, y3, x2y B3u 1 -1 -1 1 -1 1 1 -1 x - xz2, xy2, x3

Fonte: Gelessus et al. (1995)

Tabela 15: Grupo de ponto C3v referente ao CC F3+. C3v E 2C3(z) σ3v Func¸˜oes lineares, rotac¸˜oes Func¸˜oes quadr´aticas Func¸˜oes c´ubicas A1 1 1 1 z x2+ y2, z2 z3, x(x2− 3y2), z(x2+ y2) A2 1 1 -1 Rz - y(3x2− y2)

E +2 -1 0 (x, y)(Rx, Ry) (x2− y2, xy)(xz, yz) (xz2, yz2) [xyz, z(x2− y2)]

[x(x2+ y2), y(x2+ y2)]

Documentos relacionados