• Nenhum resultado encontrado

CONSIDERAÇÕES FINAIS 6.1 Conclusões

6.3 Produção científica

6.3.2 Trabalhos publicados em anais de eventos

1. Baroni, R. B., & Uturbey, W. (2018). Overvoltage assessment in distribution networks with photovoltaic generators using Monte Carlo simulation. Simpósio Brasileiro de Sistemas Elétricos (SBSE).

2. Baroni R. B., & Uturbey, W. (2018). Máxima penetração fotovoltaica e regula- ção de tensão em sistemas de distribuição através da análise de sensibilidade. Congresso Brasileiro de Energia Solar (CBENS).

133

Referências

ABNT. NBR 5440 Transformadores para redes aéreas de distribuição — requisitos. page 72, 2014.

ABNT. NBR 5356-7 Guia de carregamento para transformadores imersos em líquido isolante. page 72, 2017.

ABNT-16149. NBR 16149 Sistemas Fotovoltaicos (FV) - características da interface de conexão com a rede elétrica de distribuição. page 12, 3 2013.

A. E. B. Abu-Elanien, M. M. A. Salama, and R. Bartnikas. A techno-economic method for replacing transformers. IEEE Transactions on Power Delivery, 26(2): 817–829, 2011.

A. E. B. Abu-Elanien, M. M. A. Salama, and M. Ibrahim. Calculation of a health index for oil-immersed transformers rated under 69 kV using fuzzy logic. IEEE Transactions on Power Delivery, 27(4):2029–2036, 2012.

T. Ackermann. Distributed resources and re-regulated electricity markets. Electric Power Systems Research, 77(9):1148 – 1159, 2007. ISSN 0378-7796. doi: https://doi. org/10.1016/j.epsr.2006.08.006. URLhttp://www.sciencedirect.com/science/ article/pii/S0378779606001854. Distributed Generation.

S. M. Agah and H. A. Abyaneh. Distribution transformer loss-of-life reduction by increasing penetration of distributed generation. IEEE Transactions on Power Delivery, 26(2):1128–1136, 2011. doi: 10.1109/TPWRD.2010.2094210.

K. S. T. R. Alves, M. Hell, F. L. Cyrino Oliveira, and E. P. de Aguiar. An enhanced set-membership evolving participatory learning with kernel recur- sive least squares applied to thermal modeling of power transformers. Elec- tric Power Systems Research, 184:106334, 2020. ISSN 0378-7796. doi: https: //doi.org/10.1016/j.epsr.2020.106334. URL http://www.sciencedirect.com/

ANEEL. Manual de controle patrimonial do setor elétrico - MCPSE. Resolução Normativa, 9 2015a. Anexo a Resolução Normativa nº 674/2015.

ANEEL. Procedimentos de regulação tarifária - Base de Remuneração Regulatória. Nota Técnica, 11 2015b. URLhttp://www2.aneel.gov.br/cedoc/aren2015686_ Proret_Submod_2_3_V5.pdf. PRORET - Submódulo 2.3.

ANEEL. Revisão tarifária periódica das concessionárias de distribuição, 05 2015c. URLhttp://www2.aneel.gov.br/cedoc/aren2015660_Proret_Submod_ 2_5_V2.pdf. PRORET - Submódulo 2.5 - Fator X.

ANEEL. Planejamento da expansão do sistema de distribuição, 1 2016a. PRODIST - Módulo 2 - Qualidade da Energia.

ANEEL. Sobrecontratação de energia e exposição ao mercado de curto prazo. Nota Técnica, 3 2016b. URL http://www2.aneel.gov.br/cedoc/aren2016703_ Proret_Submod_4_3_V0.pdf. PRORET - Submódulo 4.3.

ANEEL. Reajuste tarifário anual das concessionárias de distribuição, 03 2016c. URLhttp://www2.aneel.gov.br/cedoc/aren2016703_Proret_Submod_ 3_1_V4.pdf. PRORET - Submódulo 3.1.

ANEEL. Quarta revisão tarifária periódica, 5 2018a. URLhttps://www2.aneel.gov. br/aplicacoes/tarifa/arquivo/NT__CEMIG.pdf. Nota Técnica nº 122/2018-

SGT/ANEEL.

ANEEL. Procedimentos de distribuição de energia elétrica no sistema elétrico nacional - Qualidade da Energia, 1 2018b. PRODIST - Módulo 8.

ANEEL. Custos operacionais e receitas irrecuperáveis, 03 2018c. URLhttp://www2. aneel.gov.br/cedoc/aren2018806_Proret_Submod_2_2_v3.pdf. PRORET -

Submódulo 2.2.

ANEEL. Modelo tarifário do Grupo B. Nota Técnica, 12 2018d. URL

https://www.aneel.gov.br/documents/656877/18485189/4+Modelo+de+AIR+ -+SGT+-+Tarifa-Binomia.pdf/ea152997-0f6e-b2d1-d443-8354cd2a380a.

Nota Técnica nº 2/2018- SGT/ANEEL.

ANEEL. Revisão das regras aplicáveis à micro e minigeração distribuída – Resolução Normativa nº 482/2012, 12 2018e.

ANEEL. Homologação das Tarifas de Energia – TE e das Tarifas de Uso dos Sistemas de Distribuição – TUSD referentes à CEMIG-D, 5 2019a. URL https:

Referências 135 //www2.aneel.gov.br/aplicacoes/tarifa/arquivo/nreh20192550.pdf. Nota

Técnica Nº 92/2019-SGT/ANEEL.

ANEEL. Impacto da micro e mini geração distribuída nos termos da REN 482/2012, nos processos tarifários do ano 2018, 10 2019b. Nota Técnica nº 188/2019- SGT/ANEEL.

ANEEL. Revisão tarifária periódica das concessionárias de distribuição, 3 2020. URL http://www2.aneel.gov.br/cedoc/aren2020874_Proret_Submod_2_1A_ v2.pdf. PRORET - Submódulo 2.1.

J. Aubin and Y. Langhame. Effect of oil viscosity on transformer loading capability at low ambient temperatures. IEEE Transactions on Power Delivery, 7(2):516–524, 1992.

H. M. Ayres, W. Freitas, M. C. D. Almeida, and L. C. P. D. Silva. Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations. IET Generation, Transmission Distribution, 4(4):495–508, 2010. doi: 10.1049/iet-gtd.2009.0317.

M. E. Baran, H. Hooshyar, Z. Shen, and A. Huang. Accommodating high pv penetration on distribution feeders. IEEE Transactions on Smart Grid, 3(2): 1039–1046, 2012. doi: 10.1109/TSG.2012.2190759.

B. Baroni and W. Uturbey. Máxima penetração fotovoltaica e regulação de tensão em sistemas de distribuição através da análise de sensibilidade. Congresso Brasileiro de Energia Solar, (VII), 2018.

P. Bogetoft and L. Otto. Benchmarking with DEA, SFA, and R. Springer, 2011. URL

https://EconPapers.repec.org/RePEc:spr:isorms:978-1-4419-7961-2.

E. Bompard, R. Napoli, B. Wan, and N. Xie. A comprehensive model of virtual competition in distribution energy systems. European Transactions on Electrical Power, 21(1):89–98, 2011. doi: 10.1002/etep.415. URL https://onlinelibrary. wiley.com/doi/abs/10.1002/etep.415.

C. Bustos, D. Watts, and D. Olivares. The evolution over time of distributed energy resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs. Applied Energy, 256:113903, 2019. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2019.113903. URL http: //www.sciencedirect.com/science/article/pii/S0306261919315909.

CCEE. Mecanismo de Compensação de Sobras e Déficits - MCSD. Nota Técnica, 1 2013. Câmara de Comercialização de Energia Elétrica.

CEMIG. Portal de Compras, 11 2015. URLhttp://compras.cemig.com.br.

P. Chiradeja and R. Ramakumar. An approach to quantify the technical benefits of distributed generation. IEEE Transactions on Energy Conversion, 19(4):764–773, 2004.

B. H. Chowdhury and A. W. Sawab. Evaluating the value of distributed photo- voltaic generations in radial distribution systems. IEEE Transactions on Energy Conversion, 11(3):595–600, 1996.

M. Cohen and D. Callaway. Effects of distributed PV generation on California’s distri- bution system, part 1: Engineering simulations. Solar Energy, 128:126 – 138, 2016. ISSN 0038-092X. doi: https://doi.org/10.1016/j.solener.2016.01.002. URL http: //www.sciencedirect.com/science/article/pii/S0038092X16000049. Spe-

cial issue: Progress in Solar Energy.

M. Cohen, P. Kauzmann, and D. Callaway. Effects of distributed PV gene- ration on California’s distribution system, part 2: Economic analysis. Solar Energy, 128:139 – 152, 2016. ISSN 0038-092X. doi: https://doi.org/10.1016/j. solener.2016.01.004. URL http://www.sciencedirect.com/science/article/ pii/S0038092X16000062. Special issue: Progress in Solar Energy.

Conselho Federal de Contabilidade. NBC T 16.9 – Depreciação, Amortização e Exaustão., 11 2008. URL https://www1.cfc.org.br/sisweb/SRE/docs/RES_ 1136.pdf. Resolução nº 1.136/2008.

T. W. Dakin. Electrical insulation deterioration treated as a chemical reaction rate phenomena. AIEE Transactions, 66:113–22., 1947.

P. Daponte, D. Grimaldi, A. Piccolo, and D. Villacci. A neural diagnostic system for the monitoring of transformer heating. Measurement, 18(1):35 – 46, 1996. ISSN 0263-2241. doi: https://doi.org/10.1016/0263-2241(96)00043-7. URL http: //www.sciencedirect.com/science/article/pii/0263224196000437.

A. P. Dobos. PVWatts Version 5 Manual. Technical report, National Renewable Energy Laboratory - NREL, 2014. URLhttps://www.nrel.gov/docs/fy14osti/ 62641.pdf.

Referências 137 A. Driesse, P. Jain, and S. Harrison. Beyond the curves: Modeling the electrical efficiency of photovoltaic inverters. In 2008 33rd IEEE Photovoltaic Specialists Conference, pages 1–6, 2008. doi: 10.1109/PVSC.2008.4922827.

R. C. Dugan and T. E. McDermott. An open source platform for collaborating on smart grid research. In 2011 IEEE Power and Energy Society General Meeting, pages 1–7, 2011.

R. C. Dugan, J. A. Taylor, and D. Montenegro. Energy storage modeling for distribution planning. IEEE Transactions on Industry Applications, 53(2):954–962, 2017. doi: 10.1109/TIA.2016.2639455.

EIA. Battery storage in the united states: An update on market trends. technical report, 6 2020. U.S. Department of Energy Washington, DC 20585.

EPRI. Basic transformer life characteristics. Technical report, Electric Power Research Institute, EPRI, 1982a.

EPRI. Basic research on transformer life characteristics. Technical report, Electric Power Research Institute, 1982b.

R. L. Fares and C. W. King. Trends in transmission, distribution, and administration costs for U.S. investor-owned electric utilities. Energy Policy, 105:354 – 362, 2017. ISSN 0301-4215. doi: https://doi.org/10.1016/j.enpol.2017.02.036. URL

http://www.sciencedirect.com/science/article/pii/S0301421517301118.

H. D. Faria, J. G. S. Costa, and J. L. M. Olivas. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renewable and Sustainable Energy Reviews, 46:201 – 209, 2015. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2015.02.052. URL http: //www.sciencedirect.com/science/article/pii/S1364032115001409.

H. L. Favero and M. Lonardoni. Contabilidade: teoria e prática, volume 2. Atlas, São Paulo, 6 edition, 1997.

GESEL, M. de Energia, U. de São Paulo, and CPFL. Projeto de P&D panorama e análise comparativa da tarifa de energia elétrica do Brasil com tarifas praticadas em países selecionados, considerando a influência do modelo institucional vigente. technical report, 06 2015. Relatório IV.

A. M. Gomes da Costa and W. Uturbey. Voltage regulation strategies for distributed pv generation. In 2017 IEEE Manchester PowerTech, pages 1–6, 2017. doi: 10.1109/PTC.2017.7981067.

M. Gray and W. Morsi. On the impact of single-phase plug-in electric vehicles charging and rooftop solar photovoltaic on distribution transformer aging. Electric Power Systems Research, 148:202 – 209, 2017a. ISSN 0378-7796. doi: https://doi. org/10.1016/j.epsr.2017.03.022. URLhttp://www.sciencedirect.com/science/ article/pii/S0378779617301220.

M. Gray and W. Morsi. On the role of prosumers owning rooftop solar photovoltaic in reducing the impact on transformer’s aging due to plug-in electric vehicles charging. Electric Power Systems Research, 143:563 – 572, 2017b. ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2016.10.060. URL http://www.sciencedirect. com/science/article/pii/S0378779616304679.

F. Hinz, M. Schmidt, and D. Möst. Regional distribution effects of different electricity network tariff designs with a distributed generation structure: The case of Germany. Energy Policy, 113:97 – 111, 2018. ISSN 0301-4215. doi: https://doi.org/10.1016/ j.enpol.2017.10.055. URL http://www.sciencedirect.com/science/article/ pii/S0301421517307309.

I. Hohlein and A. J. Kachler. Aging of cellulose at transformer service temperatu- res. part 2. influence of moisture and temperature on degree of polymerization and formation of furanic compounds in free-breathing systems. IEEE Electrical Insulation Magazine, 21(5):20–24, 2005.

A. Hoke, R. Butler, J. Hambrick, and B. Kroposki. Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders. IEEE Transactions on Sustainable Energy, 4(2):350–357, April 2013. ISSN 1949-3037. doi: 10.1109/ TSTE.2012.2225115.

IEA. Transition from uni directional to bi directional distribution grids. technical report, 03 2014. ISBN 978-3-906042-24-4.

IEA. International energy agency, 2019. URL https://www.iea.org/ fuels-and-technologies/energy-storage. Energy storage.

IEC60076-7. Power transformers - Part 7: Loading guide for mineral-oil-immersed power transformers. Std, 60076-7, 1 2018. ISBN 978-2-8322-5279-6.

IEEE. IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers. IEEE Std C57.12.00-2010 (Revision of IEEE Std C57.12.00-2006), pages 1–70, 2010. doi: 10.1109/IEEESTD.2010.5575268.

Referências 139 IEEEC57.91. IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-

Voltage Regulators. IEEE Std C57.91-2011 (Revision of IEEE Std C57.91-1995), pages 1–123, March 2012. ISSN null. doi: 10.1109/IEEESTD.2012.6166928. INMET. Instituto Nacional de Meteorologia, 2020. URL https://www.inmet.gov.

br.

I. R. E. A. IRENA. Electricity storage and renewables: Costs and markets to 2030. Technical report, 10 2017. URL https://www.irena.org/publications/2017/ Oct/Electricity-storage-and-renewables-costs-and-markets.

A. Jahromi, R. Piercy, S. Cress, J. Service, and W. Fan. An approach to power transformer asset management using health index. IEEE Electrical Insulation Magazine, 25(2):20–34, 2009.

T. Jamasb and M. Pollitt. Benchmarking and Regulation of Electricity Transmission and Distribution Utilities: Lessons from International Experience. Cambridge Working Papers in Economics 0101, Faculty of Economics, University of Cambridge, Jan. 2001. URL https://ideas.repec.org/p/cam/camdae/0101.html.

J. A. Jardini, J. L. P. Brittes, L. C. Magrini, M. A. Bini, and J. Yasuoka. Power transformer temperature evaluation for overloading conditions. IEEE Transactions on Power Delivery, 20(1):179–184, 2005.

P. Joskow. Lessons learned from electricity market liberalization. The Energy Journal, 29:9–42, 09 2008. doi: 10.5547/ISSN0195-6574-EJ-Vol29-NoSI2-3.

M. Killer, M. Farrokhseresht, and N. G. Paterakis. Implementation of large-scale li-ion battery energy storage systems within the emea region. Applied Energy, 260:114166, 2020. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2019.114166. URL

http://www.sciencedirect.com/science/article/pii/S0306261919318537.

J. Koskela, K. Lummi, A. Mutanen, A. Rautiainen, and P. Järventausta. Utilization of electrical energy storage with power-based distribution tariffs in households. IEEE Transactions on Power Systems, 34(3):1693–1702, 2019. doi: 10.1109/TPWRS.

2018.2879612.

J. Koskela, A. Rautiainen, and P. Järventausta. Using electrical energy storage in residential buildings - sizing of battery and photovoltaic panels based on electricity cost optimization. Applied Energy, 239:1175 – 1189, 2019. ISSN 0306- 2619. doi: https://doi.org/10.1016/j.apenergy.2019.02.021. URL http://www. sciencedirect.com/science/article/pii/S0306261919303113.

S. Kufeoglu and M. G. Pollitt. The impact of PVs and EVs on domestic electricity network charges: A case study from Great Britain. Energy Policy, 127:412 – 424, 2019. ISSN 0301-4215. doi: https://doi.org/10.1016/j.enpol.2018.12.012. URL

http://www.sciencedirect.com/science/article/pii/S0301421518308085.

M. F. Lachman, P. J. Griffin, W. Walter, and A. Wilson. Real-time dynamic loading and thermal diagnostic of power transformers. IEEE Transactions on Power Delivery, 18(1):142–148, 2003.

B. C. Lesieutre, W. H. Hagman, and J. L. Kirtley. An improved transformer top oil temperature model for use in an on-line monitoring and diagnostic system. IEEE Transactions on Power Delivery, 12(1):249–256, 1997.

R. Liao, B. Xiang, L. Yang, C. Tang, and H. Sun. Study on the thermal aging cha- racteristics and bond breaking process of oil-paper insulation in power transformer. In Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, pages 291–296, 2008.

J. Linssen, P. Stenzel, and J. Fleer. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Ap- plied Energy, 185:2019 – 2025, 2017. ISSN 0306-2619. doi: https://doi.org/10. 1016/j.apenergy.2015.11.088. URL http://www.sciencedirect.com/science/ article/pii/S030626191501538X. Clean, Efficient and Affordable Energy for a

Sustainable Future.

J. Liu, C. Hu, A. Kimber, and Z. Wang. Uses, cost-benefit analysis, and mar- kets of energy storage systems for electric grid applications. Journal of Energy Storage, 32:101731, 2020. ISSN 2352-152X. doi: https://doi.org/10.1016/j. est.2020.101731. URLhttp://www.sciencedirect.com/science/article/pii/ S2352152X20315681.

A. Lucas, G. Prettico, A. Mengolini, G. Fulli, and F. Gangale. Dis- tribution system operators observatory. Cambridge working pa- pers in economics, Institute for Energy and Transport, June 2016. URL https://op.europa.eu/en/publication-detail/-/publication/ 89619770-2e04-11e6-b497-01aa75ed71a1.

A. R. Manito, A. Pinto, and R. Zilles. Evaluation of utility transformers’ lifespan with different levels of grid-connected photovoltaic systems penetration. Renewable Energy, 96:700 – 714, 2016. ISSN 0960-1481. doi: https://doi.org/10.1016/j.

Referências 141 renene.2016.05.031. URL http://www.sciencedirect.com/science/article/ pii/S0960148116304426.

C. L. Masters. Voltage rise: the big issue when connecting embedded generation to long 11 kv overhead lines. Power Engineering Journal, 16(1):5–12, Feb 2002. ISSN 0950-3366. doi: 10.1049/pe:20020101.

MATLAB. Version 9.7 (R2019b). The MathWorks Inc., Natick, Massachusetts, 2019.

I. A. Metwally. Failures, monitoring and new trends of power transformers. IEEE Potentials, 30(3):36–43, 2011.

MIT. Utility of the future. technical report, 12 2016. ISBN 978-0-692-80824-5.

V. M. Motsinger. Loading transformers by temperature. AIEE Transactions, 49: 776–792., 1930.

V. M. Motsinger and P. M. Ketchum. Emergency overloading of air-cooled oil- immersed power transformers by hot-spot temperatures. AIEE Transactions, 61: 906–16., 1944.

S. M. Mousavi Agah and H. Askarian Abyaneh. Quantification of the distribution transformer life extension value of distributed generation. IEEE Transactions on Power Delivery, 26(3):1820–1828, 2011. doi: 10.1109/TPWRD.2011.2115257. E. Mulenga, M. H. Bollen, and N. Etherden. A review of hosting capacity

quantification methods for photovoltaics in low-voltage distribution grids. In- ternational Journal of Electrical Power & Energy Systems, 115:105445, 2020. ISSN 0142-0615. doi: https://doi.org/10.1016/j.ijepes.2019.105445. URL http: //www.sciencedirect.com/science/article/pii/S0142061519306490.

L. F. Ochoa, A. Padilha-Feltrin, and G. P. Harrison. Evaluating distributed generation impacts with a multiobjective index. IEEE Transactions on Power Delivery, 21 (3):1452–1458, 2006.

F. Ortiz, I. Fernandez, A. Ortiz, C. J. Renedo, F. Delgado, and C. Fernandez. Health indexes for power transformers: a case study. IEEE Electrical Insulation Magazine, 32(5):7–17, 2016.

H. Pezeshki, P. J. Wolfs, and G. Ledwich. Impact of high pv penetration on distribution transformer insulation life. IEEE Transactions on Power Delivery, 29 (3):1212–1220, June 2014. ISSN 1937-4208. doi: 10.1109/TPWRD.2013.2287002.

A. Picciariello, K. Alvehag, and L. Soder. Impact of network regulation on the incentive for dg integration for the dso: Opportunities for a transition toward a smart grid. IEEE Transactions on Smart Grid, 6:1–1, 07 2015a. doi: 10.1109/TSG. 2015.2409313.

A. Picciariello, C. Vergara, J. Reneses, P. Frías, and L. Soder. Electricity distribution tariffs and distributed generation: Quantifying cross-subsidies from consumers to prosumers. Utilities Policy, 37:23 – 33, 2015b. ISSN 0957-1787. doi: https://doi. org/10.1016/j.jup.2015.09.007. URL http://www.sciencedirect.com/science/ article/pii/S0957178715300230.

L. W. Pierce. An investigation of the thermal performance of an oil filled transformer winding. IEEE Transactions on Power Delivery, 7(3):1347–1358, 1992.

L. W. Pierce. Predicting liquid filled transformer loading capability. IEEE Transac- tions on Industry Applications, 30(1):170–178, 1994.

H. Queiroz, R. Amaral Lopes, and J. Martins. Automated energy storage and curtailment system to mitigate distribution transformer aging due to high renewable energy penetration. Electric Power Systems Research, 182:106199, 2020. ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2020.106199. URL http://www. sciencedirect.com/science/article/pii/S0378779620300067.

M. Reno and K. Coogan. Grid Integrated Distributed PV (GridPV) Version 2. Technical report, 01 2014.

V. Rigoni, L. F. Ochoa, G. Chicco, A. Navarro-Espinosa, and T. Gozel. Representative residential lv feeders: A case study for the north west of england. In 2016 IEEE Power and Energy Society General Meeting (PESGM), pages 1–1, 2016.

T. K. Saha. Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 10(5):903–917, Oct 2003. ISSN 1558-4135. doi: 10.1109/TDEI.2003.1237337.

A. Samadi, R. Eriksson, L. Söder, B. G. Rawn, and J. C. Boemer. Coordinated active power-dependent voltage regulation in distribution grids with pv systems. IEEE Transactions on Power Delivery, 29(3):1454–1464, 2014. doi: 10.1109/TPWRD.

2014.2298614.

R. Sioshansi. Retail electricity tariff and mechanism design to incentivize distributed renewable generation. Energy Policy, 95:498 – 508, 2016. ISSN 0301-4215. doi:

Referências 143 https://doi.org/10.1016/j.enpol.2015.12.041. URL http://www.sciencedirect. com/science/article/pii/S0301421515302548.

T. Solver and L. Soder. Comparison of incentives for distribution system reliability in performance-based regulations. In 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies. Proceedings, volume 2, pages 485–490 Vol.2, 2004.

M. Srinivasan and A. Krishnan. Article: Prediction of transformer insulation life with an effect of environmental variables. International Journal of Computer Applications, 55(5):43–48, October 2012. Full text available.

D. Susa and H. Nordman. Iec 60076-7 loading guide thermal model constants estimation. International Transactions on Electrical Energy Systems, 23, 10 2013. doi: 10.1002/etep.1631.

R. Torquato, D. Salles, C. Oriente Pereira, P. C. M. Meira, and W. Freitas. A comprehensive assessment of PV Hosting Capacity on Low-Voltage distribution systems. IEEE Transactions on Power Delivery, 33(2):1002–1012, 2018.

O. Tremblay, L. Dessaint, and A. Dekkiche. A generic battery model for the dynamic simulation of hybrid electric vehicles. In 2007 IEEE Vehicle Power and Propulsion Conference, pages 284–289, 2007. doi: 10.1109/VPPC.2007.4544139.

Y. Wu, J. Lin, and H. Lin. Standards and guidelines for grid-connected photovoltaic generation systems: A review and comparison. IEEE Transactions on Industry Applications, 53(4):3205–3216, 2017. doi: 10.1109/TIA.2017.2680409.

X. Xu, J. Li, Z. Xu, J. Zhao, and C. S. Lai. Enhancing photovoltaic hosting capacity - a stochastic approach to optimal planning of static var compensator devices in distribution networks. Applied Energy, 238:952 – 962, 2019. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2019.01.135. URL http:// www.sciencedirect.com/science/article/pii/S0306261919302016.

145

Apêndice A

Hosting Capacity

da rede sem SAEB

A capacidade de hospedagem fotovoltaica é definida como a capacidade total máxima de geração fotovoltaica que uma rede de distribuição pode acomodar sem violar as restrições operacionais, especialmente as restrições de tensão nas barras (Xu et al., 2019). Vários fatores podem impactar a capacidade de hospedagem fotovoltaica, como características da rede de distribuição e critérios de limitações definidos pelos operadores da rede (Ayres et al., 2010) (Baran et al., 2012), o que torna o estudo complexo e desafiador. A capacidade de hospedagem fotovoltaica tornou-se uma preocupação para as concessionárias em cenários de alta penetração, em razão dos impactos da geração distribuída, como sobretensão, desequilíbrio de tensão e carregamento de equipamentos (condutores e transformadores) (Torquato et al.,2018).

Esta secção da tese avalia os impactos da GD-FV relacionados com sobrecorrente nas linhas e a sobretensão nas barras de carga para estimar o limite de penetração da GD-FV. Estudos recentes mostram que esses são os principais impactos a serem considerados, com o propósito de avaliar o hosting capacity da rede (Xu et al.,2019) (Mulenga et al.,2020). Além disso, a sobretensão é considerada o principal limitador da GD-FV (Torquato et al.,2018). A Tabela 17 mostra os limites estáveis de tensão precária e crítica no Brasil, descritos no PRODIST (ANEEL, 2018b). Como pode ser visto, a diferença entre o limite superior de tensão crítica e a tensão precária é de apenas 1%. Assim, a fim de avaliar o limite máximo de penetração FV, sem que os limites operacionais sejam violados, esta tese adota uma postura conservadora e considera que sobretensões superiores a 5% da tensão nominal são críticas. A tensão na subestação foi setada em 1,0 p.u. em todos os alimentadores.

Para melhor visualização e entendimento do efeito da sobretensão nos alimen- tadores submetidos à geração fotovoltacia, é mostrado naFigura 66 o boxplot das

Tabela 17 – Faixas aplicadas às tensões nominais inferiores a 1 kV

Tensão de Atendimento (TA) Faixa de Variação da Tensão de Leitura (TL)em Relação à Tensão Nominal (TN)

Adequada 0,92 TN ≤ TL ≤ 1,05 TN

Precária 0,87 TN ≤ TL ≤ 0,92 TN or 1,05 TN ≤ TL ≤ 1,06 TN

Crítica TL <0,87 TN or TL >1,06 TN

Fonte: (ANEEL,2018b).

Figura 66 – Boxplot da tensão nas barras do alimentador 1

tensões em todas as barras do alimentador 1. As tensões podem chegar a 1,15 p.u. da tensão nominal ao meio dia em penetrações maiores que 70%. Em contrapartida, nos horários de alta demanda (10h - 19h), a tensão pode ficar abaixo de 0,9 p.u.

A Figura 67 diz respeito à tensão nas barras do alimentador 11, que tem regulador de tensão. Nesses alimentadores a sobretensão é um grande limitador da GD-FV. Analisando o perfil de tensão nas barras no cenário-base, é possível concluir que há sim a necessidade do SVR no alimentador 11, uma vez que, nos horários de maior carga (8h - 16h), a tensão pode atingir valores próximos a 0,80 p.u. Os SVR da distribuidora em estudo são ajustados para elevar a tensão, ao longo do

147

alimentador, em 5%; consequentemente, a GD-FV causa sobrensões muito severas e chega a aproximadamente 25-30%, como pode ser visto na Figura 67. Os SVRs automáticos regulam a tensão de acordo com uma referência e também podem