• Nenhum resultado encontrado

ON NEW CESARO-ORLICZ DOUBLE DIFFERENCE SEQUENCE SPACE

N/A
N/A
Protected

Academic year: 2016

Share "ON NEW CESARO-ORLICZ DOUBLE DIFFERENCE SEQUENCE SPACE"

Copied!
8
0
0

Texto

(1)

ON NEW CES `ARO-ORLICZ DOUBLE DIFFERENCE SEQUENCE SPACE

O ˘GUZ O ˘GUR AND CENAP DUYAR

Abstract. The aim of this paper is to introduce the Ces`aro-Orlicz double difference sequence spaceCes(2)M (△, p). We study some topological properties of this space and give some inclusion relations.

1. Introduction

Throughout this work,N,R, wandw2 denote the sets of positive integers, real

numbers, single real sequences and double real sequences, respectively. First of all, let us recall preliminary definitions and notations.

A double sequence on a normed linear spaceX is a function xfrom N×Ninto

X and briefly denoted by x = (xkl). If for every ε >0 there exists nε ∈ Nsuch that kxkl−akX < εwheneverk, l > nεthen a double sequence (xkl) is said to be converges (in terms of Pringsheim) toa∈X [16].

A double seriesP∞

k,l=1xklis convergent if and only if its sequence of partial sums (snm) is convergent (see [2],[3]), wheresnm=Pnk=1

Pm

l=1xkl for allm, n∈N. LetX be a linear space. A functionp:X →Ris calledparanorm, if

i)p(0) = 0,

ii)p(x)≥0 for allx∈X, iii)p(−x) =p(x) for all x∈X,

iv)p(x+y)≤p(x) +p(y) for allx, y∈X,

v) if (λn) is a sequence of scalars withλn→λasn→ ∞and (xn) is a sequence of vectors with p(xn−x) → 0 as n → ∞, then p(λnxn−λx) → 0 as n → ∞ (continuity of scalars multiplication).

A paranormpfor whichp(x) = 0 impliesx= 0 is calledtotal [12].

An Orlicz function is a functionM : [0,∞)→[0,∞) which is continuous, non-decreasing and convex with M(0) = 0, M(x)>0 for x >0 and M(x)→ ∞ as x→ ∞.

An Orlicz functionM can always be represented in the following integral form:

M(x) = x R

0

η(t)dt, whereη is known as the kernel ofM, is right differentiable for

t≥0,η(0) = 0,η(t)>0 for t >0,η is nondecreasing andη(t)→ ∞ast→ ∞. An Orlicz functionM is said to be satisfied the ∆2-condition if there are T >0

anda >0 such thatM(a)>0 andM(2u)≤T M(u) for allu∈[0, a] (see [10]). For 1≤p <∞, the Ces`aro sequence spaceCesp is defined by

2000Mathematics Subject Classification. 40A05, 40A25, 40A30.

Key words and phrases. Double sequences, Orlicz function, paranorm, Ces`aro sequence space.

ROMANIAN

JOURNAL

OF

MATHEMATICS

AND

COMPUTER

SCIENCE,

2014,

VOLUME

4,

ISSUE

2,

(2)

Cesp=  

 x∈w:

X

j=1

1 j

j X

i=1

|xi| !p

<∞

 

 ,

equipped with norm

kxk= 

X

j=1

1 j

j X

i=1

|xi| !p

1

p

.

This space was first introduced by Shiue [18]. It is very useful in the theory of matrix operators and others. Sanhan and Suantai introduced and studied a gen-eralized Ces`aro sequence space Ces(p), where p = (pj) is a bounded sequence of positive real numbers (see [17]). Later, this space was studied by many authors in [4],[7],[9],[11],[14],[15].

The notion of difference sequence space was introduced by Kızmaz in [8] in 1981 as follows:

X(△) ={x= (xk)∈w: (xk−xk+1)∈X}

forX =ℓ∞, c, c0. Subsequently difference sequence spaces has been discussed in

Ahmad and Mursaleen [1], Malkowsky and Parashar [13], Et and Ba¸sarır [5], Et and C¸ olak [6] and others.

In this work, we introduce double sequence spacesCes(2)M(△, p) as follows; Let p= (pnm) be a bounded double sequence of positive real numbers and M be an Orlicz function. The spaceCes(2)M(△, p) is defined by

Ces(2)M(△, p) =  

x∈w2:

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

<∞,∃ρ >0  

 ,

where △xij =xi−1,j−1−xi−1,j −xi,j−1+xij for all i, j ∈Nand the terms with negative subscript are assume zero.

The following inequality will be used throughout this paper. Let (pnm) be a bounded double sequence of strictly positive real numbers and denote H = supn,mpnm.For any complexanm andbnm we have

|anm+bnm|pnm ≤D.(|anm|pnm+|bnm|pnm)

whereD= max 1,2H−1

.Also, for any complexλ,

|λ|pnm max1,|λ|H.

2. MAIN RESULTS

Theorem 1. Let(pnm)be bounded. The setCes(2)M(△, p)of double sequences is a linear space over the real field R.

Proof. Letx, y ∈Ces(2)M(△, p) andλ, β ∈C. Then there exist ρ1>0, ρ2 >0 such

that

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△xij| ρ1

 

 pnm

<∞

ROMANIAN

JOURNAL

OF

MATHEMATICS

AND

COMPUTER

SCIENCE,

2014,

VOLUME

4,

ISSUE

2,

(3)

and ∞ X n,m=1  M   1 nm n,m X i,j=1

|△yij| ρ2     pnm

<∞.

Let α, β ∈ R and ρ3 = max{2|α|ρ1,2|β|ρ2}. Since M is non-decreasing convex

function, we have

∞ X n,m=1  M   1 nm n,m X i,j=1

|α△xij+β△yij| ρ3     pnm ≤ ∞ X n,m=1  M  

|α|

nm n,m X

i,j=1

|△xij| ρ3

+ |β| nm

n,m X

i,j=1

|△yij| ρ3     pnm ≤ ∞ X n,m=1  M   1 2nm n,m X i,j=1

|△xij| ρ1 + 1 2nm n,m X i,j=1

|△yij| ρ2     pnm ≤ ∞ X n,m=1 1 2pnm

 M   1 nm n,m X i,j=1

|△xij| ρ1

+M   1 nm n,m X i,j=1

|△yij| ρ2     pnm < ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij| ρ1

+M   1 nm n,m X i,j=1

|△yij| ρ2     pnm ≤ D. ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij| ρ1     pnm +D. ∞ X n,m=1  M   1 nm n,m X i,j=1

|△yij| ρ2     pnm

< ∞,

where D = max 1,2H−1

. This shows that λx +βy ∈ Ces(2)M(△, p) and so

Ces(2)M(△, p) is a linear space.

Theorem 2. The double sequence spaceCes(2)M(△, p) is a paranormed space with the paranorm

g(x) = inf   

 

ρpqrR >0 :   ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij| ρ     pnm  1 R

≤1, q, r∈N

  

 

whereH = supn,mpnm<∞ andR= max (1, H).

Proof. It is clear that g(x) =g(−x) and g(0) = 0. For any x, y ∈ Ces(2)M(△, p), there existρ1, ρ2>0 such that

  ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij| ρ1

 

 pnm

(4)

and   ∞ X n,m=1  M   1 nm n,m X i,j=1

|△yij| ρ2     pnm  1 R

≤1.

Letρ3= 2

R

h(ρ12),whereh= infpnm>0. SinceM is a non-decreasing convex function, we have

  ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij+△yij| ρ3     pnm  1 R ≤   ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij| 2Rh(ρ12)

+ 1 nm

n,m X

i,j=1

|△yij| 2Rh(ρ12)

    pnm  1 R ≤   ∞ X n,m=1   ρ1

2Rh(ρ12) M   1 nm n,m X i,j=1

|△xij| ρ1

+ ρ2

2Rh(ρ12) M   1 nm n,m X i,j=1

|△yij| ρ2

 

 pnm

 1 R ≤   ∞ X n,m=1   1 2Rh

M   1 nm n,m X i,j=1

|△xij| ρ1     pnm  1 R +   ∞ X n,m=1   1 2Rh

M   1 nm n,m X i,j=1

|△yij| ρ2     pnm  1 R = 1 2   ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij| ρ1     pnm  1 R +1 2   ∞ X n,m=1  M   1 nm n,m X i,j=1

|△yij| ρ2     pnm  1 R

≤ 1.

Sinceρ1, ρ2, ρ3 are positive real numbers we get

g(x+y) = inf      ρ pqr R

3 >0 :

  ∞ X n,m=1  M   1 nm n,m X i,j=1

|△xij+△yij| ρ3     pnm  1 R

≤1;q, r∈N

(5)

≤ inf   

  ρ

pqr R

1 >0 :

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△xij| ρ1

 

 pnm

1

R

≤1;q, r∈N

  

 

+ inf   

  ρ

pqr R

2 >0 :

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△yij| ρ2

 

 pnm

1

R

≤1;q, r∈N

  

 

= g(x) +g(y).

Let (xn) =

xnij be any sequence in the spaceCes(2)M(△, p) such thatg(xn−x)→

0, asn→ ∞and (λn) is a sequence of reals withλn →λ,as n→ ∞.Then, since the inequality

g(xn)≤g(x) +g(xn−x)

holds by subadditivity of the function g,{g(xn)}is bounded. Taking into account this fact we therefore derive the inequality

g(λnxn−λx)≤ |λn−λ|g(xn) +|λ|g(xn−x)

which tends to zero asn→ ∞.Hence, the scalar multiplication is continuous. That is to say thatgis a paranorm on the space Ces(2)M(△, p), as asserted.

Theorem 3. The spaceCes(2)M(△, p) is complete with respect to its paranorm. Proof. Let (xs) =

xsij be any Cauchy sequence in the spaceCes(2)M(△, p). Since (xs) is a Cauchy sequence, we have

(1) g xs−xt

→0

ass, t→ ∞.Hence, we get

△xsij− △xtij →0 as s, t → ∞ for alli, j ∈ N. Then, we have

xs

ij is a Cauchy sequence in R for each fixedi, j∈N.

Thus, there existsxij∈Rsuch thatxsij→xij as s→ ∞and sayx=xij.Since M is continuous, by (1) we get

g(xs−x)→0

ast→ ∞.

Since Ces(2)M(△, p) is linear space, we getx={xij} ∈Ces(2)M(△, p). This

com-pletes the proof.

Theorem 4. Let 0< pnm≤qnm<∞. ThenCes

(2)

M(△, p)⊂Ces

(2)

M(△, q).

Proof. Letx∈Ces(2)M(△, p),then there existsρ >0 such that

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

<∞.

Hence we haveMnm1 Pn,m i,j=1

|△xij| ρ

<1 for large values of n, m. Then, we get

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 qnm

X

n,m=1

M 

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

<∞

ROMANIAN

JOURNAL

OF

MATHEMATICS

AND

COMPUTER

SCIENCE,

2014,

VOLUME

4,

ISSUE

2,

(6)

and sox∈Ces(2)M(△, q).

Theorem 5. Let M1 andM2 be Orlicz functions satisfying△2−condition. Then

(a)Ces(2)M

1(△, p)⊂Ces (2)

M2◦M1(△, p), (b)Ces(2)M

1(△, p)∩Ces (2)

M2(△, p)⊂Ces (2)

M1+M2(△, p).

Proof. (a) Letx∈Ces(2)M

1(△, p).Then there existsρ >0 such that ∞

X

n,m=1

M1

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

<∞.

SinceM1is a continuous function, we can find a real numberδwith 0< δ <1 such

thatM1(t)< ε.Letynm=M1

1

nm Pn,m

i,j=1 |△xij|

ρ

. Hence we write

X

n,m=1

[M2(ynm)]pnm = ∞

X

ynm≤δ

[M2(ynm)]pnm+ ∞

X

ynm>δ

[M2(ynm)]pnm.

By the properties ofM2, we have

(2)

X

ynm≤δ

[M2(ynm)]pnm ≤max1, M2(1)H ∞

X

ynm≤δ

[ynm]pnm.

Also,

M2(ynm)< M2

1 +ynm δ

< 1

2M2(2) + 1 2

2 ynm

δ

for ynm > δ.Since M2 satisfying△2−condition and ynmδ >1, there exists T > 0

such that

M2(ynm)<

1 2T

ynm

δ M2(2) + 1 2T

ynm

δ M2(2) =T ynm

δ M2(2). Therefore we have

(3)

X

ynm>δ

[M2(ynm)]pnm≤max

(

1,

TM2(2) δ

H) ∞ X

ynm>δ

[ynm]pnm .

Hence by the (2),(3),we get

X

n,m=1

(M2◦M1)

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

=

X

n,m=1

[M2(ynm)]pnm

≤ B·

X

ynm≤δ

[ynm]pnm

+F·

X

ynm>δ

[ynm]pnm

< ∞,

whereB = max

1, M2(1)H andF = max

1,TM2(2) δ

H

. HenceCes(2)M

1(△, p)

⊂Ces(2)M

2◦M1(△, p).

ROMANIAN

JOURNAL

OF

MATHEMATICS

AND

COMPUTER

SCIENCE,

2014,

VOLUME

4,

ISSUE

2,

(7)

(b) Letx∈Ces(2)M

1(△, p)∩Ces (2)

M2(△, p).Then there existsρ >0 such that

X

n,m=1

M1

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

<∞

and

X

n,m=1

M2

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

<∞.

Hence we get

X

n,m=1

(M1+M2)

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

≤ A·

X

n,m=1

M1

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

+A·

X

n,m=1

M2

 1 nm

n,m X

i,j=1

|△xij| ρ

 

 pnm

< ∞,

whereA= max

1,2H−1 .This completes the proof.

References

[1] Ahmad Z. U., Mursaleen, K¨othe-Toeplitz Duals of Some New Sequence Spaces and Their Matrix Maps, Pub. Inst. Math. Beograd, 42 (56) (1987), 57-61.

[2] Ba¸sar, F., Sever Y.,The Space Lq of Double Sequences, Math. J. Okayama Univ. 51(2009), 149-157.

[3] Ba¸sar, F.,Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, ˙Istanbul, 2012.

[4] Dutta H., Ba¸sar F.,A generalization of Orlicz sequence spaces by Ces´aro mean of order one,

Acta Math. Univ. Comen. 80 (2) (2011), 185-200.

[5] Et M., Ba¸sarır M.,On Some New Generalized Difference Sequence Spaces,Periodica Math. Hung., 35 (3) (1997), 169-176.

[6] Et M., C¸ olak R.,On Some Generalized Difference Sequence Spaces,Soochow J. Math. 21 (4), (1995), 377-386.

[7] Cui Y., Hudzik H., Petrot N., Suantai S., Szkymaszkiewicz A.,Basic Topological and Geo-metric Properties of Ces`aro-Orlicz Spaces, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 4, 2005.

[8] Kızmaz H.,On Certain Sequence Spaces,Canad. Math. Bull., Vol. 24 (2), 1981.

[9] Kubiak D., A Note on Ces`aro-Orlicz Sequence Spaces, J. Math. Anal. Appl. 349 (2009) 291-296.

[10] Krasnoselskii M. A., Rutickii Ya. B., Convex Functions and Orlicz Spaces, (Groningen: P. Nordhoff Ltd.), 1961.

[11] Lee P. Y.,Ces`aro Sequence Space,Math. Chronicle, 13 (1984), 29-45. [12] Maddox I. J.,Elements of Functional Analysis, Cambridge Univ. Press, 1970.

[13] Malkowsky E., Parashar E. D.,Matrix Transformation in Spaces of Bounded and convergent difference sequences of order m, Analysis, 17 (1997), 87-97.

[14] Mursaleen M., Ba¸sar F., Domain of Ces`aro mean of order one in some spaces of double sequences,Stud. Sci. Math. Hungar. 51 (3) (2014), 335-356.

[15] Petrot N., Suantai S., On Uniform Kadec-Klee Properties and Rodundity in Generalized Ces`aro Sequence Spaces, Internat. J. Math. Sci., 2 (2004), 91-97.

ROMANIAN

JOURNAL

OF

MATHEMATICS

AND

COMPUTER

SCIENCE,

2014,

VOLUME

4,

ISSUE

2,

(8)

[16] Pringsheim A.,Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.

[17] Sanhan W., Suantai S.,On k−nearly Uniform Convex Property in Generalized Ces`aro Se-quence Spaces,Internat. J. Math. Sci., 57 (2003), 3599-3607.

[18] Shiue J. S.,On the Ces`aro Sequence Spaces,Tamkang J. Math., 1 (1970), 19-25.

(O.O˘gur) Giresun University, Art and Science Faculty, Department of Mathemat-ics, G¨ure, Giresun, TURKEY, [C.Duyar] Ondokuz Mayıs University, Art and Science Faculty, Department of Mathematics, Kurupelit campus, Samsun, TURKEY

E-mail address:oguz.ogur@giresun.edu.tr E-mail address:cenapd@omu.edu.tr

ROMANIAN

JOURNAL

OF

MATHEMATICS

AND

COMPUTER

SCIENCE,

2014,

VOLUME

4,

ISSUE

2,

Referências

Documentos relacionados

criativos, possibilitando condições que potencializaram a aprendizagem significativa. Os estudantes foram apresentados a artigos de jornal, plantas baixas e relatos que

compared to the cast iron treatment using master alloys, the operation of cast iron nodularising by PE technique is additionally very promising since it provides safe

Water glass modification with the colloidal solution of ZnO nanoparticles in propanol confirmed the effect of modifier on the water glass wettability of sand

Power demand of the mixer’s drive reveals the mixer’s operating characteristics and reliable monitoring of the mixing processes involving the evaluation of power consumption

Hazarika, On paranormed ideal convergent generalized difference strongly summable sequence spaes defined over n -normed spaces, International Scholarly Research Network,

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

ABSTRACT : Adults of 3 tick species (Acari: Argasidae) identified as Antricola guglielmonei, Antricola delacruzi, and Carios rondoniensis n.. were collected on bat guano in a cave

A sociedade está inserida em um mundo globalizado, onde as informações tornaram-se preponderantes para que as organizações mantenham seus lugares no mercado