• Nenhum resultado encontrado

Explicit and implicit approach of sensitivity analysis in numerical modelling of solidification

N/A
N/A
Protected

Academic year: 2017

Share "Explicit and implicit approach of sensitivity analysis in numerical modelling of solidification"

Copied!
6
0
0

Texto

(1)

ISSN ( I Vol * - - - : - I I

F O U N D R '

I E E R I N G

-.

u b l i h d quarterly as the organ of the Foundry Commission or the Pdish Amdemy oTSciences

Explicit

and

implicit

approach

of sensitivity analysis in numerical

modelling of solidification

E. Majchrzak

'' b*,

G .

Kalaka

a

Department

for

Strength

of

Materials and CornputationaI

Mechanics

Silesian University

of Technology, Konarskiego 18a, 44- 100 Gliwice, Poland

"nstitute of

Mathematics

and

Computer

Science

Czeslochowa University

of Technology, Dabrowskiego 73,42-200

Czesrochowa, Poland

*

Corresponding auth0r.E-mail address: ewa.majchrzak@polsl.pl

Received 15.02.2008; accepted

in

revised

form

22.03.2008

Abstract

The explicit

and

implicit approaches

of

sensitivity analysis using thc boundary clement mcthod arc prcscntcd. In p,~rlicul,ir. thc problcm of casting solidification is considcrcd. A perturbation of an input parameter (For cxample the thermal conductivity of casting 111:acrial) cnuscs thc changes of transient ternpxaturc Field in thc domain analyzed. The methods of scnsitivity analysis allows to dctcrminc in maihcmniic~~I way the mutual connections bctwcen parameters pcfiurbations and final results. In the papcr some significant aspccls of compi~~ntional nlporithrns associated with cxplicit and implicit approachcs of sensitivizy analysis are demonstrated.

Keywords: Application of Information Technology to the Foundry Industry: Solidification Process: Numerical Tcchniqucs: Sensitivity Analysis; Borzndary Elcmcnt Mcthod

1.

Introduction

The thermal pmcesses proceeding in the casting domain arc described by the energy equalion (Fourier-KirchhoFf lype equation) and bor~ndary initial conditions resulting from thc technology considcml [ I , 2. 31. Thc transient tcmpcraturc field in thc casting domain is d e ~ n d e n t on the set of thermophysical parameters of material, coefficients appearing in the boundary condirions and initial (pouring) tcrnpx-aturc. The pcrtnhations of above selected input data cause the change of the course of solidification process. To analyzc thc conncctions bawccn the parameters perturbations and results of numerical simulations the sensitivity methods are applied [2,4,5.6.7.

Xj.

There are two basic approaches to scnsitivi~y analysis using b u n d a r y clement formulation: tlrc colriini~ous npproach . . and ~ h c discretized one [9]. In the continuous approach (explicit dirferen~iation method) thc anaIy~ical cxprcssions Ibr scnsizivitics

are derived and then they are calculated numerically using BEM.

(2)

2,

Governing equations

A casting-mould-cnvimnmcnt system is considcred. A transient tcmpcrature field in a casting sub-domain is dcscribcd by thc following equation

where k ( T ) is thc ~herrnal conductivity. c ( T ) is thc volumetric specific hcat, Q = Q (.r, I ) is thc sourcc function, T = T (,Y, t), .r, t denotc rcmpcraturc, spatid co-odinatcs and timc, rcspcctivcly.

As is well known. the source term Q(x. I) is proporlional to [he local solidification rate [I. 2-31. this means

wherc

lq

is the solid state Fraction at the neighborhood of the p i n t considcred from casting domain. Lv is the woli~metric latent heat.

If onc assumes 1hatL~ is thc known runction of tcmperaturc (thc scopc ofJT i s From 0 lo 1, of coursc) then

where the parameter

is called a substitute thermal capacity of mushy ronc sub-domain [ I , 21. In the casc of 'binary alloys the mushy zone sub-domain cornsponds to lhc temperarum interval [TI, TL

1,

where TS. TL are

lhc bordcr tcrnpcnjturcs dc~crrnining thc cnd and thc beginning of

the solidification process.

In lilcrature the several hypothcscs concerning ~ h c function describing a substitute thermal capacity of the mushy zone are

discussed [I, 21. In this papcr the s~~bstitute thcrmal capacity for cast steel is dcfincd as follows

On a casting surface

r

the Robin condition is given

X E

r :

- A n - V T = U ( T - T , , ) (8)

~vhcn: a

is

a substitute hcat t ~ n s f c t cocR?cicnt (influencc

of

mould).

T,

is a

convcntionalIy xsumcd ambicnt wmFrarurc.

For thc moment t = 0 thc initial tcrnpcratilrc distribution (pouring temperature) is known, namely

3.

Boundary

clement

method

To solvc the equation (7) the b o u n d q elcmcnt method has

been used. If the thcrmal dirrusivity is constant, this mcans a (T) = IrlC(T) = a = const, thcn for thc partial diffcrcntiat cquation (7) a fundamental solution is available [ IQ, 1 I, 3 21

where m is the problem dimension (rn = 1, 2, 3 correspnnds to ID.

2D, 3D problem, rcspcctivcly),

[O,

t ] is ~ h c time intcrval under consideration.

5

is the obscrvnrion point, r is thc distance bctwccn the points

6

and ,r.

In thc case of aon-constant thermal diffusivity the use of the fundamental solution ( IO) should bc accornpanicd by a timc marching technique in which a /T ) is assumcd conspit at thc beginning of each time step [ 131. So, thc fimc grid is introduced

wilh constant time step At = If- rJ-'.

Starting from the initial timc I" over each timc step [tf-'. t'], the value of a is taken as the mean avcragc, namcly

Baring on the approximation (12), the cquation (7) can be tmsformcd into the following integral equation for cach timc step [tf-I, f j ]

whcrc q

.

CI are the constant volumetric specific heats o f liquid

IT'

(c,.~,

r', ) ~ ( x . r " )d fl

and solid state. n

Because the .mlidification process proceeds in a rather small

interval of tempcraturc one can assumc the constant value of whcrc for E; E R:

(Q

= 1 and for

g

E T: R

(5)

E (0, 1 ), g (x. I ) = thcrrnal conductivity of cast stccl and thcn thc cquation (4) takcs -L".VTb, 4'*(5*xp r< = - L ~ + ~ F * ( C * X *

f!

t).

a form Fundamental solution T * ( s , x. [I. I ) has the following form

(7) T' = I

[4nof (r'

-

r ) ] " 1 2 40' (r" I )

(3)

Thc function rl*(& x, lf. I) can

be

calculakd analytically [I

11

internal cells and ~hm wc obtain lhc following syslcm o f algebraic equations ( i = 1,2.

....

N )

r -I

where

whcrc

and and cosak are

dimional

cosines

of

h e

normal

vcctor n.

For conslam clcrncnts with rcspcct to limc 110, I I], the

equation (13) can hc writrcn in thc Form

while

whcrc

Thc system ofcquations (22) can be wtirten in thc matrix form

and After determining the 'missing' boundary valucs

(Tf

or q,!). the

tcrnpcraturcs at intcrnal nodcs .r

'

E Q for time I { arc ca!culatd

using thc lorrnula(i=N+ 1 , N + 2,

....

N + L)

Eunclions h

(5

.r), 8

(5

s) arc dctcrmincd in analytical way [ I I ]

and then

4.

Sensitivity

anaIysis

-

explicit

differentiation method

Let

us consider thc scnsitivity o f he solidification problem

sotuiion with rcspcct to thc pnrnmcrcr p (c.g, p cornsponds to rhc thcrmal conductivity or hcat rmnsrcr coelficicnl or amhicnt tcmpcraturc).

Thc cxplicit diifcrcntlat ion mcthd, which hclongs to rhc conzinuous approach, hascs on thc ditfercntiat ion or governing equations with

respect

to thc paramctcr p [ 14, 15. 161. So. rhc diffcrcntia~ion o f cquntion (7) lcads to thc Tollnwing cquation

l~exp(-&)]p

3D problcm

and

I&erfc[&}

3 D problem

i?

( 5 , ~ )

= I

wbcrc U = aTBp is rhe sensitivity function.

Taking into account thc formula (7) thc cquarion (30) can hc wriaen in the form

(

2X ID problcm

(2 1 )

1

2D problem

(4)

J U

3)

C ( T )

57

~ C ( T ) ~ T (31) So. tbc system of cquarions (26) has bccn dilrcrcnrimctl with

.r E R : c ( T ) - =

>.VzU

+---

- --

3r 1 31

at)

Jr

respcct to the paramcterp and thcn

a~

aqf J H 3Tf

aP

311

all

aT"l (40) The houndary condition (8) is also dirrcrcntiatcd with rcsvct to -qf

+

G-

=

- T f

+

'II-

+

-T""

+

P-

p and thcn JP a l ~ JP

a

p

Diffcrcntiation of initial condition (9) gives

The cqualion (27) concerning inlcrnal nodm is also diffcrcntiatcd with rcspcct lop, nnrncl y

(34)

6. ID problem

In this way one obtains thc additional boundmy initial probtcm Thc casling of thickness 2D is andyzcd (ID problem). Taking

conncctd with the scnsitivit y r~lnction

U

dcscribcd by cquations inlo acmun1 the sYmmctrY. the fol[owi% boundary initia[ ~ m b l c m (31). (33). (34). This pmblcrn has hccn solvcd hy mcans o f thc

boundary element method. So. one obtains thc following systcm of algehnic equarions (c.f. equation (22))

I

o

a+

a2r

c .t c

n :

c(r)-

= 2,-

X

ar

ZG,

w,!

=f

H , ~

U;

+

ke,

U:-'

+

$z,,

Q:

(35)

. r = o :

g = h - = O

ar

I - l ,:I I . 1 I I

ax

and In this case the boundary is rcduccd lo rhc rwo pints. n a m l y

I

7;'

-

T,"' p i n t 1 (.r= 0) and p i n t 2 (.Y= D). Thc domain 10. D J is dividd into

(37) L linear internal cclls of thickncss h. 'Ihc ccntml points of thcsc cclls are nrimkml as 3, 4,

...,

L+2.

Thc system of cqunrions (26)

Tnc syslcm orcyua~ions (35) can k wrirlen in the rnarix form resulting from thc REM applica~lon has thc Following form

G W ' = H U 1

+

PU"'

+

Z Q 1

(38)

[

[ I

=

[

+

Aflcr dctcrmining the 'missing' boundary values ( ~ J o r

yf).

tbc

valucs of function U! at inkmat nodes .s ~ E for R time I a r ~

hJ-'

1

calculated using the formula ( i = N

+

1. N + 2.

....

N + L)

P,Z

...

PZL

U! =

i ~ , ,

W: -

t ~ , ~

W:

+

i$,

u/-'

+

t5,

:

p

(39)

1-1 1.1 1-1 1.1

whcre (c-f. equations (23). (24))

5.

Sensitivity

analysis

-

implicit

G , , = ~ [ E ; " O ) , G , , = ~ ( c ' , D )

differentiation

method

and

Thc implicit diffcrcntiation mcthod. which bclongs ro rhe h ( ~ ' , o ) , i # j

Hi1 = -112. i = j , , , 2 = { h ( ~ 1 9 4 9 -112. I = i * j j

discrcli7cd appmilch. hmcs on thc dilfcrenriation of rhc algebraic (46) houndary clcrncnt matrix cquations 191.

(5)

tet us assume that the parameter p

comspnds

to

the

thermal conductivity of casting rnatcrial. Using the explicit

approach

of scnsitivity

analysis

one obtains rhc following additional problcm

a q ,

ac,,

q[]+

(JC(T)ldh=

O

-

c.f. cquation (6))

- -

-

a h

an

3). 31. " '

a.

?!i0

(53)

7.

Example of

computations

In numerical computations thc following data havc bccn

introduced: 2D = 0.02 rn, 1- = 35 [Wl(mK)], c~ = 5.74 [ M J I ~ ~ ~ K ) ] , cs= 5.175 [ ~ ~ l r n ' K]. Lv=1957.5 [ ~ ~ l r n ~

1.

pouring tempcrnturc '1;)

=

1570

"

C, liquidus ternpmturc TL = 1505

"

C, soIidys tternpcrature

Ts=

I47OUC, heat transfer cocficient a = 250 [W/(m- K)j. ambient tcmpcrature T, = 600

"

C. The domains has bccn dividcd into 20 internal cells, time step At= 0.5 s.

In Figure 1 the ternpcralurc distribution in [he domain

considered [or times 3 0.20.

...,

100 s is shown.

The pmhlcrn /47) is

muplcd

with thc primary onc Icquation

(43)) hccauw in ordcr to solvc i~ [he dcrivativc aT/dr and hcat flux q should kw known.

In thc casc of implicit diffmliation method application the dcrivativcs

aG,

la), atfij

/a),

and 3Pil should hc calculatcd. Bccausc

and

Fig. I. Tcmpcr:~iurc dis~rihution and

Finally. the derivative

aP;,/ah

is calculated

?he system of equations connected with thc scnsitivity function has thc following form

Fig. 2. Courscs of scnsitivity runction

U

(6)

Figurc 2 illustrates thc courscs of lunction

U

= 3T/3?+ at thc points .v = O ('axis of symmcrry), .r = 0.005 m md .r = 0.01 m

(boundary) rrhtaincd Sry cxplicit and implicit diflcrcnt imion rncthod.

It is visihlc that thcsc courscs ;YC similar hut not idcntical.

8,

Conclusions

Scnsitivily annlysis is thc vcry cfkctivc loot in numerical modelling of solidification prohlcm. Ir allows to rcbuilt rhc basic solution on thc so!ulion conccrninp thc othm disturbed vduc of parameter. In thc p a r r thc cxplicit and implicit approaches using the houndary clemcnt mcthod havc h c n prcscntcd. Frum the mathcma~ical p i n 1 of vicw ~ h c cxplicia approach is sirnplcr, but thc implicit approach pivcs mow cxact rcsults.

Acknowledgements

This u ~ r k um hndcd by Grant No N N507 3592 33.

References

[GI

IE.

Mochnacki, J. S. Suchy. ldcntilica~ion of alloy tnicnt heat

on thc basis o f mould zcmpcraturc

(Pm

1). Archivcs of Fot~ndry 6,22 (2006) 324-330.

[71 A. Sluh.alcc. M. Klcihcr, Shape sensitivity analysis for nonlincar stcady-stnlc hcnt conduction prohIcms, Intcmational Journal o f IIcnt nnd Mass Transfer. Vol. 39 No 12 (1996) 2609-26 1 3.

[&I

B.

Mochnacki, A. Mctclski, Idcntifica~ion o f intcmat heat

sourcc capacity in rhc hctcmgcnmus domain. Scientific

Rcscmh af ~ h c Ins~iti~tc of Matbcrnatics and Computcr Scicncc, Czcstochowa Univcnity of Technology. l(4) ( 2 0 0 5 )

182-1 87.

I91

T,

Burczyhski, Sensitivity analysis, oytimi7Aq~ion and invcrsc

problcrns, 245-307, w: D.Rcskos. G.Maict. Roundmy

clement advances in solid mcch.mics. Springr Vcrtag. Wicn.

New York (2003).

[I01 C. A. Erebbia J. &rninguc;s Baund,vy clcrncnts. an introductory coursc. Cornpwta!ionnl Mcchnnics Pt~hlications.

McGnw-Hill Book Company, London ( 1992).

[ I I] E, Majchnak. Boundary clcrncnr mcthod in hcat tmnsfcr. h b l . or rhc Ctcst. Univ. of Tcchn.. Czcstochow~ (20111 ) (in Polish).

1121 A. Bokota.

S.

Iskierka, An analysis or the dirfi~sion-

[ I ] R. Mwhnacki, J. S. Suchy, Ni~rncricn! rncthods in convcaion prohlcm hy thc BEM, Engineering Analysis with

compuzaions o f foundry pmcesses, P I T A , Cracow ( 1 995). Boundary Elcmcnts, 15 ( 1995) 267-275.

121 R. S Y O P ~ . Sensitivity analysis and inverse pmhlcms rhc 1131 E. M + h m a K. F ~S. FWs, ~ Application .

or

thc BEM For

zhcrma! theory of foundry, Publ. of the Czest. Univ, of numerical solurion of nonlinear diffrrsion equation. Scientific

Tcchn.. Monographs, 124, Czcstochowa (2006). Rcscarch of thc Institurc of Mathcrnalics wd Computcr

[3] R. M ~ h n n c k i , E. Majchrzak, R. Smpa, J. S. Suchy. lnvcrsc Scicncc. C7cstochawa (2003b

prohlcms in lhc thermal thmt3' Scientific 1141

I:. Majchrmk, M. Jnsiliski,

G.

Knluh. hpplica~ion or shapc

R c s c ~ c h o f thc Institu~c of Mathematics and Computcr scnsi~ivity analysis in numcrical modelling of solidification

Scicncc, C;rcstochowa l(5) (2006) t54-179. proccss, Arch ivcs o f Foundry, 5 , 1 5 12005) 259-264.

[4] M. ~ l c i b c r , Pnramclcr sensitivity. J.Wilcv 6: Sons bd-e [ 1

S]

R. ~ t o p n , pnramctric ~ ~ ~ ~ ~ i t i ~ i i ~ rlnBIYFiF wlidificxtion

Chiclicstcr ( 1907). proccss. Archivcs o f Faundry 5. 15 (2005) 395404.

[51 K. Dcms. 13. Koussclcl. Scnsilivity analysis for krmsicnt heat [ I 61 E, ~ ~ j ~ h ~ ~ ~ k . ~ 3 . ~ ~ ~ lG, ~~~k~~~ ~ ~shaV scnsi,ivit!, ~ k i , conductic~n in n solid h d y . Stn~ctural Optimi7ation. 5 7 analysis in numcricnl inodcllinp n l solitlification. Archivcs of

( 1999). 3h45. Foundry Engineering. Vnl. 7.4 (20073 1 15-I?O.

Jawna

i nicjawna

rnctoda

analizy wra?liwoSci w

nurncrycznym

modclowaniv

pracesu krzepniecia

W art!kulc pmdstnwiono jawne i niejannc podcjScic nnnliv w~.liwoSci z ws!orjer\anicrn rnctody etcmcntb~v br.tgorrych.

1V stc/cgi~lnoki rnqatr?.tvano proces krzcpni~cia. Zaburzcnie paramclru wcc,iS~io\~~cgo (np. wspilcn.nnika pr+tc%%d/enia cicpta) powodi!jc rmiany p ~ l n tcrnpcntur_r. i v ro7wnPanym o b s ~ u z c . Mctody analizy 1vm2liwo6ci poz\toaInj;( w matcmal!.cmy spsrib pl-/cdsraw\ ii: rvzajcmnc A.alc)noici rniqd;l!. znh~trzcniami panrnetrbw a kohcowymi wynikami. W pracp pokmino najjlwn?nicjszc alipckry algoqqmdlv obliczenio~vych rwiqmn!.ch z j a w q i niujmvnq rnetodq annlizy wvra2liwoSci.

Imagem

Fig.  I.  Tcmpcr:~iurc  dis~rihution  and

Referências

Documentos relacionados

Obese children and adolescents already present with altered CVD risk markers, namely higher IR, triglycerides (TG), LDL cholesterol (LDLc) and C-reactive protein (CRP)

Addressing numerical sensitivity problems that arise in the application of enrichment proposals, two alternatives are adopted to stabilize the method: application

Comparing the three models is clear that the Bingham model can be used in very simple simulations of the damper response; although this model can reproduce

The approach combined experimental and numerical modal analysis, physical modeling and optimization of the isolator characteristics in view of ensuring the correct elastic decoupling

Esta ocorrência de múltiplas lesões noutras estruturas do casco na maioria dos casos referidos poderá sugerir que o trauma necessário para lesionar os LC poderá

In this paper we showed in detail the numerical analysis of exponential decay of the solutions of a numerical scheme in finite difference applied to coupled systems of

assembleias municipais e as câmaras municipais são eleitas diretamente, em lista própria, ao contrário do que acontece com os governos regionais e com o governo da

Ao iniciar a prática, o aluno apresentava melhorias em termos de coordenação, de ritmo, e pulsação, consequência do seu talento. Mas, ainda assim, quando mais evoluía,