• Nenhum resultado encontrado

ANALYSIS OF DEPENDENCE OF THE FLOW TEMPERATURE OF THE PLASTICIZED POLYMER ON THE CHEMICAL STRUCTURE AND CONCENTRATION OF THE POLYMER AND THE PLASTICIZER

N/A
N/A
Protected

Academic year: 2017

Share "ANALYSIS OF DEPENDENCE OF THE FLOW TEMPERATURE OF THE PLASTICIZED POLYMER ON THE CHEMICAL STRUCTURE AND CONCENTRATION OF THE POLYMER AND THE PLASTICIZER"

Copied!
7
0
0

Texto

(1)

691.175.5 + 678.7

Ⱥ

.

Ⱥ

.

Ⱥɫɤɚɞɫɤɢɣ

,

Ɇ

.

ɇ

.

ɉɨɩɨɜɚ

,

Ⱥ

.

ȿ

.

ȼɨɥɨɞɢɧɚ

ɎȽȻɈɍ

ȼɉɈ

«

ɆȽɋɍ

»

ȺɇȺɅɂɁ

ɁȺȼɂɋɂɆɈɋɌɂ

ɌȿɆɉȿɊȺɌɍɊɕ

ɌȿɄɍɑȿɋɌɂ

ɉɅȺɋɌɂɎɂɐɂɊɈȼȺɇɇɈȽɈ

ɉɈɅɂɆȿɊȺ

ɈɌ

ɏɂɆɂɑȿɋɄɈȽɈ

ɋɌɊɈȿɇɂə

ɂ

ɄɈɇɐȿɇɌɊȺɐɂɂ

ɉɈɅɂɆȿɊȺ

ɂ

ɉɅȺɋɌɂɎɂɄȺɌɈɊȺ

Ɋɚɫɫɦɨɬɪɟɧɨɜɥɢɹɧɢɟ ɯɢɦɢɱɟɫɤɨɝɨ ɫɬɪɨɟɧɢɹ ɢɫɬɪɭɤɬɭɪɧɵɯ ɨɫɨɛɟɧɧɨɫɬɟɣɩɨɥɢɦɟɪɨɜ ɧɚɢɯɫɜɨɣɫɬɜɚ. ɉɪɟɞɫɬɚɜɥɟɧɧɵɟɪɚɫɱɟɬɧɵɟɫɯɟɦɵ ɩɨɡɜɨɥɹɸɬɪɚɫɫɱɢɬɚɬɶɬɟɦɩɟɪɚɬɭɪɭɬɟ

-ɤɭɱɟɫɬɢɩɨɥɢɦɟɪɨɜ, ɨɬɤɨɬɨɪɵɯɡɚɜɢɫɹɬɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟɩɚɪɚɦɟɬɪɵɩɨɥɭɱɟɧɢɹɩɨɥɢɦɟɪɧɵɯ

ɢɡɞɟɥɢɣ, ɜɬ.ɱ. ɢɫɬɪɨɢɬɟɥɶɧɨɝɨɧɚɡɧɚɱɟɧɢɹ. Ⱦɥɹɩɨɥɢɜɢɧɢɥɯɥɨɪɢɞɚɩɨɥɭɱɟɧɵɡɚɜɢɫɢɦɨɫɬɢ

ɬɟɦɩɟɪɚɬɭɪɵɬɟɤɭɱɟɫɬɢɨɬɟɝɨɦɨɥɟɤɭɥɹɪɧɨɣɦɚɫɫɵɢɦɨɥɹɪɧɨɣɞɨɥɢɩɥɚɫɬɢɮɢɤɚɬɨɪɚ. ȼɤɚ

-ɱɟɫɬɜɟɩɪɢɦɟɪɚɪɚɫɫɦɨɬɪɟɧɵɞɜɚɩɥɚɫɬɢɮɢɤɚɬɨɪɚ: ɞɢɛɭɬɢɥɫɟɛɚɰɢɧɚɬɢɞɢɨɤɬɢɥɮɬɚɥɚɬɚɥɚɬ.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ: ɩɨɥɢɦɟɪɧɵɟ ɫɬɪɨɢɬɟɥɶɧɵɟ ɦɚɬɟɪɢɚɥɵ, ɬɟɦɩɟɪɚɬɭɪɚ ɫɬɟɤɥɨɜɚɧɢɹ,

ɬɟɦɩɟɪɚɬɭɪɚɬɟɤɭɱɟɫɬɢ, ɦɨɥɟɤɭɥɹɪɧɚɹɦɚɫɫɚɩɨɥɢɦɟɪɚ, ɩɥɚɫɬɢɮɢɤɚɬɨɪ, ɦɨɥɹɪɧɚɹɞɨɥɹ, ȼɚɧ

-ɞɟɪ-ȼɚɚɥɶɫɨɜɨɛɴɟɦɩɨɜɬɨɪɹɸɳɟɝɨɫɹɡɜɟɧɚɩɨɥɢɦɟɪɚ.

.

,

,

,

,

-.

-,

-

,

,

-,

[1, 2].

,

,

[4—6].

,

-

(

)

[7].

-3

1,5 0,5

c c

1

0, 5

1

ln

,

26

1

2, 4

1

3

g

f

T

T

M

M

M

M

 

(1)

T

g

;

T

f

;

M

;

M

c

,

. .

,

M

.

(

)

. 1.

. 1 [8, 9].

. 1.

Tf,p, K

10000 327

(2)

10

/20

12

Ɉɤɨɧɱɚɧɢɟɬɚɛɥ. 1

Tf,p, K

20000 360

30000 384

40000 403

50000 418

60000 431

70000 442

80000 453

100000 471

120000 486

140000 500

160000 513

300 350 400 450 500 550

0 0,6×105 1,2×105 1,8×105 M

Tf, K

. 1. Tf, Ɇ

T

f,

-T

m,

.

T

f

:

,п m,

T

T

,п ,пл

пл пл ,п ,пл

пл

,

m i m i

i п i

f

i i

i п i

m m

f

V

V

T

V

V

α

+ α

=

α

+ α

(2)

α

m,

;

α

m,

;

п

i i

V

-

-

;

пл

i i

V

 

 

(3)

,

α

m,

+

α

m,

= 1,

(2)

T

T

T

,пл

п пл п

пл

п п

,пл

, , ,

.

i m i i

i i i

f

i

i i

i

i i

m

f п f пл f п

V

V

V

T

V

V

V

+ α

=

+ α

(3)

-,

.

,

-

«

» (

),

. 2.

. 2 3.

. 2.

-п

i i

V

, Å

3

пл

i i

V

, Å

3 T

m, , K

48,8

341 263

417 223

250 300 350 400 450 500

0 0,2 0,4 0,6 0,8 1,0

9

8 7 6 5

4 3

2 1

Молярная доля дибутилсебацината αm, pl

Температура текчести Tf, K

. 2. .

: 1 — 10000; 2 — 15000; 3 — 20000; 4 — 30000; 5 — 40000; 6 — 50000; 7 — 60000; 8 — 70000; 9 — 80000

.

,

-.

,1

,0 ,

1

1

р

g d h i i п

T

T mb nq V

=

 

−  ∆ 

(4)

10

/20

12

T

,1

,

I

;

T

g

ɬɟɦɩɟɪɚɬɭɪɚ

ɫɬɟ

-ɤɥɨɜɚɧɢɹ

i i п

g

i i j

i j

V

T

a

V

b

=

+

;

i

i п

V

-

-

-;

a

i

,

-;

b

j

,

,

-

;

m

b

d,h

,

;

n

(

);

q

(

).

200 300 400 500

0 0,2 0,4 0,6 0,8 1,0

1 2 3 4 5 6 7 8 9

αm, pl

Tf, K

. 3. .

-: 1 — 10000; 2 — 15000; 3 — 20000; 4 — 30000; 5 — 40000; 6 — 50000; 7 — 60000; 8 — 70000; 9 — 80000

(

-)

T

,2

(

-).

,

,

,2

,0 ,

,

0, 06

п i р i i п i р р

i i

i п i s

п р п р

g g s

c V c V

T

V V

c c c c

T T

   

∆ + ∆

   

   

=

   

∆ ∆

   

  +   +

(5)

п i

i

V

р i

i

V

-

-

(

)

;

T

g,0

T

g,

-;

c

c

.

,

(4),

(5),

.

(5)

Δ

T

g,1

= (

T

g,0

T

,1

)(1 –

c

)

T

,1

.

Δ

T

g,2

,

II (

),

Δ

T

g,2

=

T

g,0

T

,2

T

,2

,

(5).

Δ

T

g

=

Δ

T

g,1

+

Δ

T

g,2

= (

T

g,0

T

,1

)(1-

c

)

+

T

g,0

T

,2

= 2

T

g,0

T

g,0

c

T

,1

(1 –

c

)

T

,2

.

Δ

T

g

=

T

g,0

T

(

T

,

).

,

:

(

)

(

)

,

1

1

р i

i п

р

р

i i j d h

i j р

c

V

T

c

a V

b

mb

n

c

=

+

∆ +

(

)

(

)

(

)

(

)

,0 ,

1

1

.

1

0, 06

1

р i р i i

i i i п

р

i i j

i i j

i

i

i п р

р р р р

g g s

c

V

c

V

V

c

a V

b

V

V

c

c

c

c

T

T

+

+

∆ +

+

+

(6)

-,

(

)

[10].

Ȼɢɛɥɢɨɝɪɚɮɢɱɟɫɤɢɣɫɩɢɫɨɤ

1. ȺɫɤɚɞɫɤɢɣȺ.Ⱥ., Ɇɚɬɜɟɟɜɘ.ɂ. . . : , 1983. 248 .

2. ɌɚɝɟɪȺ.Ⱥ. - . 4- ., ., . . : , 2007. 573 . 3. Askadskii A.A. Computational Materials Science of Polymers. Cambridge: Cambridge International Science Publishing, 2003, 650 .

4. (

-) / . . , . . , . . , . . // . 1990. . 32. . № 12. . 2437—2445.

5. Ɉɞɢɧɨɤɨɜɚɂ.Ⱥ., ɒɟɜɟɥɟɜȺ.ɘ., Ɂɟɥɟɧɟɜɘ.ȼ.

- //

-. 1988-. № 3. . 25—26.

6. ɉɪɨɤɨɩɱɭɤɇ.Ɋ., ɌɨɥɤɚɱɈ.ə., ɉɚɩɥɟɜɤɨɂ.Ƚ. -, // . 1998. . 42. № 5. . 67—71. 7. Bicerano J. Prediction of polymers properties. New-York, Marcel-Dekker Inc., 1996.pp. XVII+528. 8. ȺɫɤɚɞɫɤɢɣȺ.Ⱥ., ɉɨɩɨɜɚɆ.ɇ., ɉɚɯɧɟɜɚɈ.ȼ.

// . : . .

. . . : 2 . . 2. . : , 2011. . 3—7.

9. / . . , . . ,

. . , . . // .

: . . . . . : 2 . . 2. . : , 2011. . 8—11.

10. ɉɨɩɨɜɚɆ.ɇ. -

// .

1998. . 3.

ɉɨɫɬɭɩɢɥɚɜɪɟɞɚɤɰɢɸɜɚɜɝɭɫɬɟ 2012 ɝ.

: ȺɫɤɚɞɫɤɢɣȺɧɞɪɟɣȺɥɟɤɫɚɧɞɪɨɜɢɱ — ,

(6)

10

/20

12

ɭɧɢɜɟɪɫɢɬɟɬ (ɎȽȻɈɍȼɉɈ «ɆȽɋɍ»), 129337, , . , , . 26,. (8495)287-49-14 . 3143;

ɉɨɩɨɜɚɆɚɪɢɧɚɇɢɤɨɥɚɟɜɧɚ — , , ɎȽȻɈɍȼɉɈ «Ɇɨ

-ɫɤɨɜɫɤɢɣɝɨɫɭɞɚɪɫɬɜɟɧɧɵɣɫɬɪɨɢɬɟɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ (ɎȽȻɈɍȼɉɈ «ɆȽɋɍ»), 129337, , . , , . 26, (8495)287-49-14 . 3076, popovamn@mgsu.ru;

ȼɨɥɨɞɢɧɚȺɥɟɤɫɚɧɞɪɚȿɜɝɟɧɶɟɜɧɚ — , ɎȽȻɈɍȼɉɈ «Ɇɨɫɤɨɜɫɤɢɣ ɝɨɫɭɞɚɪ

-ɫɬɜɟɧɧɵɣɫɬɪɨɢɬɟɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ (ɎȽȻɈɍȼɉɈ «ɆȽɋɍ»),129337, , . , , . 26, (8495)287-49-14 . 3143.

: ȺɫɤɚɞɫɤɢɣȺ.Ⱥ., ɉɨɩɨɜɚɆ.ɇ., ȼɨɥɨɞɢɧɚȺ.ȿ.

// . 2012. № 10. . 147—153.

A.A. Askadskiy, M.N. Popova, A.E. Volodina

ANALYSIS OF DEPENDENCE OF THE FLOW TEMPERATURE OF THE PLASTICIZED POLYMER ON THE CHEMICAL STRUCTURE AND CONCENTRATION OF THE POLYMER AND THE PLASTICIZER

Polymeric materials are widely used in construction. The properties of polymeric construction materials vary to a substantial extent; their durability, thermal stability, frost resistance, waterproof and dielectric properties are particularly pronounced. Their properties serve as the drivers of the high market demand for these products. These materials are applied as fi nishing materials, molded sanitary engineering products and effective thermal insulation and water proofi ng materials.

The authors analyze the infl uence of the chemical structure and structural features of poly-mers on their properties. The authors consider fl ow and vitrifi cation temperatures of polymers. These temperatures determine the parameters of polymeric products, including those important for the construction process.

The analysis of infl uence of concentration of the plasticizer on the vitrifi cation temperature is based on the two basic theories. In accordance with the fi rst one, reduction of the vitrifi cation tem-perature is proportionate to the molar fraction of the injected plasticizer. According to the second concept, reduction of the vitrifi cation temperature is proportionate to the volume fraction of the in-jected solvent. Dependencies of the fl ow temperature on the molecular weight and the molar fraction of the plasticizer are derived for PVC. As an example, two plasticizers were considered, including dibutyl sebacate and dioctylftalatalate. The basic parameters of all mixtures were calculated through the employment of “Cascade” software programme (A.N. Nesmeyanov Institute of Organoelemental Connections, Russian Academy of Sciences).

Key words: polymeric construction materials, vitrifi cation temperature, fl ow temperature, polymer molecular mass, plasticizer.

References

1. Askadskiy A.A., Matveev Yu.I. Khimicheskoe stroenie i fi zicheskie svoystva polimerov [The Chemical Structure and Physical Properties of Polymers]. Moscow, Khimiya Publ., 1983. 248 p.

2. Tager A.A. Fiziko-khimiya polimerov [Physical Chemistry of Polymers]. Moscow, Nauchnyy mir publ., 2007. 573 p.

3. Askadskii A.A. Computational Materials Science of Polymers. Cambridge, Cambridge Interna-tional Science Publishing, 2003, 650 p.

4. Askadskiy A.A., Tishin S.A., Kazantseva V.V., Kovriga O.V. O mekhanizme deformatsii teplos-toykikh aromaticheskikh polimerov (na primere poliimida) [About the Mechanism of Deformation of Heat-resistant Aromatic Polymers (Exemplifi ed by Polyimide)]. Vysokomolekulyarnykh soedineniya [Macromo-lecular Compounds]. 1990, vol. 32, series a, no. 12, pp. 2437—2445.

5. Odinokova I.A., Shevelev A.Yu., Zelenev Yu.V. Prognozirovanie mekhanicheskikh svoystv chas-tichno-kristallicheskikh polimerov po ikh teplofi zicheskim kharakteristikam [Forecasting of Mechanical Properties of Semicrystalline Polymers Based on Their Thermalphysic Characteristics]. Plasticheskie massy [Plastic Masses]. 1988, no. 3, pp. 25—26.

6. Prokopchuk N.R., Tolkach O.Ya., Paplevko I.G. O temperaturnoy zavisimosti energii aktivatsii destruktsii plastmass, volokon i rezin [About the Temperature Dependence of the Energy of Activation of Decomposition of Plastic Masses, Fibres and Rubber]. Reports of National Academy of Sciences of Belarus, 1998, vol. 42, no. 5, pp. 67—71.

(7)

“Integration, Partnership and Innovations in Civil Engineering Sciences and Education”]. Moscow, MGSU Publ., vol. 2, 2011. pp. 3—7.

9. Askadskiy A.A., Popova M.N., Solov’eva E.V., Popov A.V. Poluchenie i svoystva vtorichnogo polivinilkhlorida [Recovery and Properties of Recycled Polyvinylchloride]. Collected works of International Scientifi c Conference “Integration, Partnership and Innovations in Civil Engineering Sciences and Educa-tion]. Moscow, MGSU Publ., vol. 2, 2011. pp. 8—11.

10. Popova M.N. Tekhnologiya izgotovleniya i fi ziko-khimicheskie kharakteristiki stroitel’nykh ma-terialov na osnove vtorichnogo PVKh [Production Technology and Physicochemical Characteristics of Construction Materials Made of Recycled PVC]. Konstruktsii iz kompozitsionnykh materialov [Structures Made of Composite Materials]. 1998, no. 3.

A b o u t t h e a u t h o r s: Askadskiy Andrey Aleksandrovich — Doctor of Chemical Sciences, Hon-oured Scientist of the Russian Federation, Professor, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 3143;

Pop ova Marina Nikolaevna — Doctor of Chemical Sciences, Professor, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; popo-vamn@mgsu.ru; +7 (495) 287-49-14, ext. 3076;

Volodina Aleksandra Evgen’evna — postgraduate student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; popovamn@ mgsu.ru; +7 (495) 287-49-14, ext. 3143.

Referências

Documentos relacionados

Remelted zone of the probes after treatment with current intensity of arc plasma – 100 A, lower bainite, retained austenite and secondary cementite.. Because the secondary

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

At the first stage of the measurements results analysis, the gear wheel cast surface image was compared with the casting mould 3D-CAD model (fig.. Next, the measurements results

The structure of the remelting zone of the steel C90 steel be- fore conventional tempering consitute cells, dendritic cells, sur- rounded with the cementite, inside of

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à