• Nenhum resultado encontrado

Photosensitive n-In2O3 / p-InSe Heterojunctions with Nanostructured Surface of the Frontal Layer

N/A
N/A
Protected

Academic year: 2017

Share "Photosensitive n-In2O3 / p-InSe Heterojunctions with Nanostructured Surface of the Frontal Layer"

Copied!
5
0
0

Texto

(1)

і

n

-In

2

O

3

/

p

-

InSe

. .

1

,

. .

1

, . .

1,*

,

. .

2

1 . . . ,

Ч я, . В , 5, 58001 Ч ,

2 . В.Є. ,

. , 41, 03028 -28,

( 12.02.2013, online – 17.10.2013)

n-In2O3 / p-InSe, In2O3є

-. ,

-. ,

-є ,

-. -

-. InSe

. , .

є

In2O3 InSe.

, ,

.

-, .

,

.

і : , , , - ,

.

PACS numbers: 73.40.Lq, 81.65.Mq, 81.16.Dn

1.

ґ

-.

-,

-. є

є ,

, , ,

ґ . 'є

,

.

-.

-є є

-.

-'є [1]. , .

-,

-,

-.

,

-,

.

InSe [2], GaSe [3-5].

[6-12]. є є n2O3- nSe.

n2O3- nSe

-є p-n- c

-Ec Ec є , E

,

c – [13].

-E c .

n2O3- nSe,

, ,

-.

InSe [14], ,

- [14, 15]

(2)

2.

InSe<Cd>.

InSe p- [18].

10  5  0,3 3.

420 .

-.

.

( ) Nanoscope III D mens on 3000 SPM (D g tal nstruments, USA).

,

-,

n- n2O3 / p- nSe, [19].

-, є

-, є .

.

--3

13Å/ .

3. Ь Ь

-

nSe . 1.

,

-'є

-.

-.

nSe (0001)

Ra

~ 0,053 ( . 1a). є

-. 15

nSe

, . 1 .

є

.

-100 . ,

(sect on anal sys),

1 . nSe,

1 ( . 1 ),

( ) .

Ra є ~ 0,631 .

,

10 .

-'

nSe

-.

-5

nSe ( . 1 ) є

In2 3 ,

є .

-є,

 4  109 – 2.

h  5,2  2,44 d 50,6  7,2 . 20

( . 1 ).

50 200 . ,

,

,

InSe,

In2 3.

n- n2O3 /

p-nSe .2,

-, ,

b

Ec, є .

. 2 ,

(Ec) Ec,

nSe.

-. Ec

-' ,

'

-kT [20].

( )

[21].

Ec,

є ( . 2 ).

,

( 4, . 2 ). ,

. 1 ,

є ~ 0,13 .

-’є ( . 1 )

,

-.

є, є

n- n2O3 / p- nSe,

.

, є

Ec .

є

nSe є

,

.

є

(3)

. 1– (a) ( - ) InSe (0001), -

-: 420°C 0,25 ( ), 1 ( ), 5 () 20 ( ),

. 2 n-n2O3 / p-nSe . p-n

(4)

4.

nSe

420°

n2O3. є

,

. ,

-.

-,

, 5

nSe.

n-n2O3 / p- nSe,

є .

-'

.

,

-'є .

nSe Ec

Ec .

є

-.

n

-In

2

O

3

/

p

-InSe

. .

1

,

.

.

1

, . .

1

,

. .

2

1 я . . . ,

Ч , . В , 5, 58001Ч ,

2 . В. . ё ,

. ,41, 03028 -28,

n-In2O3 / p-InSe,

In2O3 . ,

. ,

,

.

- . InSe

.

-, .

In2O3

InSe.

, ,

.

, .

,

.

: , , , -

-, .

Photosensitive

n

-In

2

O

3

/

p

-InSe Heterojunctions with Nanostructured Surface

of the Frontal Layer

Z.D. Kovalyuk

1

, V.M. Katerynchuk

1

, Z.R. Kudrynskyi

1

, O.S. Lytvyn

2

1 Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine,

Chernivtsi Department, 5, Iryny Vilde Str., 58001 Chernivtsi, Ukraine

2 Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 41, Nauki Pr., 03028 Kyiv, Ukraine

We report on photosensitive n-In2O3 / p-InSe heterojunctions with nanostructured In2O3 frontal layer. It was established that photoresponse spectra of the heterojunctions significantly depend on the surface topology of the oxide. this means that the oxide with semiconductor substrate is not only an active compo-nent of the structure, but also serves as a cell diffraction material. Surface topology of the oxide was stud-ied by means of the atomic force microscope. At various conditions of oxidation of InSe the surface of the samples contained nanoformations preferably in the form of nanoneedles. Their location has both a disor-dered and ordisor-dered character. A dimensional optical effect in the oxide was revealed due to the anisotropic light absorption in InSe. The higher deviation of incident light from its normal direction due to a nano-structured surface is, the higher variation in the generation of carriers in the semiconductor is. These changes consist in the energy broadening of the heterojunction photoresponse spectrum as well as in the peculiarities of the excitonic line. The higher density and ordering of the nanoneedles on the oxide surface is, the higher long-wave shift and more intensive excitonic peak in the spectrum takes place.

(5)

1. N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin, P.S. Kop’ev, Zh.I. Alferov, D. Bimberg, Semiconductors32, 343 (1998). 2. V.M. Katerynchuk, Z.R. Kudrynskyi, Z.D. Kovalyuk,

J. Nano- Electron. Phys.4, 02042 (2012).

3. A.P. Bakhtinov, Z.R. Kudrynskyi, O.S. Litvin, Phys. Solid

State53, 2154 (2011).

4. V.N. Katerinchuk, Z.D. Kovalyuk, V.V. Netyaga, T.V. Betsa, Inorg. Mater.37, 336 (2001).

5. L. Leontie, I. Evtodiev, V. Nedeff, M. Stamate, M. Caraman, Appl. Phys. Lett. 94, 071903 (2009).

6. V.N. Katerinchuk, M.Z. Kovalyuk, Tech. Phys. Lett. 25, 54

(1999).

7. V.N. Katerinchuk, Z.D. Kovalyuk, T.V. Betsa, V.M. Kaminskii, V.V. Netyaga, Tech. Phys. Lett.27, 424 (2001).

8. S.I. Drapak,V.B. Orletskii, Z.D. Kovalyuk, Semiconductors 38, 546 (2004).

9. Z.D. Kovalyuk, V.P. Makhniy, O.I. Yanchuk, Semicond.

Phys. Quantum Electron. Optoelectron.6, 458 (2003).

10.M.Z. Kovalyuk, V.I. Vitkovskaya, M.V. Tovarnitskii, Tech.

Phys. Lett.23, 385 (1997).

11.R. Adelung, F. Ernst, A. Scott, M. Tabib-Azar, L. Kipp, M. Skibowski, S. Hollensteiner, E. Spiecker, W. Jäger, et al.,

Adv. Mater. 14, 1056 (2002).

12.R.N. Bekimbetov, Yu.A. Nikolaev, V.Yu. Rud’, Yu.V.Rud’, E.I. Terukov, Semiconductors34, 1064 (2000).

13.Z.D. Kovalyuk, V.N. Katerinchuk, T.V. Betsa, Opt. Mater. 17, 279 (2001).

14.K. Uosaki, M. Koinuma, J. Appl. Phys.74, 1675 (1993). 15.A.I. Dmitriev, V.V. Vishnyak, G.V. Lashkarev,

V.L. Karbovskii, Z.D. Kovalyuk, .P. Bakhtinov, Phys.

Solid State53, 622 (2011).

16.Z.D. Kovalyuk, V.M. Katerynchuk, A.I. Savchuk, O.S. Lytvyn, Superlattice. Microst.44, 416 (2008). 17.V.M. Katerynchuk, Z.D. Kovalyuk, Inorg. Mater. 47, 749

(2011).

18.A. Segura, J.P. Guesdon, J.M. Besson, A. Chevy, J. Phys. Appl.14, 253 (1979).

19.V.M. Katerynchuk, M.Z. Kovalyuk, Pis’ma Zh. Tekh. Fiz.

18, 70 (1992).

20.J. Camassel, P. Merle, H. Mathieu, A. Chevy, Phys. Rev. B.17, 4718 (1978).

Referências

Documentos relacionados

Key Words: Credit cards, Logistics, Transport, Electronic Means of payment, interoperability, transport networks, chain of supply chain, chains of demand... 13 Figura 6 –

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

A história recente conta com precedentes importantes ao processo atual de discussões, debates para a construção de um novo Plano Nacional de Educação o qual resultou num

O soro dos animais vacinados com lipossomo, EBS e proteolipossomos foram coletados semanalmente antes e após a infecção experimental para a detecção da produção de anticorpos IgG,