• Nenhum resultado encontrado

Role of vascular Kinin B-1 and B-2 receptors in endothelial nitric oxide metabolism

N/A
N/A
Protected

Academic year: 2017

Share "Role of vascular Kinin B-1 and B-2 receptors in endothelial nitric oxide metabolism"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Peptides

jo u rn al h om epa g e:w w w . e l s e v i e r . c o m / l o c a t e / p e p t i d e s

Role

of

vascular

Kinin

B

1

and

B

2

receptors

in

endothelial

nitric

oxide

metabolism

Rodrigo

A.

Loiola

a

,

Felipe

C.G.

Reis

a

,

Elisa

M.

Kawamoto

b

,

Cristoforo

Scavone

b

,

Dulcinéia

S.

Abdalla

c

,

Liliam

Fernandes

d,∗

,

João

Bosco

Pesquero

a

aDepartmentofBiophysics,FederalUniversityofSãoPaulo,SãoPaulo,SP,Brazil bDepartmentofPharmacology,UniversityofSãoPaulo,SãoPaulo,SP,Brazil

cDepartmentofClinicalAnalysisandToxicology,UniversityofSãoPaulo,SãoPaulo,SP,Brazil

dDepartmentofBiologicalSciences,FederalUniversityofSãoPaulo,CampusDiadema,RuaProf.ArthurRiedel275,Diadema,SP09972-270,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18April2011

Receivedinrevisedform8June2011

Accepted8June2011

Availableonline16June2011

Keywords:

B1receptor

B2receptor

Knockout Bradykinin

Vascularreactivity

Nitricoxide

a

b

s

t

r

a

c

t

KininB1andB2receptorsplayanessentialroleininflammatoryprocessandcardiovascularhomeostasis. Thepresentstudyinvestigatedthevascularreactivityandnitricoxide(NO)generationintheisolated mesentericarteriolarbedfromB1(B1−/−)andB2receptor(B2−/−)knockoutmice.Endothelial-dependent relaxationwassignificantlydecreasedinarteriolesfrombothB1−/−andB2−/−incomparisontowild type(WT)mice,withnodifferencesforendothelial-independentrelaxatingorvasoconstrictoragents. PlasmaticandvascularNOproductionweremarkedlyreducedinbothB1−/−andB2−/−.Incontrast, inthepresenceofl-arginine,Ca2+andco-factorsfortheenzyme,NOsynthaseactivitywashigherin homogenatesofmesentericvesselsofB1−/−andB2−/−.Thepresentstudydemonstratedthattargeted deletionofB1orB2receptorgeneinmiceinducesimportantalterationsinthevascularreactivityof resistancevesselsandNOmetabolism.Thesevereimpairmentintheendothelial-mediatedvasodilation accompaniedbydecreasedNObioavailability,despitetheaugmentedNOSactivity,stronglyindicatesan exacerbationofNOinactivationinB1−/−andB2−/−vessels.Thepresentdataprovidevaluableinformation inordertoclarifytherelevanceofkininreceptorsinregulatingvascularphysiologyandmaypointtonew approachesregardingitscorrelationwithendothelialdysfunction,oxidativestressandNOavailability.

©2011ElsevierInc.

1. Introduction

Thekallikrein–kininsystemplaysanimportantroleinseveral biological functions,including inflammation and cardiovascular homeostasis[7].Thediverserangeofeffectselicitedbykininsis mediatedbyactivationofGprotein-coupledreceptors,namedB1

andB2.Bradykinin(BK)isthenaturalagonistoftheB2 receptor,

anditsdegradationbycarboxypeptidasesgeneratestheB1receptor

agonist,des-Arg[9]-BK[34].WhereasB2 receptorsare

constitu-tivelyexpressedandmediatemostoftheknowneffectsassigned tokinins,B1receptorsareweaklydetectableunderphysiological

conditions,butrapidlyinducedbyinflammatorystimuli[7,23]. BothB1andB2receptorsactthroughG␣qtostimulate

phospho-lipaseC␤followedbyphosphoinositidehydrolysisandintracellular freeCa2+mobilization[19].TheresultingintracellularfreeCa2+is

theinitialstepin theactivationofnitricoxidesynthase(NOS), whichcatalyzesoxidationoftheterminalguanidinenitrogenof

l-arginine toforml-citrulline andnitricoxide(NO) [32].Three

NOSisoformshavebeendescribed:neuronalNOS(nNOSorNOS1),

∗Correspondingauthor.Tel.:+551133193300;fax:+551140436428.

E-mailaddresses:lfernandes@unifesp.br,liliamfernandes05@gmail.com

(L.Fernandes).

inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS or NOS3). The iNOS isoform differs from nNOS and eNOS in that it is fullyactivein theabsence ofCa2+ [27]. TheNOS isoforms

have similar enzymatic mechanisms and require presence of co-factorstetrahydrobiopterin(BH4), nicotinamide-adenine

din-ucleotide(NADPH),flavinadeninedinucleotide(FAD)andflavin mononucleotide(FMN)foritsproperfunction[25].Inthe vascula-ture,onceformedbyNOS,endothelialNOdiffusesintothesmooth muscleandactivatessolubleguanylatecyclasethatcatalyzesthe formationof3′,5-cyclicguanosinemonophosphate(cGMP), result-inginsmoothmusclerelaxationandthereforevasodilation[13].

In the last recent years, the development of genetically engineered mice lacking kinin receptors has allowed a better understandingof thephysiological and pathological role ofthe kallikrein–kininsysteminawiderangeofbiologicalevents[31]. Mice witha targeted deletion of thegene for the B1 receptor

(B1−/−)aredescribedtobehealthy,fertileandnormotensive,but

exhibit blunted responsesto bacteriallipopolysaccharide injec-tion and hypoalgesia [30]. Under physiological conditions, B2

receptorknockoutmice(B2−/−)presentnormaldevelopment[9],

renalhemodynamicsandsaltbalance[2,26,35].Nevertheless,data regardingtheeffectsofB2receptordeletiononbloodpressure

reg-ulationarecontroversial.Someauthorshavedemonstratedthat B2−/−arenormotensive[1–3,11,12,26,35,37,39]whileothergroups

0196-9781 ©2011ElsevierInc.

doi:10.1016/j.peptides.2011.06.010

Open access under the Elsevier OA license.

(2)

observedaslightbutsignificantincreaseinbloodpressurelevels [15,16,21,22].

Consideringthatboth B1 andB2 receptorsarelocatedinthe

endothelium and in vascular smooth muscle cells [7,19], and that resistance vessels are the most important sites for deter-miningperipheralvascularresistance[38],thepresentstudywas addressedtoinvestigatethevascularreactivityofmesenteric arte-riolesofB1−/− andB2−/−inresponsetoendothelium-dependent

and-independentagonists.Inparallel,plasmaNOlevels,vascular NOreleaseandNOSactivityinthemesentericvesselswerealso analyzedinordertoprovideinformationaboutNObioavailability inthesemicestrains.

2. Methods

2.1. Animals

C57Bl/6male knockoutB1 (B1−/−), B2 (B2−/−)and wildtype

(WT)mice,aged10–14weekswereobtainedfromthebreeding stockof Centro deDesenvolvimento deModelosExperimentais paraMedicinaeBiologia(CEDEME–UNIFESP).Micewerekeptina temperature-controlledroomona12hlight/daycycle,60% humid-ity,standardmicechowandwateradlibitum.InB1−/−andB2−/−,

theabsenceofthekininsreceptorswasshown byundetectable levelof mRNAencoding for theB1 or B2 receptor,respectively,

usingasemi-quantitativeRT-PCRtechnique.Allprocedureswere approvedandperformedinaccordancewiththeguidelinesofthe EthicsCommitteeoftheUNIFESP(protocolnumber0928/05), con-formedwiththeGuidefortheCareandUseofLaboratoryAnimals publishedbytheUSNationalInstitutesofHealth(NIHPublication No.85-23,revised1996).

2.2. Vascularreactivityintheperfusedmesentericvascularbed

Isolatedmesentericvascularbedswerepreparedaspreviously describedfortheratpreparation[24],withslightadaptationsfor themouse.Themesentericvascularbedwasperfusedwith Krebs-Henseleitsolution,pH7.4,37◦C,gassedwith95%O2and5%CO2, ataconstantrateof2mL/minusingaperistalticpump.Vascular responseswereevaluatedbychanges intheperfusionpressure (mmHg)measuredbya dataacquisitionsystem(PowerLab8/S, ADInstrumentsPtyLtda,Australia).Toconfirmtheviabilityof tis-sues,preparationswereperfusedwithKCl(90mmol/L)addedto theKrebssolutionfor5min.After30minofstabilization, increas-ingdosesofnorepinephrine(NE)(5–100nmol),acetylcholine(ACh) (0.1–10nmol)andsodiumnitroprusside(SNP)(0.1–10nmol)were injectedinbolus,inavolumerangeof30–100␮L,witha3-min intervalbetweeneachdose.ForAChandSNPassays,preparations werepre-contractedwithNE(10␮mol/L)addedtoKrebssolution andvascularresponseswerecalculatedaspercentageof contrac-tioninducedbyNE.

2.3. MeasurementsofcirculatingNOlevels

TheplasmaNOlevelswereevaluatedbyNOderivativesnitrate and nitrite, as previously described [28]. Blood samples were collectedintoEDTA-coatedtubesandplasmawasimmediately sep-aratedbylow-speedcentrifugation(1500×g).Theconcentration ofnitrateinbloodwasdeterminedbychemiluminescence,elicited bythereactionofNOwithozoneafternitratereductionwithVCl3

saturatedsolutionin 1mol/LHCl, at90◦C,usinga NOanalyzer (NOATM280SieversInstrumentsInc.,Boulder,CO,USA).Nitritewas

determinedafterreductionwith1%KClsolutioninglacialacetic acidtoconvertnitritetoNO.

2.4. BasalNOproductioninmesentericarterioles

BasalNOinmesentericarterioleswasdeterminedbyusinga fluorescentcellpermeabledyeforNO,4,5diaminofluorescein diac-etate(DAF-2DA,Alexis,USA),aspreviouslydescribed[10].Once insidethecell,DAF-2DAishydrolyzedbycytosolicesterasesthus releasingDAF-2.ThereactionbetweenDAF-2andNOyieldsthe cor-respondingbrightgreen-fluorescenttriazolofluoresceins(DAF-2T). Themesentericarteriolesweredissected, immersedinmedium for cryosectioningand cut into10␮mthicksections(Leica CM 1850 cryostat,Leica Instruments,Germany). In order to stimu-lateNOSactivationandprovideoptimallevelsofsubstrate,slices werepre-incubatedwithphosphatebuffer(PB)solution contain-ingCaCl2(0.45␮mol/L)andl-arginine(100␮mol/L)during30min

at37◦C.Sliceswerewashed,incubatedwithPBcontainingDAF-2 DA (10␮mol/L) for 30min at 37◦C and observed on a micro-scope(Axiovert100M– CarlZeissSMT,Germany)equippedwith fluorescein filter(excitationat488nmand measuringemission at515nm).Fluorescenceemittedin responsetoNOproduction wasquantifiedthroughopticdensitometry(arbitraryunits,a.u.) using theAxioVision 4.8. digital imagesanalysissoftware (Carl Zeiss).Thesemi-quantitativeanalysisofbasalNOproductionwas determined,atleast,inthreeslicesfromeachanimal.Significant auto-fluorescencewasdiscardedbyexperimentsperformedinthe absenceofDAF-2DA.

2.5. DetectionofNOSactivityinthemesentericvascularbed

NOS activity was measured by the biochemical conversion of l-[3H] arginine tol-[3H]citrulline according tothe method

describedbyReesetal.[33].Mesentericvesselsweredissected, washed,homogenizedinice-coldbufferandstoredat−80◦C.On thedayofassay,homogenateswereincubated(37◦C/60min)in abuffercontainingFMNandFAD4␮mol/L,calmodulin10␮g/mL, Ca2+1.25mmol/L,NADPH1mmol/L,l-arginine120nmol/L,l-[3H]

arginine 50nmol/L (NEN Life Science Products, USA) and BH4

10␮mol/L.For the determination ofiNOS activity,experiments wereperformedintheabsenceofCa2+.Reactionwasterminated

by the addition of cation-exchange resin (Dowex 50WX8-400) to remove the excess of substrate. Theresin wasleft to settle for 30min atroom temperature,thesupernatant was carefully removed in vials withscintillation liquid and the radioactivity tol-[3H]citrullinewasquantified. Resultswere normalizedby

proteinconcentrationandNOsynthaseactivitywasexpressedas pmol/mgmin.

2.6. Drugsandreagents

NE,AChandSNPwereacquiredfromSigmaChemicalCo.(St. Louis,MO).Exceptwhendescribed,allotherdrugsandreagents werepurchasedfromMerck,Sharp&Döhme(WhitehouseStation, NJ).

2.7. Statisticalanalysis

ComparisonsweremadebyANOVAfollowedbyTukey–Kramer test.Valueswerereportedasmean±standarderrorofmean(SEM). StatisticalsignificancewassetasP<0.05.

3. Results

3.1. VascularreactivitytoNE,AChandSNP

After30minofstabilization,basalperfusionpressurein mesen-tericvascularbedfromB2−/−(48±1.8mmHg;n=8;P<0.05)was

(3)

Perfusion Pressure (mmHg)

0 50 100 150 200

A

B

4

2 6 8 10 12 14

Time (minutes)

NE

5 nm

ol

NE

10 nm

o

l

NE

50 nm

o

l

N

E

10

0 nmol

0 50 100 150

B1 -/-WT

NE (nmols)

B2

-/-5 10 50 100

increase in perfusion pressure

(mmHg)

Fig.1.(A)Representativerecordingofperfusionpressurealterationelicitedbyin

bolusinjectionofNEinthemiceisolatedmesentericarteriolarbed.Arrowsindicate

drugapplication.(B)BarsgraphshowsthevasoconstrictoreffectofNE(determined

asincreaseinperfusionpressure)onisolatedmesentericarteriolarbedofWT,B1−/−

andB2−/−.Resultsaremean±S.E.M.,n=5–7foreachgroup.

andB1−/−(41±1.0mmHg;n=8)preparations.Injectionof

vaso-constrictorNEonisolatedvascularpreparationselicitedrapidand dose-relatedconstrictionthatincreasedtoasinglepeakandthen declinedtobasalperfusionpressure,usuallywithin2min(Fig.1A). NEinjectionpromotedsimilarresponsesinallvascular prepara-tionsfromWT,B1−/−andB2−/−,asdemonstratedinFig.1B.

Theendothelialfunctionofmesentericarterioleswasassessed throughtheeffectofACh(anendothelium-dependentrelaxating agent)andSNP(anendothelium-independentrelaxatingagent)in pre-contractedvessels(NE10␮mol/L).Inallexperiments,ACh pro-ducedasignificantdose-dependentreductioninperfusionpressure (atthedosesof0.1,1and10nmols).AsshowninFig.2,vascular responsetoAChwasmarkedlyreducedinB1−/−andB2−/−

prepa-rationswhencomparedtoWTresponses,foralltesteddoses.In allgroups,SNPinjectionelicitedaconsistentdecreaseinperfusion pressure(about60%ofcontractioninducedbyNEperfusionatthe doseof10nmols).Nosignificantdifferencesweredetectedamong strainsforalltesteddosesofSNP(Fig.3).

3.2. PlasmaticNOlevels

SincetheNOmetabolitesreflecttheoverallNOproductionin theorganism,wedeterminedtheplasmanitrite/nitrate concentra-tioninbloodsamplesobtainedfromWT,B1−/−andB2−/−mice.A

significantdecreaseincirculatingNOlevelswasdetectedinboth B1−/−andB2−/−whencomparedtoWTsamples.Dataareshown

inFig.4.

0 5 10 15 20

WT

B1

-/-*

*

*

0.1 1 10

ACh (nmol)

B2

-/-*

*

*

decrease in perfusion pressure (%NE)

Fig.2. BarsgraphshowstherelaxatingeffectofAChinisolatedmesentericarteriolar

bedofWT,B1−/−andB2−/−.Responsesareexpressedas%ofcontractioninducedby

NE(10␮mol/L).Resultsaremean±S.E.M.,n=5–7foreachgroup.*P<0.05vsWT.

0 20 40 60 80

B1 -/-WT

10 1

0.1

SNP (nmol)

B2

-/-decrease in perfusion pressure (%NE)

Fig.3. BarsgraphshowstherelaxatingeffectofSNPinisolatedmesentericarteriolar

bedofWT,B1−/−andB2−/−.Responsesareexpressedas%ofcontractioninducedby

NE(10␮mol/L).Resultsaremean±S.E.M.,n=6–7foreachgroup.

3.3. BasalNOproductioninmesentericarterioles

VascularNOproductionwasassessedinmesentericarterioles sectionsincubatedwithDAF-2DA,asensitivefluorescentindicator fordetectionofNO.ImagesareshowninFig.5A.Thefluorescence

WT B1-/- B2

-/-0 50 100 150 200

*

*

NO plasma levels [

μ

M ]

Fig.4.BarsgraphshowstheNOplasmalevelsofWT,B1−/−andB2−/−.Resultsare

(4)

Fig.5.(A)RepresentativeimagesoffluorescenceinmesentericarteriolesslicesfromWT,B1−/−andB2−/−afterincubationwithDAF-2DA(10␮mol/L),afluorescentcell

permeabledyeforNO(200×magnification).(B)BarsgraphshowsthefluorescenceemittedafterincubationwithDAF-2DAandrepresentthebasalNOproduction.Fluorescence

wasquantifiedbyopticdensitometry(arbitraryunits,a.u.).Resultsaremean±S.E.M.,n=5foreachgroup.*P<0.05vsWT.

intensityofDAF-2DAwassignificantlydiminishedinvesselsfrom B1−/−andB2−/−whencomparedtoWTsamples,indicatingthat

basalNOproductionwasdecreasedinmesentericarteriolesfrom bothstrains(Fig.5B).

3.4. NOSactivityinmesentericvessels

TheNOSactivitywasassessedinhomogenatesofmesenteric vesselsbybiochemicalconversionofl-[3H]argininetol-[3H]

cit-rullineinpresenceofsubstrateandco-factors.Surprisingly,instead oftheexpectedreduction,totalNOSactivity(Ca2+-dependent)was

enhancedinmesentericvesselsfromB1−/−andB2−/−when

com-paredwithWTsamples,asrepresentedinFig.6.TheincreaseofNOS activityinvesselsfromB1−/−andB2−/−probablyisattributedto

increaseinactivityofeNOSornNOS,sinceexperimentsperformed inabsenceofCa2+todetermineiNOSactivity(Ca2+-independent)

showedsimilarresultsamongstrains.

0 1 2 3 4 5

*

B1 -/-WT

(-) Ca2+ (+) Ca2+

B2

-/-*

NOS activity (pmol/mg.min)

Fig.6.BarsgraphshowstheNOSactivityinpresenceorabsenceofCa2+to

evalu-atetotalNOSactivityandinducibleNOSactivity,respectively,inhomogenatesof

mesentericvesselsfromWT,B1−/−andB2−/−.Resultsaremean±S.E.M.,n=4–5for

eachgroup.*P<0.05vsWT.

4. Discussion

TheadventofpotentandselectiveB1andB2receptor

antago-nistshaspermittedtoassesstheroleofkininsinseveralbiological systems;however,receptorantagonistsarenotdevoidof unspeci-ficity. The recent development of genetically engineered mice lackingthekininB1andB2receptorhasallowedtheopportunityto

investigatethephysiologicalroleofthekallikrein–kininsystemin absenceofpharmacologicalinterventions.Byanalyzingtheeffect ofvasoactiveagentsinmesentericarteriolesandmeasuring cir-culatingandtissueNOproduction,wefindseveralevidencesthat targeteddeletionofkininB1orB2receptorimpairs

endothelium-mediatedvasodilationbyreducingNObioavailability.

Firstly,we observedthat B2−/− arterioles exhibitincrease in

basalperfusionpressureincomparisontoWTandB1−/−.Although

mostof thestudieshave reportedthatB2−/− are normotensive

[1–3,11,12,26,35,37,39],thesemiceappeartoexhibitexaggerated responsestohypertensivestimuli[3,11,12,15,20,21].Thus,even withoutanessentialroleinbloodpressureregulation,B2

recep-torisclearlyrelatedtomodulationofvasculartonusandcontrolof regionalbloodflowtotheorgans.

ConsideringthatvasodilationinducedbyAChisdirectly depen-dentonendothelialNOrelease[17]andthatrelaxatingeffectof SNPisattributedtodirectNOdeliveryonthesmoothmuscle[8], ourresultsdemonstrateasevereimpairmentintheendothelialNO –dependentvasodilationinmesentericarteriolesfrombothB1−/−

andB2−/−.Thisfindingisinagreementwithpreviousdatashowing

thatthevasodepressorresponsetoinjectionofAChwasshiftedto therightinB2−/−[2].Inthepresentstudy,wedemonstratedforthe

firsttimethatimpairedvascularresponsetoAChisalsopresentin theB1−/−mice.

Contrastingin partwithourresults,a preservedresponseto AChin B2−/−mesentericvesselshasbeenpreviouslyrelatedby

(5)

pre-contractingagents,Krebscompositionandenzymaticblockers orotherinhibitorsaddedtotheperfusion. Inthepresentstudy, flowvelocity waschosenonthebasis of itsability toinducea sustainedandsub-maximalvasoconstrictiontoNE(10␮mol/L),in theabsenceofotherdrugs.Vasodilatoragentsweretestedin arte-riolessubmittedtoanapproximate80mmHgincreaseinperfusion pressure,and,inthis case,ACh(10nmol)evoked avasodilation around 12mmHg, confirming that preparations were able to dilate.

In order to confirm whether a possible impairment in NO bioavailability in B1−/− and B2−/− couldbe responsible for the

reducedAChresponse,weanalyzedplasmaticNOlevelsand vas-cularNO generationin both strains. Asexpected, we observed a significant reduction on circulating NO levels and basal NO releaseinmesentericarteriolesfromB1−/−andB2−/−.Similarly,

studies have described lower nitrite/nitrate plasma levels [18] and reduced renal nitrite excretion [35] in B2−/− when

com-paredtoWT mice.Moreover,induced hypertension bychronic NOsynthesisinhibitionis lesspronouncedinB2−/− when

com-paredtoWTresponses[20].Therefore,B2receptordeletionmay

severelyinterfere withNO bioavailability. Our data show that, besidesB2,B1receptorsarealsoinvolvedinbasalandstimulated

NOmetabolism.

Reduction in NO levels can occur through several potential mechanisms,suchasreducedNOSenzymaticactivityorincreased NOinactivation [29]. Consideringthat thebioavailability of NO is largely dependenton NOS, we analyzed theNOS activity in mesentericvesselsbybiochemicalconversionofl-[3H]arginine

tol-[3H]citrulline inpresenceofsubstrateand co-factors.

Sur-prisingly, instead of the expected reduction, total NOSactivity (Ca2+-dependent) waselevatedin homogenatesof vesselsfrom

B1−/−andB2−/−.Theseresultsarepartiallyinagreementwith

Bar-bosaetal.[4],thatobservedadecreaseinrelaxatingeffectofSNP instomachfundusfromB1−/−,despiteincreaseiniNOSactivity

andcGMPlevels.Thesefindingsindicatethat,atleastinpresence ofsupplementationwithexogenoussubstrateandco-factors,NOS frombothB1−/−andB2−/−isfunctional.

Thepresentdatadonotgivesupportforexplainingthe contrast-ingresultsaboutdecreasedNOlevelsaccompaniedbyenhanced NOSactivity in kinin knockout mice. One possible mechanism responsibleforthiscouldbethefactthatuncouplingofNOSinduces NOS-derivedproductionofsuperoxideanionandhydrogen perox-ide[14,36].Inthiscase,reducedNObioavailabilityinB1−/− and

B2−/−couldberelatedtoincreaseinvascularoxidativestress

asso-ciatedwithelevatedsuperoxideanionproductionandconsequent NOinactivation.Infact,superoxideanionrapidlyinactivatesNOto formthehighlyreactiveintermediateperoxynitrite,which repre-sentsamajorpotentialpathwayofNOreactivityanddegradation [5,36].Nevertheless,thegenerationofreactiveoxygenspeciesin B1−/−andB2−/−micehasnotyetbeenconsistentlyanalyzedand

furtherstudieswillberequiredtotestthishypothesis.

5. Conclusion

Inconclusion, thepresent studydemonstrated that targeted deletion of B1 or B2 receptor gene in mice induces important

alterationsinthevascularreactivityofresistancevesselsandNO metabolism.Thesevereimpairmentintheendothelial-mediated vasodilationaccompaniedbydecreasedNObioavailability,despite theaugmentedNOSactivity,stronglyindicatesanexacerbationof NOinactivationinB1−/−andB2−/−.Thepresentdataprovide

valu-ableinformationinordertoclarifytherelevanceofkininreceptors inregulatingvascularphysiologyandmaypointtonewapproaches regardingitscorrelationwithendothelialdysfunction,oxidative stressandNOavailability.

Sourcesoffunding

SupportedbygrantsfromFundac¸ãodeAmparoàPesquisado EstadodeSãoPaulo(FAPESP2007/59039-2,2008/06676-8), Con-selhoNacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq) andCoordenac¸ãodeAperfeic¸oamentodePessoaldeNívelSuperior (CAPES).

References

[1] AbadirPM,CareyRM,SiragyHM.AngiotensinAT2 receptordirectly

stim-ulaterenalnitricoxideinbradykininB2receptornullmice.Hypertension

2003;42:600–4.

[2]Alfie ME, YangXP, HessJF, Carretero OA.Salt-sensitive hypertensionin

bradykinin B2 receptor knockout mice. Biochem Biophys Res Commun

1996;224:625–30.

[3] AlfieME,SigmonDH,PomposielloSI,CarreteroOA.Effectofhighsaltintakein

mutantmicelackingbradykinin-B2receptors.Hypertension1997;29:483–7.

[4]BarbosaAM,FelipeSA,AraujoRC,KawamotoEM,CarvalhoMHC,ScavoneC,

etal.Alteredreactivityofgastricfundussmoothmuscleinthemousewith

targeteddisruptionofthekininB1receptorgene.Peptides2009;30:901–5.

[5]BeckmanJS,KoppenolWH.Nitricoxide,superoxide,andperoxynitrite:the

good,thebad,theugly.AmJPhysiol1996;271:C1424–1437.

[6]BerthiaumeN,HessF,ChenA,RegoliD,D’Orleans-JusteP.Pharmacologyof

kininsinthearterialandvenousmesentericbedofnormalandB2knockout

transgenicmice.EurJPharmacol1997;333:55–61.

[7]BhoolaKD,FigueroaCD,WorthyK.Bioregulationofkinins:kallikreins,

kinino-gens,andkininases.PharmacolRev1992;44:1–80.

[8] BonaventuraD,LunardiCN,RodriguesGJ,NetoMA,BendhackLM.Anovel

mechanismofvascularrelaxationinducedbysodiumnitroprussideinthe

iso-latedrataorta.NitricOxide2008;18:287–95.

[9]BorkowskiJA,RansomRW,SeabrookGR,TrumbauerM,ChenH,HillRG,etal.

TargeteddisruptionofaB2receptorgeneinmiceeliminatesbradykininaction

insmoothmuscleandneurons.JBiolChem1995;270:13706–10.

[10]CeravoloGS,FernandesL,MunhozCD,FernandesDC,TostesRCA,Laurindo

FRM,etal.AngiotensinIIchronicinfusioninducesB1receptorexpressionin

aortaofrats.Hypertension2007;50:756–61.

[11]CervenkaL,Harrison-BernardLM,DippS,PrimroseG,ImigJD,El-DahrSS.

Earlyonsetsalt-sensitivehypertensioninbradykininB2receptornullmice.

Hypertension1999;34:176–80.

[12] CervenkaL,MalyJ,KarasovaL,SimovaM,VitkoS,HellerovaS,etal.Angiotensin

II-inducedhypertensioninbradykininB2receptorknockoutmice.

Hyperten-sion2001;37:967–73.

[13]ChenK,PopelAS.Theoreticalanalysisofbiochemicalpathwaysofnitricoxide

releasefromvascularendothelialcells.FreeRadicBiolMed2006;41:668–80.

[14] DuranteW,JohnsonFK,JohnsonRA.Arginase:acriticalregulatorofnitricoxide

synthesisandvascularfunction.ClinExpPharmacolPhysiol2007;34:906–11.

[15]EmanueliC,FinkE,MiliaAF,SalisMB,ContiM,DemontisMP,etal.Enhanced

bloodpressuresensitivitytodeoxycorticosteroneinmicewithdisruptionof

bradykininB2receptorgene.Hypertension1998;31:1278–83.

[16]EmmanueliC,MaestriR,CorradiD,MarchioneR,MinasiA,TozziMG,etal.

DilatedandfailingcardiomyopathyinbadykininB2receptorknockoutmice.

Circulation1999;100:2359–65.

[17]FurchgottRF,ZawadzkiJV.Theobligatoryroleofendothelialcellsinthe

relax-ationofarterialsmoothmusclebyacetylcholine.Nature1980;27:373–6.

[18]Kakoki M,McGarrahRW, KimHS, Smithies O. Bradykinin B1 B2

recep-torsbothhaveprotectiverolesinrenalischemia/reperfusioninjury.PNAS

2007;104:7576–81.

[19]Leeb-LundbergLM,MarceauF,Müller-EsterlW,PettiboneDJ,ZurawBL.

Inter-nationalunionofpharmacologyXLV.Classificationofthekininreceptorfamily:

frommolecularmechanismstopathophysiologicalconsequences.Pharmacol

Rev2005;57:27–77.

[20]MadedduP,VaroniMV,PalombaD,EmanueliC.,DemontisMP,GloriosoN,etal.

CardiovascularphenotypeofamousestrainwithdisruptionofbradykininB2

receptorgene.Circulation1997;96:3570–8.

[21]MadedduP,MiliaAF,SalisB,GaspaL,GrossW,LippoldtA,etal.

Renovas-cularhypertensioninbradykininB2receptorknockoutmice.Hypertension

1998;32:503–9.

[22]MaestriR,MiliaAF,SalisMB,GraianiG,LagrastaC,MonicaM,etal.Cardiac

hypertrophyandmicrovasculardeficitinkininB2receptorknockoutmice.

Hypertension2003;41:1151–5.

[23]MarceauF,HessJF,BachvarovDR.TheB1receptorsforkinins.PharmacolRev

1998;50:357–86.

[24]McGregorDD.Theeffectofthesympatheticnervestimulationon

vasocon-strictorresponsesinperfusedmesentericbloodvesselsoftherat.JPhysiol

1965;177:21–30.

[25]MichelT.Targetingandtranslocationofendothelialnitricoxidesynthase.BrJ

MedBiolRes1999;32:1361–6.

[26]MiliaAF,GrossV,PlehmR,SilvaJrJA,BaderM,LuftFC.Normalbloodpressure

andrenalfunctioninmicelackingthebradykininB2receptor.Hypertension

2001;37:1473–9.

[27] MoncadaS,HiggsEA.Molecularmechanismsandtherapeuticstrategiesrelated

(6)

[28] Moriel P, Sevanian A, Ajzen S,Zanella MT, PlavnikFL, Rubbo H, et al.

Nitricoxide,cholesteroloxidesandendothelium-dependentvasodilationin

plasmaofpatientswithessentialhypertension.BrazJMedBiolRes2002;35:

1301–9.

[29]NapoliC,IgnarroLJ.Nitricoxideandpathogenicmechanismsinvolvedinthe

developmentofvasculardiseases.ArchPharmRes2009;32:1103–8.

[30]PesqueroJB,Araujo RC,HeppenstallPA, StuckyCL,SilvaJrJA,WaltherT,

etal.Hypoalgesiaandalteredinflammatoryresponsesinmicelackingkinin

B1receptors.PNAS2000;97:8140–5.

[31]PesqueroJB,BaderM.Geneticallyalteredanimalmodelsinthekallikrein–kinin

system.BiolChem2006;387:119–26.

[32]RadomskiMW,PalmerRMJ,MoncadaS.Anl-arginine/nitricoxidepathway

presentinhumanplateletsregulatesaggregation.PNAS1990;87:5193–7.

[33]ReesD,Ben-IshayD,MoncadaS.Nitricoxideandtheregulationofblood

pressure inthe hypertension-proneandhypertension-resistantSabra rat.

Hypertension1996;97:1916–23.

[34] RegoliD,BarabeJ.Pharmacologyofbradykininandrelatedkinins.Pharmacol

Rev1980;32:1–46.

[35] SchanstraJP,DucheneJ,PraddaudeF,BrunevalP,TackI,ChevalierJ,etal.

DecreasedrenalNOexcretionandreducedglomerulartuftareainmicelacking

thebradykininB2receptor.AmJPhysiol2003;284:H1904–8.

[36]SchulzE,JansenT, WenzelP,Daiber A,MünzelT.Nitricoxide,

tetrahy-drobiopterin,oxidativestress,andendothelialdysfunctioninhypertension.

AntioxidRedoxSignal2008;10:1115–26.

[37]TraboldF,PonsS,HagegeAA,Bloch-FaureM,Alhenc-GelasF,GiudicelliJF,

etal.CardiovascularphenotypesofkininB2receptor–andtissuekallikrein

– deficientmice.Hypertension2002;40:90–5.

[38]VanhouttePM,LüscherTF.Peripheralmechanismincardiovascular

regu-lation:transmittersreceptorsandendothelium.In:TaraziRC,ZanchettiA,

editors.Handbookofhypertension:physiologyandpathophysiologyof

hyper-tension:regulatorymechanisms.18thed.Amsterdan:ElservierScience;1999.

p.97–123.

[39] YangXP,LiuYH,MehtaD,CavasinMA,SheselyE,XuJ,etal.Diminished

car-dioprotectiveresponsetoinhibitionofangiotensin-convertingenzymeand

angiotensinIItype1receptorinB2kininreceptorgeneknockoutmice.Circ

Referências

Documentos relacionados

This is what I wanted to say in commenting on the reasoning put forward by the Court that the threat or use of nuclear weapons would generally be contrary to the rules of

Nitric oxide mediates leptin-induced luteinizing hormone-releas- ing hormone (LHRH) and LHRH and leptin- induced LH release from the pituitary

Individual values of (A) endothelial (eNOS) and (B) inducible nitric oxide synthase (iNOS) activity in the right atrial appendage of patients in the groups with left

Role of glutamate NMDA receptors and nitric oxide located within the periaqueductal gray on defensive behaviors in mice confronted by predator. Involvement of nitric

The present study demonstrated the effects of a 21-day treatment with ALSK and L-arginine, alone or in combination, on blood pressure and vascular reactivity to phenylephrine in

According to Both (2006), the evaluation theme is possibly the most salutary academic expression in the incessant search of learning in the various educational levels. This

Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. Role of exhaled nitric oxide

Endothelial kinin B(1)-receptors are induced by myocardial ischaemia-reperfusion in the rab- bit. Amelioration of ischemia-reperfusion injury with cyclic peptide blockade of