• Nenhum resultado encontrado

Classification of basis states for (p-f)-nuclei (41 <= A <= 80) with minimal configuration energy

N/A
N/A
Protected

Academic year: 2017

Share "Classification of basis states for (p-f)-nuclei (41 <= A <= 80) with minimal configuration energy"

Copied!
6
0
0

Texto

(1)

Classification of Basis States for

(p f)

Nuclei

(41 A 80)

with Minimal Configuration Energy

J.A. Castilho Alcar´as,

Instituto de F´ısica Te´orica, UNESP,

01405-900, S˜ao Paulo, Brazil

J. Tambergs, T. Krasta, J. Ruˇza,

Radiation Physics Laboratory, Institute of Solid State Physics,

University of Latvia, Salaspils, Latvia

and O. Katkeviˇcius

Institute of Theoretical Physics and Astronomy, 2600 Vilnius, Lithuania

Received on 15 March, 2002

We give a complete classification of basis states with unitary (U(A 1);U(3)) and permutational(S(A))

symmetries. These states are suitable as basis functions for(p f) nuclei(41 A 80)with minimal

configuration energy. We also give a brief survey of the way in which they are obtained.

1

Introduction

In the tradicional nonrelativistic treatment, the nucleus is considered as a system ofA fermions, the nucleons, with spin and isospin 1/2, and three spatial degrees of freedom

interacting through one- and two-body forces. The bound states of such a system are described by totally antisymmet-ric wave functions.

The introduction of Jacobi vectors

!

i =

1 p

i(i+1) 0

i X

j=1 !

r j

i !

r i+1

1

A

; i=1;2;:::;A 1 , (1)

!

A =

1 p

A A X

j=1 !

r

j (2)

allows us to remove the center of mass and pay attention only to the relative motion described by the translationally invariant Jacoby vectors!

1

; !

2

;:::; !

A 1.

To describe the bound states of such system, we will use as basis the basis functions of irrep[1 7(A 1)

℄ofU(7(A 1)) U

(r)

(3(A 1))U

(s)

(4(A 1)). The spin-isospin part is described using the chain

U(4(A 1)) U(4) U(A 1)

[ [

U (S)

(2)U (T)

(2) O

(s)

(A 1)

[ S(s)

(A)

(3)

(2)

U(3(A-1) U(3) U (r)

(A 1)

[ [

O+

(3) O

(r)

(A 1)

[ S(r)

(A) :

(4)

The labelling of basis functions in the spin-isospin chain of subgroups, Eq.(3), is given by the Wigner Supermultiplet Theory.

We will focus our attention on the problem of labelling the basis functions for the space chain of subgroups, Eq(4).

Since the basis functions of irrepfgofU(3(A 1)) are functions only of the coordinates of the firstA 1 Ja-cobi vectors, they have to be symmetric. We then write fg=fEg. Since the wave functions of thep dimensional harmonic oscillator carry the irrepfEgofU(p), it is usual to associateEwith the configuration energy of the nuclear states whose space part is described by wave functions la-belled by the chain (4).

This association allows us to stablish a link with the har-monic oscillator shell model. The basis functions of the ir-repfEgcould alternatively be labelled by the chain of sub-groups

U(3(A 1))U (1)

(3)U (2)

(3):::U (A 1)

(3) (5) in which each linkU

(i)

(3)acts only in the 3 coordinates of the Jacoby vector !

i. In this case the irreps associated to theseU

(i)

(3)would be all symmetric[E (i)

℄and their basis functions would be eigenstates of harmonic oscillators with energyE

(i) =(E

(i)

+3=2)~!and it would result

E=

A 1 X

i=1 E

(i)

: (6)

The number of linearly independent wave functions of the 3-dimensional harmonic oscillator with energy E = (E +3=2)~! is equal to the dimension of the irrep fEg ofU(3)given by

dimfEg =

1 2

(E+1)(E+2). (7)

In this way, by the Pauli principle, in the E shell one can put at most4dim

fEg

=2(E+1)(E+2)nucleons. The minimal configuration energy is obtained by filling the shells E =0(s);E=1(p);E =2(s d);:::;E

0

1and putting the remaining nucleons in the first partially filled shellE

0. In this way, it follows that

E min

= E0 1

X

E=0 4Edim

fEg +E

0 n

0

=E 0

A 1 6

E 0

(E 0

+1)(E 0

+2)(E 0

+3), (8) wheren

0 is the number of nucleons in the partially filled shellE

0.

Our aim is to label the states of a system ofAnucleons with minimal configuration energy with the labels given by the unitary chain (4).

In [1], Elliott gives the labelling for p and (s d) nuclei in a different, but equivalent, organization than the one used here. In his paper, Elliott only mentions that the classification was obtained by the plethysm technique.

In a recent paper [2], which we will refer to as (I), we review the plethysm technique, propose a general algorithm to compute all plethysms of two Schur functions of degrees nandmusing as input the plethysmfngfmgof sym-metric Schur functions [3] and show how the plethysm tech-nique can be applied to our problem. Ultimately, one has to find the reductionU(A 1) O(A 1) S(A). [We refer the readers to (I) for definitions and notations.] An al-ternative method for obtaining the reductionO(A 1) S(A), exploiting the complementarity betweenO(A 1) andSp(3;R )was proposed in [7].

According to the plethysm technique exposed in (I), the groupsU(3)andU

(r)

(A 1)in Eq.(4) must share the same irrep

fE 1

;E 2

;E 3

gwith E 1

+E 2

+E 3

=E (9)

and the irreps[℄ofS (r)

(A)andS (s)

(A)must be conjugate to each other.

The branching rules for irreps in the restrictionU(n)! O(n)have definite rules [4, 5, 6, 2]. According to them, for states of minimal configuration energy, the irrep ofO(n)in this restriction is the same as the one ofU(n). This then fixes theO(A 1)irrep. Then we must concern ourselves only with the restrictionU

(r)

(A 1)S(A)

(r) .

Besides, the Pauli principle imposes an additional re-striction. The treatment of the spin-isospin part by the Wigner supermultiplet model implies that theS

(r)

(A)irrep [

e

℄must have at most 4 lines, that is, [

~ ℄=[

~ 1

; ~ 2

; ~ 3

; ~ 4

℄ : (10)

Thereforefg, being its conjugate, must have at most 4 columns.

2

Reduction

U(A 1) S(A)

The reductionU(A 1) S(A) is given by the inner plethysmfA 1;1gf

0

gofU(A 1)irreps expanded in terms ofS(A)irreps

fA 1;1gf

0 g=

X

00

V

0

00

[A r

00 ;

00 1

; 00 2

;:::; 00 A 1

℄ (11) whereV

0

00 are numerical coefficients, f

00 1

; 00 2

;:::; 00 A 1

g areU(A 1)irreps andr

00 =

P A 1 i=1

00 i

(3)

One first defines the operator b

D(fg)by its action on an U(A 1)irrepfg:

b

D(fg)fg=

X

0

(fgfg!f

0 g)f

0

g (12)

where(fgfg! f

0

g)is the multiplicity of irrepf 0

g in the outer productfgfg.

From the properties of the outer product of Schur func-tions, it follows that the operators b

Dsatisfy the relations:

b D(f

0 g)

b D(f

00

g) =

b D(f

0 gf

00

g), (13)

b D(f

0 g)+

b D(f

00

g) =

b D(f

0 g+f

00

g). (14) Next one defines an operator b

Dby

b

D =

1 X

t2=0 X

t

2 1 X

t3=0 X

t

3 :::

1 X

j2=0 1 X

j3=0 :::(fg

t 2

fg t

3 :::)(

b

D(f2gfg

t 2

)

( b

D(f3gf

t 3

g):::( b

D(f2gfj 2

g)( b

D(f3gfj 3

g)::: . (15)

d

where fj 2

g;fj 3

g;::: are symmetric Schur functions and thefg

t 2

;fg t

3

;:::are general Schur functions of degrees t

2 ;t

3

;::: . [ Note that the only plethysms needed are those with a symmetric Schur function in the left. An algorithm to compute them is presented in (I).]

The action of b

D over anU(A 1)irrepf 0

g, by use of (13) and (14) is transformed in a sum of irrepsf

00 gwith multiplicitiesV

0

00 : b Df

0 g=

X

00

V

0

00 f

00

g. (16)

This expression provides the numerical coefficients V

0

00 and the

U(A 1)irrepsf 00

gthat appear in (11). To eachU(A 1)irrepf

00

gcorresponds oneS(A)irrep

[℄=[A r

00 ;

00 1

; 00 2

; 00 A 1

℄.

This is the mathematical framework. When applied to the classification of nuclear states new ingredients ap-pear. First, theU(A 1) irrepf

0

gin which b

Dacts has, by (9), at most 3 rows. Second, the S(A) irreps [℄ =

[A r

00 ;

00 1

; 00 2

;:::; 00 A 1

℄with physical meaning, by (10), are only the ones with at most 4 columns, that is,

[℄=[4 k4

;3 k3

;2 k2

;1 k1

℄; with4k 4

+3k 3

+2k 2

+k 1

=A: (17) Thek

i are interpreted[8] as the number of space levels occupyied by 1,1,3,4 nucleons, respectively.

These conditions restrict thet k and

j

k in (15) that may give meaningful S(A) irreps [℄ when

b

D is applied to a

givenU(A 1)irrepf 0

grepresenting a nuclear state with configuration energyE E

min . Theset k and

j

k are ob-tained following 2 steps:

1) take a nonnegative integeriin the range

E+1 2

6iE A+4; (18)

2) for eachiin this range, find the nonnegative integers j

kand t

kthat satisfy t

2 +

P k =2

k(t k +1

+j k

)=i, P

k =2 k(t

k +j

k )=r

00 ,

(19)

wherer

00 must be in the range

E 12r

00

2i (20)

Once these t

k ’s and j

k ’s are obtained, one re-places them in (15) applied to f

0

g, computes the result-ing plethysms and outer products, linearizes the resultresult-ing expression with respect to b

D using (13) and (14) ending with an expression of type (16). From the S(A) irreps

[℄ = [A r

00 ;

00 1

; 00 2

;:::; 00 A 1

℄ produced by eachf 00

g one keeps only the ones that satisfy (17).

ForE = E

min, which we are interested in, the solu-tionis of steps 1) and 2) for nuclei withA 80are given below.

Forp nuclei(5A16),E

min=A 4,

t 2

=t 3

=:::=0; j 2

=j 3

=:::=0; b Dfg

(A) A 4

$fg

(A) A 4

(21) and the reductionU(A 1)S(A)is

fg (A) A 4

$[4; 1

; 2

; 3

℄ with 1

+

2

+

3

=A 4and

i

4: (22)

[here and in the following the symbol$means that on the RHS only the terms which may produce physically acceptable S(A)irreps are considered.]

For (s d)-nuclei(17A40),E

(4)

t 2

= A 16; t

3 =t

4

=:::=0; j 2

=j 3

=::::=0; (23)

b Dfg

(A) 2A 20

$ X

fgA 16

f4 3

;fg A 16

g(f2g _ fg

A 16

g!fg

2(A 16) =

fg f4

3

g): (24)

[The symbol _

denotes a reduced plethysm, that is, a plethysm expansion in which only the terms with up to 3 rows are considered.]

The Schur functionf4 3

;fg A 16

gwill produce, by Eq.(11),S(A)irreps[4 4

;fg A 16

℄. For(p f) nuclei(41A80),E

min=3A 60,

t 2

= 24; t

3

=A 40; t

4 =t

5

=0; j

2 =j

3

=:::=0, (25)

b Dfg

(A) 3A 60

$ X

fg A 40

f4 9

;fg A 40

g(f3g _ fg

A 40 !

fg 3(A 40)

=fg

3A 60 f20

3

g). (26)

d

The Schur functions f4 9

;fg A 40

g will produce, by Eq.(11),S(A)irreps[4

10 ;fg

A 40 ℄.

Analogous to the case ofp and(s d) nuclei, Eq.(26) allows us to read the reductionU(A 1) S(A)for nu-clei in the ground configuration of this shell directly from the table of multiplicities of Schur functionsfg

3(A 40)in the reduced plethysmsf3g

_ fg

A 40. The column associ-ated to a given Schur functionfg

3(A 40)corresponds to theU(A 1)irrepf20

3

g+fg

3(A 40). Its entries, in each line labelled byfg

A 40give the multiplicity of

S(A)irrep [4

10 ;fg

A 40

℄in the reduction.

TheU(A 1)S(A)reductions forp and(s d) nuclei in minimal energy configuration are given in (I) and in [1] in a different organization.

For(p f) nuclei the reductions are given in the tables

below.

3

Explanation of tables

The equations in the tables give the reduction ofU(A 1) irrepfE

1 ;E

2 ;E

3

gintoS(A)irreps[℄. On their RHS are listed only the S(A)irreps physically acceptable, that is, those satisfying (17) as the symbol$indicates.

For a givenA and minimal configuration energy, only theU(A 1)irreps that have at least one physically accept-able irrep in its reduction toS(A)are listed.

Only the first half of the shell(41A60)is listed in the tables. The second half,(61A79), is obtained by the use of particle-hole symmetry in the open shell. For this shell this symmetry reads as

A $

A ;

(27)

[4

10 ;

(0) 1

; (0) 2

;:::; (0) 10

℄$[4 10

;4

(0) 10

;4

(0) 9

;:::;4 (0) 1

℄:

d

ForA=80one has

f60 3

g$[4 20

℄: (28)

In the tables are listed only the first 5 irreps fE

1 ;E

2 ;E

3

g more symmetric in U(3) labels, i.e., those with greatest values ofU(3)Casimir invariant.

References

1. J. P. Elliott, Proc. Roy. Soc. A245, 128 (1958).

2. J. A. Castilho Alcar´as, J. Tambergs, T. Krasta, J. Ruza J. Ruˇza, and O. Katkeviˇcius, Braz. J. Phys.

32, 641 (2002).

3. O. Egecioglu and J. B. Remmel, Atomic Data and Nuclear Data Tables, 32, 157 (1985).

4. D. E. Littlewood, The Theory of Group Characters (Oxford Univ. Press, Oxford, 1958).

5. B. G. Wybourne, Symmetry Principles and Atomic

Spectroscopy (Wiley, New York, 1970).

(5)

7. M. J. Carvalho, J. Phys. A23, 1909 (1990); Comp. Phys. Comm. 96, 288 (1996).

8. J. M. Blatt and V. F. Weisskopf, Theoretical

Nu-clear Physics (John Wiley, New York, 1960).

TABLES

A=41

f23;20 2

g$[4 10

;1℄

A=42

f26;20 2

g$[4 10

;2℄;f25;21;20g$[4 10

;1 2

℄;f24;22;20g$[4 10

;2℄;f23 2

;20g$[4 10

;1 2

A=43

f29;20 2

g$[4 10

;3℄;f28;21;20g$[4 10

;2;1℄; f27;22;20g$[4 10

;3℄+[4 10

;2;1℄; f27;21

2 g$[4

10 ;1

3

℄;f26;23;20g$[4 10

;3℄+[4 10

;2;1℄+[4 10

;1 3

℄; ... A=44

f32;20 2

g$[4 11

℄;f31;21;20g$[4 10

;3;1℄;f30;22;20g$[4 11

℄+[4 10

;3;1℄+[4 10

;2 2

℄; f30;21

2 g$[4

10 ;2;1

2

℄;f29;23;20g$[4 11

℄+2[4 10

;3;1℄+[4 10

;2;1 2

℄; ... A=45

f34;21;20g$[4 11

;1℄;f33;22;20g$[4 11

;1℄+[4 10

;3;2℄;f33;21 2

g$[4 10

;3;1 2

℄; f32;23;20g$2[4

11 ;1℄+[4

10

;3;2℄+[4 10

;3;1 2

℄;f32;22;21g$[4 11

;1℄+[4 10

;3;2℄+[4 10

;3;1 2

℄+[4 10

;2 2

;1℄; ... A=46

f36;22;20g$[4 11

;2℄;f36;21 2

g$[4 11

;1 2

℄;f35;23;20g$[4 11

;2℄+[4 11

;1 2

℄+[4 10

;3 2

℄; f35;22;21g$[4

11 ;2℄+[4

11 ;1

2 ℄+[4

10

;3;2;1℄;f34;24;20g$3[4 11

;2℄+[4 11

;1 2

℄+[4 10

;3;2;1℄; ... A=47

f38;23;20g$[4 11

;3℄;f38;22;21g$[4 11

;2;1℄;f37;24;20g$[4 11

;3℄+[4 11

;2;1℄; f37;23;21g$[4

11

;3℄+2[4 11

;2;1℄+[4 11

;1 3

℄+[4 10

;3 2

;1℄;f37;22 2

g$[4 11

;3℄+[4 11

;2;1℄+[4 10

;3;2 2

℄; ... A=48

f40;24;20g$[4 12

℄;f40;23;21g$[4 11

;3;1℄;f40;22 2

g$[4 11

;2 2

℄;f39;25;20g$[4 11

;3;1℄; f39;24;21g$[4

12 ℄+2[4

11

;3;1℄+[4 11

;2 2

℄+[4 11

;2;1 2

℄; ... A=49

f42;24;21g$[4 12

;1℄;f42;23;22g$[4 11

;3;2℄;f41;26;20g$[4 12

;1℄; f41;25;21g$[4

12 ;1℄+[4

11

;3;2℄+[4 11

;3;1 2

℄; f41;24;22g$2[4

12

;1℄+2[4 11

;3;2℄+[4 11

;3;1 2

℄+[4 11

;2 2

;1℄; ... A=50

f44;24;22g$[4 12

;2℄;f44;23 2

g$[4 11

;3 2

℄;f43;26;21g$[4 12

;2℄+[4 12

;1 2

℄; f43;25;22g$[4

12 ;2℄+[4

12 ;1

2 ℄+[4

11 ;3

2 ℄+[4

11

;3;2;1℄; f43;24;23g$2[4

12 ;2℄+[4

12 ;1

2 ℄+[4

11 ;3

2 ℄+[4

11

;3;2;1℄; ... A=51

f46;24;23g$[4 12

;3℄;f45;26;22g$[4 12

;3℄+[4 12

;2;1℄;f45;25;23g$[4 12

;3℄+[4 12

;2;1℄+[4 11

;3 2

;1℄; f45;24

2 g$[4

12 ;3℄+[4

12

;2;1℄;f44;28;21g$[4 12

;3℄+[4 12

;2;1℄; ... A=52

f48;24 2

g$[4 13

℄;f47;26;23g$[4 13

℄+[4 12

;3;1℄;f47;25;24g$[4 12

;3;1℄; f46;28;22g$[4

13 ℄+[4

12

;3;1℄+[4 12

;2 2

℄;f46;27;23g$[4 13

℄+3[4 12

;3;1℄+[4 12

;2 2

℄+[4 12

;2;1 2

℄+[4 11

;3 2

(6)

A=53

f49;26;24g$[4 13

;1℄;f48;28;23g$[4 13

;1℄+[4 12

;3;2℄;f48;27;24g$2[4 13

;1℄+[4 12

;3;2℄+[4 12

;3;1 2

℄; f48;26;25g$[4

13 ;1℄+[4

12

;3;2℄+[4 12

;3;1 2

℄;f47;30;22g$[4 13

;1℄+[4 12

;3;2℄; ... A=54

f50;28;24g$[4 13

;2℄;f50;27;25g$[4 13

;1 2

℄;f50;26 2

g$[4 13

;2℄; f49;30;23g$[4

13 ;2℄+[4

12 ;3

2

℄;f49;29;24g$2[4 13

;2℄+2[4 13

;1 2

℄+[4 12

;3 2

℄+[4 12

;3;2;1℄; ... A=55

f51;30;24g$[4 13

;3℄;f51;29;25g$[4 13

;2;1℄;f51;28;26g$[4 13

;3℄+[4 13

;2;1℄; f51;27

2 g$[4

13 ;1

3

℄;f50;32;23g$[4 13

;3℄; ... A=56

f52;32;24g$[4 14

℄;f52;31;25g$[4 13

;3;1℄;f52;30;26g$[4 14

℄+[4 13

;3;1℄+[4 13

;2 2

℄; f52;29;27g$[4

13

;3;1℄+[4 13

;2;1 2

℄;f52;28 2

g$[4 14

℄+[4 13

;2 2

℄; ... A=57

f53;33;25g$[4 14

;1℄;f53;32;26g$[4 14

;1℄+[4 13

;3;2℄;f52;35;24g$[4 14

;1℄; f53;31;27g$[4

14 ;1℄+[4

13

;3;2℄+[4 13

;3;1 2

℄;f53;30;28g$[4 14

;1℄+[4 13

;3;2℄+[4 13

;2 2

;1℄; ... A=58

f54;34;26g$[4 14

;2℄;f54;33;27g$[4 14

;2℄+[4 14

;1 2

℄+[4 13

;3 2

℄;f53;36;25g$[4 14

;2℄+[4 14

;1 2

℄; f52;38;24g$[4

14

;2℄;f54;32;28g$2[4 14

;2℄+[4 13

;3;2;1℄; ... A=59

f55;35;27g$[4 14

;3℄;f55;34;28g$[4 14

;3℄+[4 14

;2;1℄;f50;44;23g$[4 14

;3℄; f54;37;26g$[4

14 ;3℄+[4

14

;2;1℄;f52;41;24g$[4 14

;3℄; ... A=60

f56;36;28g$[4 15

℄;f52;44;24g$[4 15

℄;f56;35;29g$[4 14

;3;1℄; f51;45;24g$[4

14

;3;1℄;f55;38;27g$[4 15

℄+[4 14

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Portanto, acho que estas duas questões, para além das aquelas outras que já tinha referido, estas duas em particular são aquelas que me fazem acreditar, e se quiser, vou

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Por outro lado, na rinite alérgica perene, os anti-histamínicos orais são preferíveis aos ALT (uma possível justificação é o facto de se tratar de tratamentos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à