• Nenhum resultado encontrado

Structural characterization of coagulant Moringa oleifera Lectin and its effect on hemostatic parameters

N/A
N/A
Protected

Academic year: 2017

Share "Structural characterization of coagulant Moringa oleifera Lectin and its effect on hemostatic parameters"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

International

Journal

of

Biological

Macromolecules

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / i j b i o m a c

Structural

characterization

of

coagulant

Moringa

oleifera

Lectin

and

its

effect

on

hemostatic

parameters

Luciana

de

Andrade

Luz

a,1

,

Mariana

Cristina

Cabral

Silva

b,2

,

Rodrigo

da

Silva

Ferreira

b,2

,

Lucimeire

Aparecida

Santana

b,2

,

Rosemeire

Aparecida

Silva-Lucca

c,3

,

Reinhard

Mentele

d

,

Maria

Luiza

Vilela

Oliva

b,2

,

Patricia

Maria

Guedes

Paiva

a,1

,

Luana

Cassandra

Breitenbach

Barroso

Coelho

a,∗

aDepartamentodeBioquímica,UniversidadeFederaldePernambuco,Av.Prof.MoraesRegos/n,50670-901Recife,PE,Brazil

bDepartamentodeBioquímica,UniversidadeFederaldeSãoPaulo,RuaTrêsdeMaio,100,04044-020SãoPaulo,SP,Brazil

cCentrodeEngenhariaseCiênciasExatas,UniversidadeEstadualdoOestedoParaná,RuadaFaculdade,JardimLaSalle,85903-000Toledo,PR,Brazil

dInstituteofClinicalNeuroimmunology,LMU,Munich,GermanyandDepartmentforProteinAnalytics,MaxPlanckInstituteforBiochemistry,

Martinsried,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20February2013

Receivedinrevisedform12March2013 Accepted14March2013

Available online 26 March 2013

Keywords:

CoagulantMoringaoleiferalectin Primarysequence

Circulardichroism

AnticoagulantlectinandHemostatic parameters

a

b

s

t

r

a

c

t

Lectinsarecarbohydraterecognitionproteins.cMoL,acoagulantMoringaoleiferaLectin,wasisolated fromseedsoftheplant.Structuralstudiesrevealedaheat-stableandpHresistantproteinwith101 aminoacids,11.67theoreticalpIand81%similaritywithaM.oleiferaflocculentprotein.Secondary structurecontentwasestimatedas46%␣-helix,12%␤-sheets,17%␤-turnsand25%unorderedstructures belongingtothe␣/␤tertiarystructureclass.cMoLsignificantlyprolongedthetimerequiredforblood coagulation,activatedpartialthromboplastin(aPTT)andprothrombintimes(PT),butwasnotsoeffective inprolongingaPTTinasialofetuinpresence.cMoLactedasananticoagulantproteinoninvitroblood coagulationparametersandatleastonaPTT,thelectininteractedthroughthecarbohydraterecognition domain.

© 2013 Elsevier B.V.

1. Introduction

Lectinsareagroupofproteinswhichrecognizeandbind mono-andoligosaccharides[1,2].Theycanbindtocarbohydratemoieties onthesurfaceoferythrocytesandagglutinatethecells,without altering the carbohydrate structure [3]. Lectins exist in viruses andallformsoflife,howeverthebestknownareextractedfrom plants,especiallyseeds, organofstock,whichisa majorsource toobtainthesemolecules[4].Hundredsoflectinshavebeen puri-fiedandtheirsugarspecificitiesidentified,whichhasenabledtheir developmentintopowerfultoolsforthepurification,separation, andstructuralanalysisofglicoproteins[5],aswellasrecognition

∗Correspondingauthor.Tel.:+558121268540; fax:+558121268541/8121268576.

E-mailaddresses:lucianaluz16@yahoo.com.br(L.d.A.Luz),

roseslucca@hotmail.com(R.A.Silva-Lucca),mentele@biochem.mpg.de(R.Mentele), olivaml.bioq@epm.br(M.L.V.Oliva),lcbbcoelho@gmail.com,

luanacassandra@terra.com.br(L.C.B.B.Coelho). 1 Tel.:+558121268540;fax:+558121268576.

2 Tel.:+551155764445;fax:+551155723006.

3 Tel.:+554532203000;fax:+554533244590.

moleculesinsidecells,oncellsurfaces,andinphysiologicalfluids [6].Theyhaveshowninhibitoryactivityagainstfungiandbacteria [7,8],insects[9],viruses[10]andcytotoxiceffectsagainsttumor cellslines[11].

Physical-chemistrycharacterizationoflectinsisimportantto explainthefunctionindifferentbiologicalprocesses[12]. Struc-tural biology of macromolecules searches products potentially usefulforsolvingbiochemicalproblemsandeventuallydevelops new therapeutical agents [13]. To study structures of macro-molecule,spectroscopictechniquessuchascirculardichroism(CD) isused,whereopticallyactivesubstanceswillabsorbdifferentlyleft andrightcircularlypolarizedlight,andthedifferenceinabsorption ofcomponentsismeasured.Themethodhasbeenextensivelyused tounravelsecondarystructureofproteinsgivinginformationon theeffectofaddedligands[14].Proteinswithhigh␣-helical con-tentshowsCDspectruminthefarUVregionastwonegativeCD bandsaround208–210nmand222–228nmaswellasonepositive bandnear190–195nm[15].

Moringa oleifera,known ashorseradishor drumstick tree,is widelyfoundthroughoutIndia,Asia,somepartsofAfricaand Amer-ica,belongingtotheMoringaceaefamily[16,17].Itsconstituents suchas leaf,flower,fruit and barkhavebeen anecdotallyused

0141-8130© 2013 Elsevier B.V.

http://dx.doi.org/10.1016/j.ijbiomac.2013.03.044

Open access under the Elsevier OA license.

(2)

32 58 (2013) 31–36

asherbalmedicinesintreatmentsforinflammation,paralysisand hypertension[18].Theseedscontainedibleoilsandwater solu-blesubstances(coagulantproteins)thatcanbeusedindrinking waterclarification[19–22]orfortreatmentofselecteddyeing efflu-ents[23].Lectinswithcoagulant propertieswerepurified from M.oleifera seeds. Santos et al. [24] purified and partially char-acterizedcoagulantM.oleiferalectin,cMoL,thefirstlectinwith coagulantpropertiesforcontaminantsin water.cMoLis abasic protein,activeatpHrange4.0–9.0andcomplexsugarspecificity whichrecognizedmainlytheglycoproteinsazocaseinand asialofe-tuin.WSMoL, Water-SolubleM.oleiferaLectin,wasdetectedby Santosetal.[25]asanacidglycoprotein,withhigher hemagglu-tinationactivityatpH4.5,recognizingmainlyfructoseandporcine thyroglobulin.Ferreiraetal.[26]referredthatthislectinhas coag-ulantactivityandisanaturalcoagulantforcontaminantsinwater, reducingturbidityandbacterialproliferation.WSMoLandcMoL showedinsecticidalactivityagainstAedesaegypti[27]andAnagasta kuehniella[28],respectively.Katreetal.[29]reportedthepresence ofaM.oleiferalectin,MoL,ahomodimerwithmolecularmassof 14kDaandsubunits(7.1kDa)linkedbydisulfidebond(s).MoLis alsoaglycoproteinwithhighstabilityandagglutinateshumanas wellasrabbiterythrocytes.

cMoLisaproteinwithimportantbiologicalactivities[24,28], howeveritsstructuralcharacterizationwasnotcompletely elu-cidated. In this article, we report the primary structure, CD characterizationandforthefirsttimetheanticoagulant proper-tiesofacoagulantlectinfromM.oleiferaoninvitrohemostatic parametersofhumanbloodcoagulation.

2. Materialsandmethods

2.1. IsolationofcoagulantM.oleiferalectin(cMoL)

M.oleiferaseedswerecollectedonthecampusofUniversidade Federalde Pernambuco, in Recifecity, Northeast of Brazil.The extract,fractionandlectinwerepreparedaccordingtoSantosetal. [24],withmodifications.Seedsweregroundtoflour,whichwas extractedwith0.15MNaClatroomtemperature(25◦C)for6h, andasalineextractwasobtained.Proteinswereprecipitatedwith ammoniumsulphate(60%)atroomtemperaturefor4h;the frac-tionobtainedaftercentrifugation(12,000×gfor20minat4◦C)was dialyzedagainstwaterand0.15MNaCl.Thefractionwasapplied (10mgofprotein)onaguargelcolumn(10cm×1.0cm)previously equilibrated(20mL/hflowrate)with0.1MNaCl.cMoLwaseluted withasalinegradientof0.15,0.3,0.5and1MNaCl.UVabsorbance wasusedtomonitorsamples.cMoLactivefractionselutedwith 0.3MNaClwerepooled,analyzedbyHPLCandusedinthe exper-iments.cMoLproteinconcentrationwasevaluatedaccordingto Lowryetal.[30]usingbovineserumalbuminasstandardatarange of0–500␮g/mLandabsorbanceat720nm.

2.2. Reversed-phaseHPLC

cMoLwassubjectedtoreverse-phasecolumnC4onHPLC sys-tem(Shimadzu)forpurityanalysis.Thecolumnwasequilibrated withsolventA[0.1%(v/v)trifluoroaceticacid(TFA)inH2O] and elutedusingsolventB(90%acetonitrilein0.1%TFA)inalinear gra-dient,whereB=5%whent=0min,B=5%att=5min,B=100%at t=60min,B=0%whent=65min.Theelutionprofilewasmonitored at215and280nm.

2.3. Hemagglutinationactivity(HA)

Glutaraldehyde-treatedrabbiterythrocytes wereobtainedas describedbyBing,Weyand,andStavinsky[31].Thelectin(50␮L) was serially two-fold diluted in microtiter V-plates containing

0.15M NaCl beforeaddition of 50␮L 2.5% (v/v) suspension of treated rabbit erythrocytes. The results were read after about 45minwhenthecontrol,containingonlyerythrocytesfully pre-cipitated,appearedasadotatthebottomofthewell.HA(inverse ofthetiter)wasdefinedasthehighestsampledilutionshowingfull hemagglutination[4,32].

2.4. Primarysequencedetermination

Edman degradation [33] was performed with an automatic gas-phase sequencer (492cLC; Applied Biosystems) using condi-tionsrecommended by the manufacturer. Samples(0.8mg/mL) forsequencingwerereducedin200␮Lof0.25MTris–HClbuffer, pH8.5 containing 6Mguanidine–HCl,1mMEDTA and 5mg of DTT,andalkylatedwithiodacetamide[34].Then,theproteinwas separatedby reversed phasecromatography HPLC.The similar-ityofsequenceswassearchedusingtheBLASTproteinsequence database[35]andthesequenceswerealignedwiththeMULTALIN program[36].TheoreticalpIwascalculatedbyExPASyProtParam toolthroughtheprimarysequenceoftheprotein.

2.5. Spectroscopicmeasurements

CD data were recorded on a Jasco J-810 spectropolarime-ter. Samples were placed in a 0.5mm path length circu-lar quartz cuvette. Lectin concentration was 0.2mg/mL in phosphate–borate–acetate(PBA)bufferformeasurementsinthe farUVregion(250–190nm),asanaverageof8scans.Datawere expressedintermsofmeanresidueellipticity[].Thesecondary structureestimativewascalculatedbydeconvolutingtheCD spec-trum using the CDPro software package, which contains three CDanalysisprograms,CONTINLL,SELCON3andCDSSTR[37].The threeprogramswereusedwithareferenceproteinset consist-ingof56proteins,thusincreasingthereliabilityofdeconvolution. Resultswereexpressedasameanofthethreeprograms.CDPro packagealsocontainstheClusterprogramthatwasusedto deter-mine the tertiary structure class of cMoL [38]. To study the pH effect on cMoL, the protein (0.2mg/mL) was incubated in phosphate–borate–acetatebuffer(PBA),10mM,for10min,atpH valuesof2.0,4.0,6.0,7.0,8.0,10and12.Thetemperatureeffecton cMoLsecondarystructurewasalsoanalyzed.Proteinsampleswere heatedat40,60,80and100◦Cfor30minandat100Cfor1h.CD measurementswererecordedasdescribedabove.

2.6. Determinationofactivatedpartialthromboplastintime– aPTTandprothrombintime–PT

(3)

58 (2013) 31–36 33

3independentprotocols(±s.e.m).Allexperimentswereapproved bytheEthicsCommitteeoftheUniversidadeFederaldeSãoPaulo, numberCEP1793/11,accordingtoBrazilianfederallaw.

2.7. Statisticalanalysis

Differencesbetweenmeansvalueswereanalyzedusing one-way ANOVA followed by Tukey’s multi-comparison test in the coagulationassays.Apvalue<0.05wasconsideredsignificant.

3. Resultsanddiscussion

3.1. StructuralanalysisofcMoL

cMoLisacoagulantM.oleiferalectin,purifiedbySantosetal. [24] after saline extraction and guar gel column chromatogra-phy.Thecoagulantpropertyofthislectinisrelatedtoreduction of contaminants in water; cMoL promoted turbidity reduction ofapproximately92%(inrelationtonegativecontrol)similarto thepositivecontrolaluminumsulphateonwaterwithhighand lowturbidityofkaolinclay[24].Byhemagglutinationassays,the proteinis resistanttochangein pH,thermostable, agglutinates erythrocytesfromrabbitand humanblood types[24]and have insecticidalactivity[28].Byanewandsimpleprotocol,Santosetal. [24]purifiedandpartlycharacterizedalectindifferentfromthose alreadyreported,WSMoL [25]and MoL[29].The knowledgeof thestructureandphysicochemicalpropertiesofcMoLisneeded tounderstandthemechanismsofactioninvolvedinthe biologi-calactivitiesdevelopedbythelectinandthusintegratethestudy ofstructure-functionoftheprotein.Reversephase chromatogra-phywasmadetoassessthepurityofthefractionsobtainedinguar gelcolumn.Fig.1showsthecMoLprofileobtainedbyHPLC.The peakrepresentscMoLfractionsfromguargelcolummelutedwith 0.3MNaCl.Thedetectionofasinglepeakshowshomogeneityinthe purification,sothissteppurifiedefficientlythelectin,biologically active.

Highlypurefractionsofproteinsareimportantforthe perfor-manceofaminoacidsequenceandcirculardichroismanalysis.In thisstudy,thecompletesequenceofcMoLwasobtainedand com-paredwithotherproteinsequencesoftheNCBI-BLASTdatabank; thesearchindicatedsimilaritywiththesequenceofM.O2.1,a floc-culentactiveproteinfromM.oleifera[19].Thesesequenceswere alignedusingMULTALINprogram(Fig.2).Thesequencerevealed thatcMoLisaproteinwith101aminoacids,twochains,andhas 81%ofsimilaritywithM.O2.1,whichpresents6.5kDaandisoelectric pointabovepH10[19].ItisimportanttonotethatcMoLhaveeight cysteineresidues,whichmaybeinvolvedinthedisulfidebonds.

Fig.1.cMoLprofilebyreversephasechromatographyusingVYDACC4columnin aHPLCsystem.Fractionselutedwith0.3MNaClonanaffinityguargelcolumn wereassessedforhomogeneityevaluation.Absorbancewasperformedat280nm. Theproteinfractionwaselutedusingalineargradient:solventB(90%acetonitrile in0.1%TFA),whereB=5%whent=0min,B=5%att=5min,B=100%att=60min, B=0%whent=65min.

cMoLisabasicproteinwithatheoreticalpIof11.67indicatinga strongpositivechargeonthesurfaceandconfirmingitscationic nature.Highcontentsofglutamine(26.7%),alanine(6.9%),proline (6.9%)and17positivelychargedaminoacids(16argininesand2 histidines)arealsopresentinthelectinstructure.Severalprotein familieswithflocculent/coagulantactivityarepresentinM.oleifera seeds[19,39].cMoLmustdevelopitscoagulantactivityinwater duetointeractionsamongcharges,asproposedtoMO2.1[19,20] andnotthroughbindingtocarbohydraterecognitionsite.Further studiesonthegenomeandproteomeofM.oleiferaseedscould con-tributetounravelthefunctionofproductsfromauniquegene(s) intheplant[24].

ThenativecMoLmolecularweightobtainedbySantosetal.[24] throughSephacrylS-300sizeexclusionchromatographyrevealed a single peak correspondingto an apparentmolecularmass of 30,000Da; however, the molecular weight estimated to cMoL throughtheprimarysequencerevealedthattheproteinshowed 11,928Da.TheseresultssuggestedthatcMoLisatrimerconsisting ofthreesubunitsof11,928Da.cMoLisnotaglycosylatedprotein, whichwasconfirmedthroughSchiff’sreagentstainingbySantos etal.[24].

AnalysesofCDspectrumshowsatypicalshapeandfeaturesofa mainly␣-helicalsecondarystructure,i.e.,twonegativebandsat222 and209nm,andapositivebandat192nm(Fig.3).Thesecondary structurecontentofcMoLwasestimatedat46%␣-helix,12%␤ -sheets,17%␤-turnsand25%unorderedstructureswithrootmean

(4)

34 58 (2013) 31–36

Fig.3. CDspectrumofcMoLin10mMPBA,pH7.0.Measurementswererecorded asanaverageof8scansforproteinsolutionsof0.2mg/mL,at25◦C.CDspectrum

deconvolutionindicated46%␣-helix,12%␤-sheet,17%␤-turn,25%unordered struc-ture.

squaredeviation(RMS)lowerthan2%forallstructures.The Clus-teranalysisshowedthatcMoLbelongstothe␣/␤tertiarystructure class,corroboratedbyresultsofsecondary structureestimative. For␣/␤proteins,the222nmbandgenerallyhasahigherintensity than208–210nmband,whereasforthe␣+␤proteinsthereverse isobserved[38].Thecontentof␣-helicesestimatedforcMoLwas similartothatdeterminedforMO,thecoagulantproteinpurified byNdabigengesereandNarasiah[40].KwaambwaandMaikokera [41]reportedthatthisproteinpresentssecondarystructural com-ponentsof58%␣-helix,10%␤-sheetand33%unorderedstructures, withRMSlowerthan4%forallstructures.ButdifferentfromMoL, analpha–betalectin,isolatedbyKatreetal.[29]whichcontaining 28%␣-helix,23%␤-sheet,20%turnand28%ofunordered struc-ture.ThesecondarystructurecontentofcMoLandMoLrevealed thattheselectinshavedifferentcontentofsecondarystructures butconsistofamixtureofalphaandbetastructures.

Generally,thefunctionalstabilityisaccompaniedbystructural stability.Fig.4ashowsCDspectraofcMoLinpHvaluesof2.0,7.0 and12.Thesecondarystructureoftheproteindidnotchangein acidicandalkalineconditionsasshownintheCDspectra, corrobo-ratingwiththedataonthestabilityofbiologicalactivityinfunction ofpH.ThecontentofeachsecondarystructureofcMoLat differ-entpHrangeis showninTable1.Nosignificantchangedueto pHwasobservedintheestimatedsecondarystructuresfromCD spectra.SamplespectrafromotherpHvalueswereomittedsince

Table1

cMoLsecondarystructureestimatedfromCDspectraatdifferentpHvalues.

pH ␣-Helix(%) ␤-Sheet(%) ␤-Turn(%) Unordered(%)

2.0 43 13 18 26

7.0 46 12 17 25

12.0 39 15 19 27

QuantitativepredictionswereperformedusingCDProsoftware.

Table2

cMoLsecondarystructureestimatedfromCDspectraatdifferenttemperatures.

Temperatures ␣-Helix(%) ␤-Sheet(%) ␤-Turn(%) Unordered(%)

40◦C 51 9 16 25

60◦C 51 8 16 25

80◦C 42 10 21 27

100◦C(30min) 18 25 23 33 100◦C(1h) 7 26 27 40

QuantitativepredictionswereperformedusingCDProsoftware.

smallchangesweredetected.cMoLandMoLhaveasacommon fea-tureactivityinacidicandalkalineconditions[24,29].Otherlectin withsimilarpHstabilityisachitin-bindinglectinfromrhizomes ofSetcreaseapurpurea(SPL).SPLisahomotetramericproteinwith hemagglutinatingactivitystableinpHrangeof2.0–9.0[42].

Treating cMoL at 100◦C and subsequent evaluation by HA revealedthelectinasathermostableprotein[24],howeverby accu-rateCDanalysis,theproteinconformationismaintainedonlyuntil 80◦Cfor30min(Fig.4b).WhencMoLwassubjectedtoheatingat 80◦C,changein-helixcontentwasverified,followedbyagentle increaseof␤-structureswhileunorderedstructuresdidnotalter. TheestimatedunorderedstructurecontentincreasedwhencMoL washeatedat100◦Cfor30minand1h(Table2).Hightemperature isapowerfuldenaturingagentleadingtoproteinunfoldingthrough breakingofhydrogenbondsthatmaintainproteinstructure[43]. ThermostabilityisacommonfeatureofproteinsfromM.oleifera seeds.MOCP,acoagulantproteinisolatedbyGhebremichaeletal. [21]remainedactiveafter5hheattreatmentat95◦C.Katreetal.

[29]alsoreportedthatMoLisaheat-stableprotein,whichretains theactivityevenafterincubatingat85◦Cupto30minatpH7.2.

3.2. cMoLeffectonhemostaticparameters

TheinfluenceofcMoLonblood coagulationwasdetermined byactivatedpartialthromboplastintime(aPTT)andprothrombin time(PT)(Fig.5).Thepositivecontrolusedintheassayswasplasma ofhealthyvolunteerdonorswithnormalvaluesforclottingtimes. Avarietyofnewanticoagulantsarebeingdeveloped andtested

Fig.4. (a)CDspectraofcMoL(0.2mg/mL),in10mMPBAbuffer,atpH2.0(),7.0(䊉)and12()and(b)cMoLspectraafterheatingat40(),60(䊉),80()and100◦Cfor

(5)

58 (2013) 31–36 35

Fig.5. InvitroeffectofcMoLinhemostaticparameters.Activatedpartial thrombo-plastintime(aPTT,a)andprothrombintime(PT,b)weredetermined.Thestatistical significancewasevaluatedusingone-wayANOVA,followedbyTukey’stest. A p-value<0.05wasconsideredtoindicatesignificance.p-Value<0.05(*)and p-Value<0.001(**).R:ratioofsamplecoagulationtimewithcontrolcoagulationtime. Datarepresentmeans±s.e.m.,n=3.

toinhibitthevariousstepsin thecoagulationcascade[44].The determinationofaPTTisparticularlyusefulinmonitoringtheeffect ofheparinanddeterminingdeficienciesoffactorsVIII,IX,XIandXII. TPreflectstheactivityoffactorII(prothrombin),V,VIIandX,whose deficiencyisaccompaniedbyaprolongationoftimerequiredfor clotformation[45].

cMoLsignificantlyprolongedaPTT(tomorethan300s)andPT (Fig.5b)coagulationtime,attheassayedconcentrations(3.0,15,30, 37.5,45and60␮g/mL)butthemostaffectedparameterwasaPTT (Fig.5a).ProlongationofaPTTsuggestsinhibitionoftheintrinsic pathwayand/orcommonbloodcoagulation,whileprolongationof PTsuggestsinhibitionoftheextrinsicpathway[46].Theintrinsic andextrinsicpathwaysconvergeintheformationoffactorXa[47]. Otherlectinsalsosignificantly prolongsbothcoagulationtimes. Cratyliamollisseedlectin(Cramoll1,4),amannose/glucose bind-inglectin,promotesalmosttwo-foldincreaseofcoagulationtimes [48].Bauhiniaforficatalectin,BfL,increasedonlyaPTTcoagulation timebutthiseffectwasnotrelatedtohumanplasmakallikreinor humanfactorXainhibition[49].ThuscMoLshowedan anticoagu-lantactivity,sinceindeterminingtheR,theratiobetweensample coagulationtimeandcontrolcoagulationtime[50]washigherthan 1.0.

Significant correlation between recognition and binding of lectinstocarbohydratesorglycoconjugatesoncellsurfaceorfree inbiologicalfluidsareinvolvedinmanylectineffects,suchas activ-ityagainstinsects,viruses,bacteriaandcytotoxicity[27,42,51,52]. Then, to investigate cMoL interaction with coagulationfactors, blood coagulation assays were performed in the presence of asialofetuin. This glycoprotein blocks the site of carbohydrate recognitionofthelectin.aPTTassaysshowedareduction inthe

Fig.6.BloodcoagulationassaysinthepresenceofcMoLinhibitedbyasialofetuin (0.5mg/mL).Lectinwaspreviouslyincubated(15min)withasialofetuin.(a) Acti-vatedpartialthromboplastintime(aPTT);(b)prothrombintime(PT).Thestatistical significancewasevaluatedusingone-wayANOVA,followedbyTukey’stest.A p-value<0.05wasconsideredtoindicatesignificance.p<0.05(*)andp<0.001(**) representcomparativeanalysisbetweencMoLinhibitedbyasialofetuinand con-trols.StatisticalsignificanceofcMoLinthepresenceandabsenceofglycoprotein wasalsoshowed.R:ratioofsamplecoagulationtimewithcontrolcoagulationtime. Datarepresentmeans±s.e.m.,n=3.

timerequiredforbloodcoagulationinthepresenceoftheinhibited lectinbyglycoproteininthesameassayedconcentrations(Fig.6a), whilePTwasnotaffected(Fig.6b).TheseresultssuggestthatcMoL interactswiththecarbohydrateportionofserineproteasesofthe coagulationcascadefromintrinsicpathway.NodecreaseinPTin thepresenceofinhibitedlectinsuggeststhatthelectinshouldact onthefactorsoftheextrinsicpathwayand/orunderthefactorXa byadifferentdomainfromthecarbohydraterecognition.

4. Conclusions

InthisarticlestructuralcharacteristicsofcMoLweredescribed; also,forthefirsttime,theanticoagulantactivitywasdetectedon humanbloodcoagulationprocessbyacoagulantM.oleiferaseed lectin.Structuralanalysisrevealed cMoLcommonfeatures with anothercoagulantproteinfromM.oleifera.cMoLinteractionsin bloodcoagulationmustoccuratleastpartially,bythecarbohydrate recognitiondomain.cMoListheonlycurrentlydescribedprotein fromM.oleiferaseedsthatexhibitsanticoagulantactivity.

Authorcontributions

(6)

36 58 (2013) 31–36

Acknowledgements

TheauthorsexpresstheirgratitudetotheConselhoNacional deDesenvolvimentoCientíficoeTecnológico(CNPq)forresearch grantsandfellowship(PMGP,MLVOandLCBBC).Also,theFundac¸ão de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE),theCoordenac¸ãodeAperfeic¸oamentodePessoaldeNível Superior(CAPES)andtheFundacãodeAmparoàPesquisadoEstado deSãoPaulo(FAPESP)areacknowledgedforfinancialsupport.

References

[1]W.J.Peumans,E.J.M.VanDamme,BiotechnologyandGeneticEngineering Reviews15(1998)199–228.

[2]E.J.M.VanDamme,in:K.Gevrert,J.Vandekerckhove(Eds.),Gel-Free Pro-teomics,MethodsandProtocols,HumanaPress,Belgium,2011,pp.289–297. [3]S.K.Lam,T.B.Ng,AppliedMicrobiologyandBiotechnology89(2011)45–55. [4]M.T.S.Correia,L.C.B.B.Coelho,AppliedBiochemistryandBiotechnology55

(1995)261–273.

[5]P.Gemeiner,D.Misloviˇcova,J.Tkáˇc,J. ˇSvitel,V.Pätoprsty,E.Hrabárová,G. Kogan,T.Koˇzár,BiotechnologyAdvances27(2009)1–15.

[6]G. Reuter, H.J. Gabius, Cellular and Molecular Life Sciences 55 (1999) 368–422.

[7]A.F.M.Vaz,R.M.P.B.Costa,A.M.M.A.Melo,M.L.V.Oliva,L.A.Santana,R.A. Silva-Lucca,L.C.B.B.Coelho,M.T.S.Correia,FoodChemistry119(2010)1507–1513. [8]S.Charungchitrak,A.Petsom,P.Sangvanich,A.Karnchanatat,FoodChemistry

126(2011)1025–1032.

[9]R.M.S.Araújo,R.S.Ferreira,T.H.Napoleão,M.G.Carneiro-da-Cunha,L.C.B.B. Coelho,M.T.S.Correia,M.L.V.Oliva,P.M.G.Paiva,PlantScience183(2012) 20–26.

[10]Y. Sato,K.Morimoto,M.Hirayama,K.Hori,Biochemicaland Biophysical ResearchCommunications405(2011)291–296.

[11]S.Wang,Q.Yu,J.Bao,B.O.Liu,BiochemicalandBiophysicalResearch Commu-nications406(2011)497–500.

[12]M.T.S.Correia,L.C.B.B.Coelho,P.M.G.Paiva,in:Y.H.Siddique(Ed.),Recent trendsintoxicology,vol.37,TransworldResearchNetwork,Kerala,India,2008, pp.47–59.

[13]R.A. Silva-Lucca,D. Hansen,M.L.V. Oliva,RevistaVaria Scientia5 (2006) 97–112.

[14]D.H.A.Corrêa,C.H.I.Ramos,AfricanJournalofBiochemistryResearch3(2009) 164–173.

[15]S.Y.Venyaminov,J.T.Yang,in:G.D.Fasman(Ed.),CircularDichroismandthe ConformationalAnalysisofBiomolecules,PlenumPress,NewYork,1996,pp. 70–107.

[16]S.A.A.Jahn,JournalofAmericanWaterWorksAssociation(AWWA)80(1988) 43–50.

[17]S.Bhatia,Z.Othman,A.L.Ahmad,JournalofHazardousmaterials145(2007) 120–126.

[18]P.H.Chuang,C.W.Lee,J.Y.Chou,M.Murugan,B.J.Shieh,H.M.Chen,Bioresource Technology98(2007)232–236.

[19]U.Gassenschmidt,K.D.Jany,B.Tauscher,H.Niebergall,Biochimicaet Biophys-icaActa1243(1995)477–481.

[20]A. Ndabigengesere,K.S. Narasiah,B.G. Talbot, WaterResearch29 (1995) 703–710.

[21]K.A.Ghebremichael,K.R.Gunaratna,H.Henriksson,H.Brumer,G.Dalhammar, WaterResearch39(2005)2338–2344.

[22]C.Y.Yin,ProcessBiochemistry45(2010)1437–1444.

[23]J.Beltran-Heredia,J.Sanchez-Martín,A.Delgado-Regalado,Industrialand Engi-neeringChemistryResearch48(2009)6512–6520.

[24]A.F.S.Santos,L.A.Luz,A.C.C.Argolo,J.A.Teixeira,P.M.G.Paiva,L.C.B.B.Coelho, ProcessBiochemistry44(2009)504–508.

[25]A.F.S.Santos,A.C.C.Argolo,L.C.B.B.Coelho,P.M.G.Paiva,WaterResearch39 (2005)975–980.

[26]R.S.Ferreira,T.H.Napoleão,A.F.S.Santos,R.A.Sá,M.G.Carneiro-da-Cunha, M.M.C.Morais,R.A.Silva-Lucca,M.L.V.Oliva,L.C.B.B.Coelho,P.M.G.Paiva, Let-tersinAppliedMicrobiology53(2011)186–192.

[27]J.S.Coelho,N.D.L.Santos,T.H.Napoleão,F.S.Gomes,R.S.Ferreira,R.B. Zin-gali,L.C.B.B.Coelho,S.P.Leite,D.M.A.F.Navarro,P.M.G.Paiva,Chemosphere 77(2009)934–938.

[28]C.F.R. Oliveira,L.A.Luz,P.M.G.Paiva,L.C.C.B. Coelho,S.Marangoni,M.L.R. Macedo,ProcessBiochemistry46(2011)498–504.

[29]U.V.Katre,C.G.Suresh,M.I.Khan,S.M.Gaikwad,InternationalJournalof Bio-logicalMacromolecules42(2008)203–207.

[30]O.H.Lowry,N.J.Rosebrough,A.L.Farr,R.J.Randall,JournalofBiological Chem-istry193(1951)265–275.

[31]D.H.Bing,J.G.M.Weyand,A.B.Stavinsky,ProceedingsoftheSocietyfor Exper-imentalBiologyandMedicine124(1967)1166–1170.

[32]P.Chumkhunthod,S.Rodtong,S.J.Lambert,A.P.Fordham-Skelton,P.J.Rizkallah, M.C.Wilkinson,C.D.Reynolds,BiochimicaetBiophysicaActa1760(2006) 326–332.

[33]P.Edman,ActaChemicaScandinavica4(1950)277–282.

[34]P.T.Matsudaira,InaPracticalGuidetoProteinandPeptidePurificationfor Microsequencing,AcademicPress,SanDiego,CA,198920–22.

[35]S.F.Altschul,T.L.Madden,A.A.Schäffer,J.Zhang,Z.Zhang,W.Miller,D.J.Lipman, NucleicAcidsResearch25(1997)3389–3402.

[36]F.Corpet,NucleicAcidsResearch16(1988)10881–10890.

[37]N.Sreerama,R.W.Woody,AnalyticalBiochemistry287(2000)252–260. [38]N. Sreerama,S.Y.Venyaminov, R.W.Woody, AnalyticalBiochemistry299

(2001)271–274.

[39]M.Broin,C.Santaella,S.Cuine,K.Kokou,G.Peltier,T.Joët,AppliedMicrobiology andBiotechnology60(2002)114–119.

[40]A.Ndabigengesere,K.S.Narasiah,WaterResearch32(1998)781–791. [41]H.M.Kwaambwa,R.Maikokera,ColloidsSurfaceB64(2008)118–125. [42]Q.Yao,C.Wu,P.Luo,X.Xiang,J.Liu,L.Mou,J.Bao,ProcessBiochemistry45

(2010)1477–1485.

[43]V.Daggett,M.Levitt,JournalofMolecularBiology223(1992)1121–1138. [44]D.Garcia,ThrombosisResearch123(2009)50–55.

[45]P.H.Silva,Y.Hashimoto,Coagulac¸ão-VisãoLaboratorialdaHemostasiaPrimária eSecundária,1sted.,Revinter,RiodeJaneiro,2006.

[46]Y.I.Park,W.J.Kim,Y.K.Koo,M.K.Jung,H.R.Moon,S.M.Kim,A.Synytsya, H.S.Yun-Choi,Y.S.Kim,J.K.Park,ArchivesofPharmacalResearch33(2010) 125–131.

[47]E.W.Davie,K.Fujikawa,W.Kisiel,Biochemistry30(1991)10363–10370. [48]M.C.CSilva,L.A.Santana,R.A.Silva-Lucca,A.L.R.Lima,J.G.Ferreira,P.M.G.Paiva,

L.C.B.B.Coelho,M.L.V.Oliva,R.B.Zingali,M.T.S.Correia,ProcessBiochemistry 46(2011)74–80.

[49]M.C.C.Silva,L.A.Santana,R.Mentele,R.S.Ferreira,A.Miranda,R.A.Silva-Lucca, M.U.Sampaio,M.T.S.Correia,M.L.V.Oliva,ProcessBiochemistry47(2012) 1049–1059.

[50]P.Möhnle,N.M.Schwann,W.K.Vaughn,M.C.Snabes,W.Lau,J.Levin,N.A. Nussmeier, Journalof Cardiothoracic and Vascular Anesthesia19 (2005) 19–25.

[51]E.S.Nunes,M.A.A.Souza,A.F.M.Vaz,G.M.S.Santana,F.S.Gomes,L.C.B.B.Coelho, P.M.G.Paiva,R.M.L.daSilva,R.A.Silva-Lucca,M.L.V.Oliva,M.C.Guarnieri,M.T.S. Correia,ComparativeBiochemistryandPhysiologyB159(2011)57–63. [52]H.Peng,H.Lv,Y.Wang,Y.Liu,C.Li,L.Meng,F.Chen,J.Bao,Peptides30(2009)

Referências

Documentos relacionados

Uma das explicações para a não utilização dos recursos do Fundo foi devido ao processo de reconstrução dos países europeus, e devido ao grande fluxo de capitais no

The yield obtained from P68 and P75 did not differ in the first experiment but on the second it was significantly higher for P75. The effect of plant density was observed only

The effect of exudate was significant on the sodium content and compression force parameters, but this difference was not perceived in the sensory analysis, confirming that frozen

The fibrinogen plasmatic levels (Clauss method; Q.Stago reagents), FDP (latex method; Q.Stago reagents), activated partial thromboplastin time (APTT) (cefalin-kaolin

177 Hoje foi mais um dia especial, veio a reflexão sobre esse tempo na escola, como ate, e dos momentos para além da escola, nos relatos e esvaziamentos tão necessários

The fabricated PU/bio oil TM composite mesh expressed a significant delay in blood clotting indicated through their APTT and PT

14 A preparação de medicamentos manipuladas iniciava-se com a receção de uma requisição dos Serviços Clínicos pela Distribuição Clássica, para o caso dos colutórios

Conventional coagulation tests such as prothrombin time and activated partial thromboplastin time present limitations in predicting bleeding and guiding transfusion therapy