• Nenhum resultado encontrado

Hippocampal ether-a-go-go1 potassium channels blockade: Effects in the startle reflex and prepulse inhibition

N/A
N/A
Protected

Academic year: 2017

Share "Hippocampal ether-a-go-go1 potassium channels blockade: Effects in the startle reflex and prepulse inhibition"

Copied!
5
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Neuroscience

Letters

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u l e t

Hippocampal

ether-à-go-go1

potassium

channels

blockade:

Effects

in

the

startle

reflex

and

prepulse

inhibition

A.C.

Issy

a,1

,

J.R.

Fonseca

b,1

,

L.A.

Pardo

c

,

W.

Stühmer

c

,

E.A.

Del

Bel

a,∗

aDepartmentofMorphologyPhysiologyandBasicPathology,UniversityofSãoPaulo(USP),DentalSchoolofRibeirãoPreto,Brazil bFederalUniversityofSãoPaulo(UNIFESP),Brazil

cDepartmentofMolecularBiologyofNeuronalSignals,Max-PlanckInstituteofExperimentalMedicine,Gottingen,Germany

h

i

g

h

l

i

g

h

t

s

•Eag1K+channelsblockadeinthedentategyrusofthehippocampusdidnotmodifyapomorphine-disruptiveeffectsinthePPI.

•DentategyrussurgeryinducingdecreasedstartleresponsewasrestoredbytheEag1antibody. •TheroleofEag1K+channelsinthestartleresponsemeritsfurtherinvestigation.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6August2013 Receivedinrevisedform 13November2013 Accepted16November2013

Keywords:

Dopamine Prepulseinhibition Schizophrenia Eag1 Kv10.1 Startlereflex

a

b

s

t

r

a

c

t

Recently,ourgroupdescribedtheether-à-go-go1(Eag1)voltage-gatedpotassium(K+)channel(Kv10.1) expressioninthedopaminergiccellsindicatingthatthesechannelsarepartofthediversifiedgroupofion channelsrelatedtodopaminergicneuronsfunction.Theincreaseofdopamineneurotransmissioninduces areductionintheprepulseinhibition(PPI)oftheacousticstartlereflexinrodents,whichisareliable indexofsensorimotorgatingdeficits.ThePPIresponsehasbeenreportedtobeabnormallyreducedin schizophreniapatients.TheroleofEag1K+channelsinthePPIreactionhadnotbeenrevealeduntilnow, albeitthesingulardistributionofEag1inthedentategyrusofthehippocampusandthehippocampal regulationofthestartlereflexandPPI.TheaimofthisworkwastoinvestigateifEag1blockadeon hippocampusmodifiesthePPI-disruptiveeffectsofapomorphineinWistarrats.Bilateralinjectionof anti-Eag1single-chainantibodyintothedentategyrusofhippocampusdidnotmodify apomorphine-disruptiveeffectsinthePPIresponse.However,Eag1antibodycompletelyrestoredthestartleamplitude decreaserevealedafterdentategyrussurgery.Thesepotentiallybiologicalimportantphenomenonmerits furtherinvestigationregardingtheroleofEag1K+channels,mainly,onstartlereflexmodulation,since thephysiologicalroleofthesechannelsremainobscure.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Ether-à-go-go-related gene (ERG) potassium (K+) channel is

mainlyexpressedinthehumanandrodentsadultbrain[23,24].

ERGK+channelsbelongtoasuperfamilyofvoltage-activatedK+

channelsencoded by three distinct gene subfamilies, including

ether-à-go-go (eag), ether-à-go-go-like (elk), and ether-à-go-go -related(erg)genes[8,42].Amongthem,theEagK+channelappears

tobetheonlymainlyneuron-specificand localizedtosynapses

∗Correspondingauthorat: DepartmentofMorphologyPhysiologyandBasic Pathology,UniversityofSãoPaulo,DentalSchoolofRibeirãoPreto,Centerfor Inter-disciplinaryResearchonAppliedNeurosciences(NAPNA),14049-904,Brazil. Tel.:+551636024047;fax:+551636330999.

E-mailaddress:eadelbel@forp.usp.br(E.A.DelBel).

1 Theseauthorscontributedequallytothiswork.

[18]. Eag K+ channel is representedby the Eag1 gene (KCNH1,

Kv10.1)[26,42]andEag2 (KCNH5,Kv10.2)[19,23].HighestEag1

geneexpressionisfoundinthecerebralcortex,hippocampus, cere-bellumandhypothalamusofhumanandrat,whichgreatlyoverlaps withEag1proteinexpression[24].However,thefunctionofEag1 K+channelsinthecentralnervoussystemisstillunknown[26,27].

ItwassuggestedthatthelateraldiffusionofEag1ionchannelsacts

asadynamicalmechanismtoaccruethesechannelstothe

synap-ticterminals,wheretheyshouldplaya pivotalroleforsynaptic functionandplasticity[11].TheexpressionoftheEag1K+channel

ishighinthenigrostriatalpathwayanditisco-localizedwiththe dopaminergiccells[7].Thisdatasuggeststhatthesechannelsmay wellparticipateinthephysiologyofthedopaminergicsystem[7]. Sensorimotorgatingistheabilitytogateoutirrelevantstimuli, anormalcentralinhibitoryprocessesexpression,anditsabilitycan beaccessedthroughprepulseinhibition(PPI)inhumans[2,29,38]

and rodents [3,36,37]. Schizophrenia patients exhibit heritable

0304-3940/$–seefrontmatter© 2013 Elsevier Ireland Ltd. All rights reserved.

(2)

postmortemhistological,morphometricandgeneticanalyses[14]. SpecificevidenceforthehippocampalregulationofPPIcomesfrom experimentalanimal studies [5,39]. Recently, K+ channels have

beenproposedtoplayaroleinthemechanismsofneuralplasticity whicharealteredinvariouspsychiatricdisorders,especiallyin hip-pocampus[16].Thedentategyrusofthehippocampusactsasthe “gatekeeper”orthe“filter”ofthehippocampalfunction[10].Ithas

beendescribedthatdopaminemodulatestheactivityofnew

den-tategranulecellsinthedentategyrus[25].Also,dopamineactsas agateonthedirectcorticalinputtothehippocampus,modulating synapticplasticityandinformationflowinafrequency-dependent manner[17].In thiscontext,Eag1K+ channelexpressioninthe

dentategyrusofhippocampalneurons[7]becomesinteresting. Becauseof thelack ofspecific pharmacologicalinstruments,

Eag1monoclonalantibodymayprovideanattractivetoolto

elu-cidatethe functional role of this channel in mammalian brain

[24].Monoclonalantibodiesrepresentastrategytogeneratehighly selectiveinhibitorsagainstcellsurfacemolecules,enablinga spe-cificantigentobedistinguishedfromitsclosehomologues[12,31]. AspecificEag1antibodywasvalidatedanddescribedasthefirst monoclonalantibodythatselectivelyinhibitsaK+currentinintact

cells[12].Takingadvantageofthespecificityoftherecombinant anti-Eag1single-chainantibody,andthesingulardistributionof Eag1inthehippocampus(Fig.1)[7]weinvestigatetheeffectsof Eag1antibodymicroinjectionintothedentategyrusofratsafter

systemicapomorphinetreatment.

2. Materialsandmethods

2.1. Animals

Male Wistarrats (n=11; 250–300g) were used. The

experi-mentalprotocolfollowedtheguidelinesforthecareanduseof

mammalsinNeuroscienceand BehavioralResearch(ILAR, USA).

Rats werehoused fourper cage, undercontrolled temperature

(23±1◦C)andlight/darkcycle(12–12h;lightsonat0600hours)

withfoodandwaterconstantlyavailable.Testswereperformedin thelightphase.

2.2. Drugs

Apomorphine(Sigma–Aldrich,Germany)wasdissolvedin

dis-tilledwaterwith0.1%ascorbicacidandinjectedsubcutaneously (s.c.;0.5mg/kg)at 1ml/kg.Eag1-specific recombinantanti-Eag1 single-chainantibody(1␮g/1␮lofwaterRNAsefree)was

bilat-erallyinjectedwith30 gaugeneedles(16mm)intothedentate

gyrusatavolumeof0.5␮Ldeliveredover60susingamicrodrive

injectionpump.

test(post-surgicalanalyses)beforeapomorphinetreatment.

2.4. Surgery

Rats were anesthetized with ketamine/xylazine (10:7,

100mg/kg; intraperitoneal) and placed in a stereotaxic

appa-ratus.Stainless steel guidecannulaewere bilaterallyimplanted

3mmabovetheinjectionsitewithinthedentategyrus

(antero-posterior,−4mm;lateral,±2.6mm;dorso-ventral,−2.1mm)[28].

Theguidecannulaewerekeptunobstructedbydummystylets.

2.5. Experimentaldesign

Aftersurgeryforbilaterallyhippocampuscannulae implanta-tionallratsshowedasignificantdecreaseoftheirstartleamplitude (comparedtopre-testcondition).Animalsweretestedrepeatedly (pre-test,post-surgicalapomorphine,andapomorphine+Eag1K+

channelantibody)withaminimumintervalof4days,with excep-tionofthepostsurgicaltest.PPIdisruptionwasinducedbyacute apomorphinetreatment.Microinjectionoftheanti-Eag1K+

chan-nelantibodybilaterallyinthedentategyrusofhippocampuswas

conducted20minaftertheapomorphinetreatment.Tworatswere

notincludedinthebehavioralanalyses(Fig.2).

2.6. Statisticalanalyses

The acoustic startle response to pulse alone and to

pre-pulse+pulse was analyzed by repeated measures analysis of

variance(RM-ANOVA)withstimuli(fourlevels:pulse;81 or73

or69dBprepulse+pulse)asawithin-subjectsfactorandcondition (preorpost-surgicalorpharmacologicaltreatment;fourlevels)as

between-subjectsfactors.Forthemean%PPI,RM-ANOVAwas

con-ductedwithintensityofprepulse(threelevels)asawithin-subject factor,andconditionasabetween-subjectsfactor.Inthecaseof

significantmaineffectstheRM-ANOVAwasfollowedbyDuncan’s

testforposthoccomparisons(P<0.05).

3. Results

3.1. Startleamplitude

Wefoundasignificantmaineffectofstimuli(F(3,96)=13.017;

P=0.000)andcondition(F(3,32)=6.48;P=0.001),butnota signif-icantinteractionbetweenstimuliand condition(F(9,96)=1.866;

(3)

Fig.1. PhotomicrographsAandBshowingEag1immunoreactivityintherathippocampus.Thedetectionsystem(NBT/BCIP)producedanintensebluecolormainlyinthe cellbodies.

thestartleamplitude wassignificantlyincreased (bringto nor-mal)comparedwiththepost-surgicalcondition(posthocDuncan;

P<0.05;Fig.3).Inthe81and73dBprepulse+pulsetrialsthestartle

magnitudewassignificantlowerthantherespectivestimulusof

thepre-testcondition.However,importantly,thestartle

ampli-tudetothe pulsewashigherthan thestartleamplitudetothe

prepulse+pulse(withallprepulseintensities)inthepostsurgical condition(Fig.3).

3.2. Prepulseinhibition

There was a significant effect of condition (F(3,32)=4.10;

P=0.014),butnotofprepulseintensity(F(2,64)=0.185;P=0.831)

or an interaction between prepulse intensity and condition

Fig. 2.Hematoxilin-eosin representative histological sectionand cannulae-tip placementsschemawithinthedentategyrusofhippocampus.Injectionneedletips locationwithinthedentategyrusofhippocampuswasdeterminedaccordingtothe standardizedplates–Bregma−2.06;interaural1.74mm[28].Twoanimalswithin cannulaeinsertionsoutsidethedentategyruswerenotincludedindataanalyses.

(F(6,64)=1.105;P=0.369).Systemictreatmentwithapomorphine inducedsignificantPPIdisruption.Eag1antibodyinjected bilat-erallyintothedentategyrusdidnotmodifythiseffect(posthoc Duncan;P<0.05;Fig.4).PPIonpost-surgical conditionwasnot differenttothepre-test(datanotshown).

4. Discussion

DopaminesystemappearstobecriticalconnectedtothePPI

modulation[36].PPIresponsemaybedisruptedinschizophrenia patients[2,36],despitethefactthatPPIimpairmentisobservedin severalotherpsychiatricdisorders[2,9].Clearly,thePPIdeficitthat isexperimentallyinduceddoesnotconstituteananimalmodelof schizophreniapersebutappearstoprovideanapplicablemodelof sensorimotorgatingdeficit[9,25].Theantipsychoticdrugsusedto

treatschizophreniasymptomssharethepharmacologicalproperty

ofdopamineD2receptorantagonism[20].Itwassuggested, how-ever,thatthetherapeuticactionofantipsychoticdrugscouldbein additiondependentonthepresynapticERGK+channelinhibition

[6,32,40].WeinvestigatetheabilityofanEag1K+channelantibody

microinjectedintothedentategyrusofhippocampusto

attenu-atetheapomorphine-inducedPPIdisruption.Bilateralinjectionof

Fig.3.EffectsofEag1K+channelsantibodyonthestartleamplitude.Animals

showedsignificantdecreaseintheirstartleamplitudetopulsealoneaftersurgery. Apomorphinetreatmentinducedanincreaseinthestartleresponse,butthiseffect wasnotstatisticallysignificant.TheEag1K+channelsantibodybilaterallyinjectedin

(4)

Fig.4. EffectsofEag1K+ channelsantibodyinthePPIdisruptioninducedby

apomorphine.Eag1K+channelsantibodybilaterallyinjectedondentategyrusof

hippocampusdidnotmodifythePPI-disruptiveeffectofapomorphine(prepulse intensitiesof73and81dB).*P<0.05comparedwithpost-surgicalcondition.Data representmeans±SEM.RM-ANOVA,posthocDuncan(P<0.05;n=9).

Eag1antibody(0.5␮gdatanotshown;or1.0␮g)intothedentate

gyrusdidnotmodifyapomorphine-disruptiveeffectsinthePPI,but reversedthedecreasedstartleamplitudemeasuredaftersurgery.

NophysiologicalfunctionfortheEag1K+channelsinthecentral

nervoussystemhasbeenreportedsofarformammals.Recently,

nodifferenceinthe PPIdisruptioninducedby apomorphine in

Eag1knockoutanimalswasfound,corroboratingwithourresults

[41]. However, these authors demonstrate that Eag1 knockout

mice(Kv10.1−/−) showan increased reactivity to apomorphine

treatmentinthePPItestafteramphetaminesensitization,anda significantincreaseintheresponsivenesstothehaloperidolinthe catalepsytest.TheauthorssuggestedthatKv10.1−/−miceshowa

hyperreactivityofthedopaminergicsystem,oradecreased

den-sity/numberofthedopaminergicreceptors[41].

Itwasimpossibletodisclosethereasonfordecreasingstartle

amplitudeafterthehippocampalcannulaeimplantation.Despite

thefact that startle reflexis sensitiveto habituation, and may

reflect hearing loss, these do not appear the reasons for the

startledecrease.Zhangandco-workersconductedseveralstudies

usinganextensivenumberofdrug-freeratswithdorsalor

ven-tralhippocampal-cannulation[1,44–46],buttheseauthorsdidnot describeanystartlerefleximpairment. Contrasting, ithasbeen reportedtheimpactofdifferentmanipulationsonventralor dor-salhippocampusinthestartlereactivity[45,46].Inaddition,Zhang andco-workers[46]suggestedthattheseeffectsinthestartle

reac-tivitymaybemediatedthroughthehippocampalprojectionsto

theamygdalaortothebednucleusofthestriaterminalis,which haveaccesstothebrainstemstartlecircuit[21].Primary acous-ticstartlepathwayinvolvesfewsynapsesincludingthecochlear rootneurons,neuronsinthenucleusreticularispontiscaudalis,and motoneuronsinthespinalcord[22].Sincethestartlereflexishigh sensitivetohabituation, sensitization,sensorimotor gating, and affectivemodulation,itmightbeusedtostudyseveralconditions includingfear and anxiety, affective disturbances, motivational states,andhomeostasis[13].Undoubtedly,Eag1K+channel

block-adeeffectsinthestartleresponsemeritsfurtherinvestigation. Contrasting,consistentwithSwerdlowandco-workers[35]we shouldcarefullyinterpretingtreatmenteffectsinthePPIresponse inthe presenceof parallel effectson startleamplitude. Consis-tent withtheseauthorsit is possiblethat in thepresence of a reductioninthestartlemagnitudeinpulse-alonetrialsit is

dif-ficulttodeterminewhetherthelackof acomparable reduction

outrobustlyaffectingtheapomorphine-disruptiveeffectsinthe PPI.Weprovidethefirstdemonstrationofthepossibleinfluence ofthesechannelsinthestartleresponse,whichmayrepresenta biologicalimportantphenomenon.Althoughourresultsdonot sup-porttheclassicalantipsychotic-likeeffectstotheEag1K+channels

blockadedatameritsfurtherstudies.

Acknowledgements

WewouldliketothankCéliaAp.daSilvaforthetechnical sup-port,andtoNadiaRubiaFerreira(PhD)whichfriendlygaveusthe

Eag1K+channelsimmunohistochemistryphotomicrographs.This

researchwassupportedbyCNPqBrazilandCAPES/DAAD.

References

[1]T.Bast,W.N.Zhang,C.Heidbreder,J.Feldon,Hyperactivityanddisruptionof prepulseinhibitioninducedbyN-methyl-d-aspartatestimulationoftheventral hippocampusandtheeffectsofpretreatmentwithhaloperidolandclozapine, Neuroscience103(2001)325–335.

[2]D.L.Braff,M.A.Geyer,N.R.Swerdlow,Humanstudiesofprepulseinhibition ofstartle:normalsubjects,patientgroups,andpharmacologicalstudies, Psy-chopharmacology(Berlin)156(2001)234–258.

[3]M.R.Breier,B.Lewis,J.M.Shoemaker,G.A.Light,N.R.Swerdlow,Sensoryand sensorimotorgating-disruptiveeffectsofapomorphineinSpragueDawleyand LongEvansrats,Behav.BrainRes.208(2010)560–565.

[4]J.Brosda,L.Hayn,C.Klein,M.Koch,C.Meyer,R.Schallhorn,N.Wegener, Phar-macologicalandparametricalinvestigationofprepulseinhibitionofstartleand prepulseelicitedreactionsinWistarrats,Pharmacol.Biochem.Behav.99(2011) 22–28.

[5]S.B.Caine,M.A.Geyer,N.R.Swerdlow,Carbacholinfusionintothedentategyrus disruptssensorimotorgatingofstartleintherat,Psychopharmacology(Berlin) 105(1991)347–354.

[6]V.Calderone,L.Testai,E.Martinotti,M.DelTacca,M.C.Breschi,Drug-induced blockofcardiacHERGpotassiumchannelsanddevelopmentoftorsadede pointesarrhythmias:thecaseofantipsychotics,J.Pharm.Pharmacol.57(2005) 151–161.

[7]N.R.Ferreira,M.Mitkovski,W.Stühmer,L.A.Pardo,E.A.DelBel, Ether-à-go-go1(Eag1)potassiumchannelexpressionindopaminergicneuronsofbasal gangliaismodulatedby6-hydroxydopaminelesion,Neurotox.Res.21(2012) 317–333.

[8]R.V.Frolov,A.Bagati,B.Casino,S.Singh,PotassiumchannelsinDrosophila: his-toricalbreakthroughs,significance,andperspectives,J.Neurogenet.26(2012) 275–290.

[9]M.A. Geyer, K. Krebs-Thomson,D.L. Braff, N.R. Swerdlow, Pharmacologi-calstudiesofprepulseinhibitionmodelsofsensorimotorgatingdeficitsin schizophrenia:adecadeinreview,Psychopharmacology(Berlin)156(2001) 117–154.

[10]N.Guo,K.Yoshizaki,R.Kimura,F.Suto,Y.Yanagawa,N.Osumi,Asensitive periodforGABAergicinterneuronsinthedentategyrusinmodulating sensor-imotorgating,J.Neurosci.33(2013)6691–6704.

[11]D.Gómez-Varela,T.Kohl,M.Schmidt,M.E.Rubio,H.Kawabe,R.B.Nehring, S.Schäfer,W.Stühmer,L.A.Pardo,CharacterizationofEag1channellateral mobilityinrathippocampalculturesbysingle-particle-trackingwithquantum dots,PLoSOne5(2010)e8858.

(5)

[13]C.Grillon,J.Baas,Areviewofthemodulationofthestartlereflexby affec-tivestatesanditsapplicationinpsychiatry,Clin.Neurophysiol.114(2003) 1557–1579.

[14]P.J.Harrison,Thehippocampusinschizophrenia:areviewofthe neuropatho-logicalevidenceanditspathophysiologicalimplications,Psychopharmacology (Berlin)174(2004)151–162.

[15]O.D.Howes,S.Kapur,Thedopaminehypothesisofschizophrenia:versionIII– thefinalcommonpathway,Schizophr.Bull.35(2009)549–562.

[16]P. Imbrici, D.C. Camerino,D. Tricarico, Major channels involvedin neu-ropsychiatricdisordersandtherapeuticperspectives,Front.Genet.4(2013) 76.

[17]H.T.Ito,E.M.Schuman,Frequency-dependentgatingofsynaptictransmission andplasticitybydopamine,Front.NeuralCircuits1(2007)1.

[18]C.J. Jeng, C.C. Chang, C.Y. Tang, Differential localization of rat Eag1 and Eag2 K+ channels in hippocampal neurons, Neuroreport 16 (2005)

229–233.

[19]M.Ju,D.Wray,Molecularidentificationandcharacterisationofthehumaneag2 potassiumchannel,FEBSLett.524(2002)204–210.

[20]S.Kapur,P.Seeman,Doesfastdissociationfromthedopamined(2)receptor explaintheactionofatypicalantipsychotics?Anewhypothesis,Am.J. Psychi-atry158(2001)360–369.

[21]M.Koch,Theneurobiologyofstartle,Prog.Neurobiol.59(1999)107–128. [22]Y.Lee,D.E.López,E.G.Meloni,M.Davis,Aprimaryacousticstartlepathway:

obligatoryroleofcochlearrootneuronsandthenucleusreticularispontis cau-dalis,J.Neurosci.16(1996)3775–3789.

[23]J.Ludwig,R.Weseloh,C.Karschin,Q.Liu,R.Netzer,B.Engeland,C.Stansfeld, O.Pongs,Cloningandfunctionalexpressionofrateag2,anewmemberofthe ether-à-go-gofamilyofpotassiumchannelsandcomparisonofitsdistribution withthatofeag1,Mol.Cell.Neurosci.16(2000)59–70.

[24]S.Martin,C. Linode Oliveira,F. Mello deQueiroz, L.A. Pardo,W. Stüh-mer,E.DelBel,Eag1potassiumchannelimmunohistochemistryintheCNS ofadultratandselectedregionsofhumanbrain,Neuroscience155(2008) 833–844.

[25]Y.Mu,C.Zhao,F.H.Gage,Dopaminergicmodulationofcorticalinputs dur-ing maturationofadult-borndentategranulecells,J.Neurosci.31(2011) 4113–4123.

[26]T.Occhiodoro,L. Bernheim,J.H.Liu, P.Bijlenga,M.Sinnreich,C.R.Bader, J. Fischer-Lougheed,Cloningofahumanether-à-go-gopotassiumchannel expressedinmyoblastsattheonsetoffusion,FEBSLett.434(1998)177–182. [27]L.A.Pardo,D.delCamino,A.Sánchez,F.Alves,A.Brüggemann,S.Beckh,W. Stüh-mer,OncogenicpotentialofEAGK(+)channels,EMBOJ.18(1999)5540–5547. [28]G.Paxinos,C.Watson,TheRatBraininStereotaxicCoordinates,AcademicPress,

SanDiego,1997.

[29]W. Perry,D. Feifel, A. Minassian,I. Bhattacharjie, D.L.Braff, Information processingdeficitsinacutelypsychoticschizophreniapatientsmedicatedand unmedicatedatthetimeofadmission,Am.J.Psychiatry159(2002)1375–1381. [30]C.Salum,A.C.Issy,M.L.Brandão,F.S.Guimarães,E.A.Bel,Nitricoxidemodulates dopaminergicregulationofprepulseinhibitioninthebasolateralamygdala,J. Psychopharmacol.25(2011)1639–1648.

[31]A.Sharma,H.S.Sharma,Monoclonalantibodiesasnovelneurotherapeutic agentsinCNSinjuryandrepair,Int.Rev.Neurobiol.102(2012)23–45. [32]P.D.Shepard,C.C.Canavier,E.S.Levitan,Ether-à-go-go-relatedgenepotassium

channels:what’sallthebuzzabout?Schizophr.Bull.33(2007)1263–1269.

[33]C.Silveira,J.Marques-Teixeira,A.J.deBastos-Leite,Morethanonecentury ofschizophrenia:anevolvingperspective, J.Nerv. Ment.Dis.200(2012) 1054–1057.

[34]M.K.Stachowiak,A.Kucinski,R.Curl,C.Syposs,Y.Yang,S.Narla,C.Terranova,D. Prokop,I.Klejbor,M.Bencherif,B.Birkaya,T.Corso,A.Parikh,E.S.Tzanakakis,S. Wersinger,E.K.Stachowiak,Schizophrenia:aneurodevelopmentaldisorder– integrativegenomichypothesisandtherapeuticimplicationsfromatransgenic mousemodel,Schizophr.Res.143(2013)367–376.

[35]N.R.Swerdlow,D.L.Braff,M.A.Geyer,Animalmodelsofdeficientsensorimotor gating:whatweknow,whatwethinkweknow,andwhatwehopetoknow soon,Behav.Pharmacol.11(2000)185–204.

[36]N.R.Swerdlow,D.L.Braff,M.A.Geyer,G.F.Koob,Centraldopamine hyperactiv-ityinratsmimicsabnormalacousticstartleresponseinschizophrenics,Biol. Psychiatry21(1986)23–33.

[37]N.R.Swerdlow,D.L.Braff,N.Taaid,M.A.Geyer,Assessingthevalidityofan animalmodelofdeficientsensorimotorgatinginschizophrenicpatients,Arch. Gen.Psychiatry51(1994)139–154.

[38]N.R.Swerdlow,A.Eastvold,B.Karban,Y.Ploum,N.Stephany,M.A.Geyer,K. Cadenhead,P.P.Auerbach,Dopamineagonisteffectsonstartleand sensorimo-torgatinginnormalmalesubjects:timecoursestudies,Psychopharmacology (Berlin)161(2002)189–201.

[39]N.R.Swerdlow,G.A.Light,M.R.Breier,J.M.Shoemaker,R.L.SaintMarie,A.C. Neary,M.A.Geyer,K.E.Stevens,S.B.Powell,Sensoryandsensorimotorgating deficitsafterneonatalventralhippocampallesionsinrats,Dev.Neurosci.34 (2012)240–249.

[40]L.Testai,A.M.Bianucci,I.Massarelli,M.C.Breschi,E.Martinotti,V.Calderone, Torsadogeniccardiotoxicityofantipsychoticdrugs:astructuralfeature, poten-tiallyinvolvedintheinteractionwithcardiacHERGpotassiumchannels,Curr. Med.Chem.11(2004)2691–2706.

[41]R.Ufartes,T.Schneider,L.S.Mortensen,C.deJuanRomero,K.Hentrich,H. Knoetgen,V.Beilinson,W.Moebius,V.Tarabykin,F.Alves,L.A.Pardo,J.N. Rawl-ins,W.Stuehmer,BehaviouralandfunctionalcharacterizationofKv10.1(Eag1) knockoutmice,Hum.Mol.Genet.22(11)(2013)2247–2262.

[42]J.W.Warmke,B.Ganetzky,Afamilyofpotassiumchannelgenesrelatedto eaginDrosophilaandmammals,Proc.Natl.Acad.Sci.U.S.A.91(1994) 3438–3442.

[43]J. Zhang,C. Forkstam, J.A. Engel,L. Svensson,Role of dopaminein pre-pulseinhibitionofacousticstartle,Psychopharmacology(Berlin)149(2000) 181–188.

[44]W.N.Zhang,T.Bast,J.Feldon,EffectsofhippocampalN-methyl-d-aspartate infusiononlocomotoractivityandprepulseinhibition:differencesbetween thedorsalandventralhippocampus,Behav.Neurosci.116(2002)72–84. [45]W.N. Zhang, T. Bast, J. Feldon, Microinfusion of the non-competitive

N-methyl-d-aspartatereceptorantagonistMK-801(dizocilpine)intothe dor-salhippocampusofwistarratsdoesnotaffectlatentinhibitionandprepulse inhibition,butincreasesstartlereactionandlocomotoractivity,Neuroscience 101(2000)589–599.

Referências

Documentos relacionados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Diretoria do Câmpus Avançado Xanxerê Rosângela Gonçalves Padilha Coelho da Cruz.. Chefia do Departamento de Administração do Câmpus Xanxerê Camila

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados