• Nenhum resultado encontrado

On the properties of k-Fibonacci and k-Lucas numbers

N/A
N/A
Protected

Academic year: 2017

Share "On the properties of k-Fibonacci and k-Lucas numbers"

Copied!
7
0
0

Texto

(1)

ISSN: 2347-2529

Available online atwww.ijaamm.com

International Journal of Advances in

Applied Mathematics and Mechanics

On the properties of k-Fibonacci and k-Lucas numbers

Research Article

A. D. Godase

1,

, M. B. Dhakne

2

1Department of Mathematics, V. P. College,Vaijapur, India

2Department of Mathematics, Dr. B. A. M. University,Aurangabad, India

Received 07 July 2014; accepted (in revised version) 26 August 2014

Abstract:

In this paper, some properties ofk−Fibonacci andk−Lucas numbers are derived and proved by using matrices S=

k

2 1 2

k2+4

2

k

2

andM =

 0 1

k2+4

0 ‹

. The identities we proved are not encountered in thek−Fibonacci andk−Lucas numbers literature.

MSC:

11B39• 11B83

Keywords:

k−Fibonacci numbers•k−Lucas numbers• Fibonacci Matrix c

2014 IJAAMM all rights reserved.

1.

Introduction

This paper represents an interesting investigation about some special relations between matrices andk−Fibonacci numbers,k−Lucas numbers.This investigation is valuable to obtain newk−Fibonacci ,k−Lucas identities by differ-ent methods.This paper contributes tok−Fibonacci,k−Lucas numbers literature,and encourage many researchers to investigate the properties of such number sequences.

Definition 1.1.

Thek−Fibonacci sequence{Fk,n}n∈Nis defined as,Fk,0=0,Fk,1=1 andFk,n+1=k Fk,n+Fk,n−1forn≥1

Definition 1.2.

Thek−Lucas sequence{Lk,n}n∈Nis defined as,Lk,0=2,Lk,1=kandLk,n+1=k Lk,n+Lk,n−1forn≥1

2.

Main theorems

Lemma 2.1.

If X is a square matrix with X2=k X+I , then Xn=F

k,nX+Fk,n−1I , for all nZ

Proof. Ifn=0 then result is obivious, Ifn=1 then

(X)1=Fk,1X+Fk,0I

=1X+I =X

Corresponding author.

E-mail address:ashokgodse2012@gmail.com

(2)

Hence result is true forn=1 It can be shown by induction that,

Xn=Fk,nX+Fk,n−1I,for allnZ

Assume that,Xn=F

k,nX+Fk,n−1I, and prove that,Xn+1=Fk,n+1X+Fk,nI,

Consider,

Fk,n+1X+Fk,nI= (Fk,nX+Fk,n−1I)X+Fk,nI = (k X+I)Fk,n+X Fk,n−1

=X2Fk,n+X Fk,n−1=X(X Fk,n+Fk,n−1)

=X(Xn)

=Xn+1

Hence,Xn+1=F

k,n+1X+Fk,nI,

By Induction,Xn=F

k,nX+Fk,n−1I, for allnZ

We now show that,X−(n)=

Fk,−nX+Fk,−n−1I, for allnZ+

Let,Y =k IX, then

Y2= (k IX)2

=k2I−2k X+X2 =k2I−2k X+k X+I =k2Ik X+I

=k(k IX) +X+I

=k Y +I

Therefore,Y2=k Y +I, This shows that,

Yn=Fk,nY +Fk,n−1I,

i.e. (−X−1)n =Fk,n(k IX) +Fk,n−1I(−1)nXn =−Fk,nX+Fk,n+1I

Xn = (−1)n+1Fk,nX+ (−1)nFk,n+1I

Since,Fk,−n= (−1)n+1Fk,n,Fk,−n−1= (−1)nFk,n+1, thereforeXn=Fk,−nX+Fk,−n−1I,givesX−(n)=Fk,−nX+Fk,−n+1I,

for allnZ+. Hence proof.

Corollary 2.1.

Let, M = 

k

1 1 0

‹

,then Mn= 

Fk,n+1Fk,n

Fk,nFk,n−1 ‹

Proof. Since,

M2=k M+I=Fk,nM+Fk,n−1I Using Lemma2.1

= 

k Fk,n

Fk,n

Fk,n

0

‹ +



Fk,n−1

0

0

Fk,n−1 ‹

= 

Fk,n+1 Fk,n

Fk,n

Fk,n−1 ‹

,

for allnZ

Hence proof.

Corollary 2.2.

Let, S= k

2 k2+4

2 k 2

k 2

,then Sn= L

k,n

2

(k2+4)F

k,n

2 Fk,n

2 Lk,n

2

,for every nZ

Lemma 2.2.

L2k,n−(k2+4)Fk2,n=4(−1)n,for all nZ

(3)

Proof. Since,d e t(S) =−1, d e t(Sn) = [d e t(S)]n= (1)n,

Moreover since,

Sn= Lk,n

2 Fk,n

2

(k2+4)F

k,n

2 Lk,n

2

,

We get

d e t(Sn) =L 2 k,n

4 −

(k2+4)F2 k,n

4 , Thus it follows thatL2

k,n−(k2+4)Fk2,n=4(−1)n,for allnZ

Hence proof.

Lemma 2.3.

2Lk,n+m=Lk,nLk,m+ (k2+4)Fk,nFk,m and 2Fk,n+m=Fk,nLk,m+Lk,nFk,m

for all n,mZ

Proof. Since,

Sn+m=Sn·Sm

= Lk,n

2 Fk,n

2

(k2+4)F

k,n

2 Lk,n

2

.

Lk,m

2 Fk,m

2

(k2+4)F

k,m

2 Lk,m

2

= ‚

Lk,nLk,m+(k2+4)Fk,nFk,m

4 Lk,nFk,m+Fk,nLk,m

4

(k2+4)[L

k,nFk,m+Fk,nLk,m

4

Lk,nLk,m+(k2+4)Fk,nFk,m

4

Œ

But,

Sn+m= Lk,n+m

2 Fk,n+m

2

(k2+4)F

k,n+m

2 Lk,n+m

2

,

Gives,

2Lk,n+m=Lk,nLk,m+ (k2+4)Fk,nFk,m

and

2Fk,n+m=Fk,nLk,m+Lk,nFk,m

for alln,mZ

Hence proof.

Lemma 2.4.

2(−1)mLk,nm=Lk,nLk,m−(k2+4)Fk,nFk,m

and

2(−1)mFk,nm=Fk,nLk,mLk,nFk,m

for all n,mZ .

Proof. Since,

Snm=Sn·Sm

=Sn·[Sm]−1

=Sn·(−1)m Lk,m

2 −Fk,m

2

−(k2+4)F

k,m

2 Lk,m

2

= (−1)m Lk,n

2 Fk,n

2

(k2+4)F

k,n

2 Lk,n

2

.

Lk,m 2 −Fk,m

2

−(k2+4)F

k,m

2 Lk,m

2

= ‚

Lk,nLk,m−(k2+4)Fk,nFk,m

4 Lk,nFk,mFk,nLk,m

4

(k2+4)[L

k,nFk,mFk,nLk,m

4

Lk,nLk,m−(k2+4)Fk,nFk,m

4

Œ

(4)

But,

Snm= Lk,nm

2 Fk,nm

2

(k2+4)F

k,nm

2 Lk,nm

2

,

Gives,

2(−1)mLk,nm=Lk,nLk,m−(k2+4)Fk,nFk,m

and

2(−1)mFk,nm=Fk,nLk,mLk,nFk,m

for alln,mZ.

Lemma 2.5.

(−1)mLk,nm+Lk,n+m=Lk,nLk,m

and

(−1)mFk,nm+Fk,n+m=Fk,nLk,m

for all n,mZ .

Proof. By definition of the matrixSn, it can be seen that

Sn+m+ (−1)mSnm= ‚ L

k,n+m+(−1)mLk,nm

2 Fk,n+m+(−1)mFk,nm

2

(k2+4)[F

k,n+m+(−1)mFk,nm

2 Lk,n+m+(−1)mLk,nm

2

Œ

On the other hand,

Sn+m+ (−1)mSnm=SnSm+ (−1)mSnSm =Sn[Sm+ (−1)mSm]

= Lk,n

2 Fk,n

2

(k2+4)F

k,n

2 Lk,n

2

.

Lk,m 2 Fk,m

2

(k2+4)F

k,m

2 Lk,m

2

+ (−1)m Lk,m

2 −Fk,m

2

−(k2+4)F

k,m

2 Lk,m

2

= Lk,n

2 Fk,n

2

(k2+4)F

k,n

2 Lk,n

2

.



Lk,m

0 0

Lk,m ‹

=

Lk,mLk,n 2 Fk,nLk,m

2

(k2+4)F

k,nLk,m

2 Lk,mLk,n

2

Gives,

(−1)mLk,nm+Lk,n+m=Lk,nLk,m

and

(−1)mFk,nm+Fk,n+m=Fk,nLk,m

for alln,mZ.

Lemma 2.6.

8Fk,x+y+z=Lk,xLk,yFk,z+Fk,xLk,yLk,z+Lk,xFk,yLk,z+ (k2+4)Fk,xFk,yFk,z

and

8Lk,x+y+z=Lk,xLk,yLk,z+ (k2+4)[Lk,xFk,yFk,z+Fk,xLk,yFk,z+Fk,xFk,yLk,z

for all x,y,zZ .

(5)

Proof. By definition of the matrixSn,it can be seen that

Sx+y+z= ‚ L

k,x+y+z

2 Fk,x+y+z

2

(k2+4)F

k,x+y+z

2 Lk,x+y+z

2

Œ

On the other hand,

Sx+y+z=Sx+ySz

= ‚ L

k,x+y

2 Fk,x+y

2

(k2+4)F

k,x+y

2 Lk,x+y

2 Œ

.

Lk,z

2 Fk,z

2

(k2+4)F

k,z

2 Lk,z

2

= ‚ L

k,x+yLk,z+(k2+4)Fk,x+yFk,z

4 Lk,zFk,x+y+Fk,zLk,x+y

4

(k2+4)[L

k,x+yFk,z+Fk,x+yLk,z

4

Lk,x+yLk,z+(k2+4)Fk,x+yFk,z

4

Œ

Using,

2Lk,x+y=Lk,xLk,y+ (k2+4)Fk,xFk,y

2Fk,x+y=Lk,yFk,x+ (k2+4)Fk,yLk,x

Gives,

8Fk,x+y+z=Lk,xLk,yFk,z+Fk,xLk,yLk,z+Lk,xFk,yLk,z+ (k2+4)Fk,xFk,yFk,z

and

8Lk,x+y+z=Lk,xLk,yLk,z+ (k2+4)[Lk,xFk,yFk,z+Fk,xLk,yFk,z+Fk,xFk,yLk,z

for allx,y,zZ.

Theorem 2.1.

Lk2,x+y−(k2+4)(−1)x+y+1Fk,zxLk,x+yFk,y+z−(k2+4)(−1)x

+z

Fk2,y+z= (−1)y+zLk2,zx

for all x,y,zZ .

Proof. Consider matrix multiplication given below. That is,

Lk,x

2 Fk,z

2

(k2+4)F

k,x

2 Lk,z

2

.



Lk,y

Fk,y ‹

= 

Lk,x+y

Fk,y+z ‹

Now,

d e t

Lk,x 2 Fk,z

2

(k2+4)F

k,x

2 Lk,z

2

=Lk,xLk,z−(k 2+4)F

k,xFk,z

4

=(−1) xL

k,zx

2

=Q6=0

Therefore we can write



Lk,y

Fk,y ‹

= Lk,x

2 Fk,z

2

(k2+4)F

k,x

2 Lk,z

2 −1

·



Lk,x+y

Fk,y+z ‹

= 1 Q

Lk,z 2 −Fk,z

2

−(k2+4)F

k,x

2 Lk,x

2

.



Lk,x+y

Fk,y+z ‹

Gives,

Lk,y= (−1)x[L

k,zLk,x+y−(k2+4)Fk,xFk,y+z]

Lk,zx

(6)

and

Fk,y= (−1)x[L

k,xFk,z+yFk,zLk,y+x]

Lk,zx

Since,

Lk2,y−(k2+4)Fk2,y=4(−1)y

We get,

[Lk,zLk,x+y−(k2+4)Fk,xFk,y+z]2−(k2+4)2[Lk,xFk,z+yFk,zLk,y+x]2=4(−1)yL2k,zx

Using Lemma2.4and Lemma2.6,

€

Lk2,zL2k,x+y−2(k2+4)Lk,zFk,x+yFk,y+z+ (k2+4) 2

Fk2,xFk2,y+zŠ

−(k2+4)(Lk2,xFk2,y+z−2Lk,xFk,zFk,y+zLk,x+y+F 2 k,zL

2

k,x+y) =4(−1) y

Lk2,zx

Gives,

Lk2,x+y−(k2+4)(−1)x+y+1Fk,zxLk,x+yFk,y+z−(k2+4)(−1)x+zFk2,y+z= (−1) y+zL2

k,zx

for allx,y,zZ.

Theorem 2.2.

Lk2,x+y−(−1)x+zLk,zxLk,x+yLk,y+z+ (−1)x+zL2k,y+z= (−1)

y+z+1(k2+4)F2 k,zx

for all x,y,zZ,x6=z .

Proof. Consider matrix multiplication,

‚ L k,x

2 Lk,z

2

(k2+4)F

k,x

2 (k2+4)F

k,z

2 Œ

.



Lk,y

Fk,y ‹

= 

Lk,x+y

Lk,y+z ‹

Now,

d e t

‚ L k,x

2 Lk,z

2

(k2+4)F

k,x

2 (k2+4)F

k,z

2 Œ

=(k

2+4)(1)x

Fk,zx

2

=P6=0, ( ifx6=z)

Therefore forx6=z, we can write



Lk,y

Fk,y ‹

= ‚ L

k,x

2 Lk,z

2

(k2+4)F

k,x

2 (k2+4)F

k,z

2 Œ−1

.



Lk,x+y

Lk,y+z ‹

= 1 P

(k2+4)F

k,z

2 −Lk,z

2

−(k2+4)F

k,x

2 Lk,x

2

.



Lk,x+y

Lk,y+z ‹

Gives,

Lk,y= (−1)x[F

k,zLk,x+yFk,xLk,y+z]

Fk,zx

and

Fk,y= (−1)x[L

k,xLk,z+yLk,zLk,y+x] (k2+4)F

k,zx

Since,

Lk2,y−(k2+4)Fk2,y=4(−1)y

We get,

(k2+4)[Fk,zLk,x+yFk,xLk,y+z]2−[Lk,xLk,z+yLk,zLk,y+x]2=4(k2+4)(−1)yFk2,zx

Using Lemma2.4and Lemma2.6, We obtain

Lk2,x+y−(−1)x+zLk,zxLk,x+yLk,y+z+ (−1)x+zL2k,y+z= (−1)

y+z+1(k2+4)F2 k,zx

for allx,y,zZ,x6=z.

(7)

Theorem 2.3.

Fk2,x+yLk,xzFk,x+yFk,y+z+ (−1)x+zFk2,y+z= (−1) y+zF2

k,zx

for all x,y,zZ,x6=z .

Proof. Consider matrix multiplication,

Fk,x

2 Fk,z

2 Fk,x

2 Lk,z

2

.



Lk,y

Fk,y ‹

= 

Fk,x+y

Fk,y+z ‹

Now,

d e t

Fk,x

2 Fk,z

2 Fk,x

2 Lk,z

2

=(−1) z

Fk,xz

2

=R6=0, (ifx6=z)

Therefore forx6=z, we get,



Lk,y

Fk,y ‹

= Fk,x

2 Fk,z

2 Fk,x

2 Lk,z

2 −1

.



Fk,x+y

Fk,y+z ‹

= 1 R

Lk,z 2 −Fk,z

2

Lk,x

2 Fk,x

2

.



Fk,x+y

Fk,y+z ‹

Gives,

Lk,y= (−1)z[L

k,zFk,x+yLk,xFk,y+z]

Fk,xz

and

Fk,y= (−1)z[F

k,xFk,z+yFk,zFk,y+x]

Fk,xz

Now consider,

[Lk,zFk,x+yLk,xFk,y+z]2−(k2+4)[Fk,xFk,z+yFk,zFk,y+x]2=4(−1)yFk2,xz

Using Lemma2.4and Lemma2.6, We get

Fk2,x+yLk,xzFk,x+yFk,y+z+ (−1)x

+zF2

k,y+z= (−1) y+zF2

k,zx

for allx,y,zZ,x6=z.

3.

Conclusions

The conclusions arising from the work are as follows:

Some new identities have been obtained for thek−Fibonacci andk−Lucas sequences.

ACKNOWLEDGEMENTS.

The authors wish to thank two anonymous referees for their suggestions,which led to substantial improvement of this paper.

References

[1] M.E. Waddill, Matrices and Generalized Fibonacci Sequences, The Fibonacci Quarterly 55(12.4) (1974) 381-86.

[2] T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Intersection Pub. 2001.

[3] S. Falcon, A. Plaza, On thek−Fibonacci numbers Chaos, Solitons Fractals 5(32) (2007) 1615-1624.

[4] A.F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly 3(3) (1965) 161-176.

[5] P. Filipponi, A. F. Horadam, A Matrix Approach to Certain Identities, The Fibonacci Quarterly 26(2) (1988) 115-126.

[6] H. W. Gould, A History of the Fibonacci g-Matrix and a Higher-Dimensional Problem, The Fibonacci Quarterly 19(3) (1981) 50-57.

[7] S. Vajda, Fibonacci and Lucas numbers, and the Golden Section:Theory and applications, Chichester:Ellis Hor-wood, 1989.

[8] A. F. Horadam, Jacobstal Representation of Polynomials, The Fibonacci Quarterly 35(2) (1997) 137-148.

[9] G. Strang,Introduction to Linear Algebra, Wellesley-Cambridge:Wellesley, MA Pub., 2003.

Referências

Documentos relacionados

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Provar que a interseção de todos os subcorpos de E que são corpos de decomposição para f sobre F é um corpo de raízes fe

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

As palavras de Trindade Coelho apontam, pelo menos, duas vias de interpretação do ideário neogarrettista, codificado após a publicação, em 1894, de Palavras Loucas, de Alberto

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

Na segunda etapa trabalhou-se com soluções de corantes, materiais sorventes e método para determinação quantitativa dos corantes (espectrofotômetro UV –

From the Brazilian Health Reform move- ment to the birth of the Brazilian Unified Health System (SUS) in 1988, from the new Law on the National Education Guidelines and Bases (LDB)