• Nenhum resultado encontrado

Iterative methods of solving the coupled filtration problem

N/A
N/A
Protected

Academic year: 2017

Share "Iterative methods of solving the coupled filtration problem"

Copied!
8
0
0

Texto

(1)

519.6

ɗ

.

Ɋ

.

Ʉɚɤɭɲɟɜ

,

ɋ

.

ȼ

.

ɒɟɲɟɧɢɧ

,

ɂ

.

Ɇ

.

Ɂɚɤɚɥɸɤɢɧɚ

*

ɎȽȻɈɍ

ȼɉɈ

«

ɆȽɍ

ɢɦ

.

Ɇ

.

ȼ

.

Ʌɨɦɨɧɨɫɨɜɚ

», *

ɎȽȻɈɍ

ȼɉɈ

«

ɆȽɋɍ

»

ɂɌȿɊȺɐɂɈɇɇɕȿ

ɆȿɌɈȾɕ

Ɋȿɒȿɇɂə

ɋȼəɁȺɇɇɈɃ

ɁȺȾȺɑɂ

ɎɂɅɖɌɊȺɐɂɂ

Ɉɩɢɫɚɧɵɧɟɤɨɬɨɪɵɟɢɬɟɪɚɰɢɨɧɧɵɟɦɟɬɨɞɵɪɟɲɟɧɢɹɥɢɧɟɣɧɨɣɡɚɞɚɱɢɧɟɫɬɚɰɢɨɧɚɪɧɨɣ ɮɢɥɶɬɪɚɰɢɢɩɨɫɜɹɡɚɧɧɨɣɦɨɞɟɥɢȻɢɨ. ɉɪɢɱɢɫɥɟɧɧɨɣɪɟɚɥɢɡɚɰɢɢɡɚɞɚɱɞɥɹɞɢɫɤɪɟɬɢɡɚɰɢɢ ɤɪɚɟɜɨɣɡɚɞɚɱɢɩɨɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɦɩɟɪɟɦɟɧɧɵɦɢɫɩɨɥɶɡɨɜɚɥɫɹɆɄɗ, ɚɩɨɜɪɟɦɟɧɢɪɚɡ -ɧɨɫɬɧɚɹɫɯɟɦɚ. ɑɢɫɥɟɧɧɵɟɚɥɝɨɪɢɬɦɵɪɟɚɥɢɡɨɜɚɧɵɜɜɢɞɟɩɚɤɟɬɨɜɩɪɨɝɪɚɦɦɜ FORTRAN. ȼɞɟɦɨɧɫɬɪɚɰɢɨɧɧɵɯɰɟɥɹɯɩɪɢɜɟɞɟɧɵɪɟɡɭɥɶɬɚɬɵɱɢɫɥɟɧɧɨɝɨɦɨɞɟɥɢɪɨɜɚɧɢɹɨɬɤɚɱɤɢɠɢɞ -ɤɨɫɬɢɱɟɪɟɡɫɤɜɚɠɢɧɭ. ɋɪɚɜɧɢɜɚɸɬɫɹɢɬɟɪɚɰɢɨɧɧɵɟɦɟɬɨɞɵɩɪɨɫɬɨɣɢɬɟɪɚɰɢɢ, ɦɢɧɢɦɚɥɶɧɵɯ ɧɟɜɹɡɨɤɢɫɨɩɪɹɠɟɧɧɵɯɝɪɚɞɢɟɧɬɨɜ.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ: ɦɨɞɟɥɶɮɢɥɶɬɪɚɰɢɢȻɢɨ, ɫɜɹɡɚɧɧɚɹɡɚɞɚɱɚɮɢɥɶɬɪɚɰɢɢ, ɡɚɤɨɧȾɚɪ -ɫɢ, LBB ɭɫɥɨɜɢɟ, ɦɟɬɨɞɫɨɩɪɹɠɟɧɧɵɯɝɪɚɞɢɟɧɬɨɜ.

,

.

-u

p

-,

.

,

,

.

,

,

[1—7].

:

k

⋅ =

n

x

∈Σ

:

,

=

∈Σ

n C

grad

p

p

=

u

+

k

x

(

)

(

)

(

)

(

)

Ж 0 0 0 0 0

div

: grad

;

div

grad

β

( , );

при

;

,

;

, при

;

,

;

0,

0

.

div

n

p

Q

t

=



=

∈Σ

 =

∈Σ

=

=

=

u

I

S

x

u

u

x

x

u

&

&

σ u w p

C

u

grad

p

при

grad

p

q

p

p

при

p

при

t

t

(1)

-,

,

,

.

C

,

u

,

p

-,

k

,

n

,

Q

,

β

Ж

.

, . .

k

: =

k

/ ,

.

4

:

,

u

,

w

p

,

(2)

,

.

:

0

=

0,

S

|

0,

0

0

p

p

q

.

t

m

-

m

m

u

p

:

1

0

,

m T

m m

u

A

B

B

C

p

f

(2)

A

C

;

B

-,

.

[8]

(2)

-,

,

(2)

u

m

,

.

m

p

:

1

,

m m

Sp

f

(3)

1

= −

Т

+

S

BA B

C

[9].

(3) ,

, (2)

S

[9].

(2)

LBB-

[9,10]

,

inf sup

0.

T

p u

B p u

p u

  

(4)

(4)

(1),

(4)

(2)

-,

u

p

.

Q

2

Q

1

[10]

(3)

.

(4)

Q

1

Q

1

,

C

.

,

,

-,

(4)

,

(2)

.

(2)

min

.

min

.

min

.

,

ɏ

Y

Z

.

-.

min

:

min min

( , , , , , , ),

N Q E k n

h

 

E

;

N h

,

X

,

Y

,

Z

.

,

min

  

,

,

min

( )

N

 

.

( )

N

. 1.

,

N

,

min

,

min

-,

2.

min

2

min min

.

h

E k

 

(5)

(5)

(3)

.

-.

,

.

,

(5).

. 1

,

.

0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5

0 10 20 30 40 50

φ(

N

)

N

. 1.

. 1.

, 30

, 3/

100

,

 –1 10

10

, / 7250

, /

1,095 10

3

0,1

X, 100

Y, 100

Z, 100

, 100

0,25

:

-, . .

p

0

n

;

(

p

0

);

0

p

n

.

:

(

u

= 0);

(

u

= 0);

,

0

i j k l k l i j j

C

u

 

p

n

.

(5)

,

min

3

.

-

= 6; 3 2

.

-.

:

X

= 40 ,

Y

= 40 ,

(4)

-5,00 -4,50 -4,00 -3,50 -3,00 -2,50 -2,00 -1,50 -1,00 -0,50 0,00

0 5 10 15 20 25 30 35

P

,

МП

а

N tau

tau = 6

P_мин

. 2.  = 6

-5,00 -4,50 -4,00 -3,50 -3,00 -2,50 -2,00 -1,50 -1,00 -0,50 0,00

0 5 10 15 20 25 30 35

P

, МПа

N tau

tau = 3

P_мин

. 3.  = 3

-5,00 -4,50 -4,00 -3,50 -3,00 -2,50 -2,00 -1,50 -1,00 -0,50 0,00

0 5 10 15 20 25 30 35

P

, М

П

а

Ntau

tau = 2

P_мин

. 4.  = 2

8

-.

30

,

.

2,5

.

2—4

P_

,

, . .

,

.

. 2

,

(5).

(5)

,

. 3 4,

(5)

.

-,

,



,



.

= 3

(

.

. 3)

.

-,

.

. 3

,

-.

,

. . .

-.

,

4,

.

.

. 5.

-2,53 -2,51 -2,49 -2,47 -2,45 -2,43

0 5 10 15 20 25 30 35

P,

МП

а

N tau

tau = 3

P_мин

. 5.  = 3

. 5

. 3,

-,

.

,

,

.

-.

(5).

.

(1)

,

.

20

5

.

,

(2)

.

,

.

(3)

3

:

,

[11, 12].

,

,

-,

. 1.

. 2

,

,

-,

r

-0

r

r

 

.

. 2

,

3-

-.

-.

,

[8].

2

,

.

(6)

. 2. ,

10–2 26 16 7

10–3 267 127 23

10–4 627 299 40

10–5 991 471 62

10–6 1 360 648 78

10–7 1 734 814 97

10–8 2 111 945 108

10–9 2 492 1 088 128

10–10 2 876 1 244 148

10–11 3 262 1 397 167

10–12 3 651 1 565 187

10–13 4 041 1 732 210

10–14 4 433 1 922 229

10–15 4 827 2 261 252

ȼɵɜɨɞɵ

.

1.

.

2.

,

LBB-

,

Q

1

Q

1

.

3.

-.

Ȼɢɛɥɢɨɝɪɚɮɢɱɟɫɤɢɣɫɩɢɫɨɤ

1. Biot M.A. General theory of three-dimensional consolidation. J. Appl. Phys., 12, pp. 155—

164, 1941.

2. Naumovich A. On fi nite volume discretization of the three-dimensional Biot poroelasticity

system in multilayer domains. Computational methods in applied mathematics, Vol. 6 (2006), No. 3, pp. 306—325

3. Naumovich A., Gaspar F.J. On a multigrid solver for the three-dimensional Biot poroelasticity

system in multilayered domains. Comput. Vis. Sci. 11, pp. 77—87 (2008).

4. Gaspar F.J., Gracia J.L., Lisbona F.J. and Vabishchevich P.N. A stabilized method for a secondary

consolidation Biot’s model. Numerical Methods Partial Differential Equations 24: pp. 60—78 (2008).

5. Schanz Ɇ. On the equivalence of the linear Biot’s theory and the linear theory of porous media.

16th ASCE engineering Mechanics Conference. July 16-18, 2003, University of Washington, Seattle.

6. ɄɢɫɟɥɟɜɎ.Ȼ., ɒɟɲɟɧɢɧɋ.ȼ.

// . . 1996. № 4. . 129—135.

7. ɒɟɲɟɧɢɧɋ.ȼ., Ʉɚɤɭɲɟɜɗ.Ɋ., Ⱥɪɬɚɦɨɧɨɜɚɇ.Ȼ.

-, // - . . 1,

-. . 2011. № 5. . 66—68.

8. Ȼɵɱɟɧɤɨɜɘ.ȼ., ɑɢɠɨɧɤɨɜ ȿ.ȼ. . . : , 2010.

(7)

10. Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods // Springer-Verlag, New York, 1991. 223 p.

11. Elman H.C., Silvester D.J., Wathen A.J. Finite elements and fast iterative solvers: with

applications in incompressible fl uid dynamics. Oxford: Oxford Uniersity Press, 2005. 400 p.

12. ɋɚɦɚɪɫɤɢɣȺ.Ⱥ., ɇɢɤɨɥɚɟɜȿ.ɋ. . . : , 1978.

ɉɨɫɬɭɩɢɥɚɜɪɟɞɚɤɰɢɸɜɢɸɥɟ 2012 ɝ.

: Ʉɚɤɭɲɟɜ ɗɥɶɞɚɪɊɚɦɚɡɚɧɨɜɢɱ

- , ɎȽɈɍ ȼɉɈ «ɆȽɍ ɢɦ. Ɇ.ȼ. Ʌɨɦɨɧɨɫɨɜɚ», 119991,

. , , , . 1, , aladdin9103@yandex.ru;

ɒɟɲɟɧɢɧ ɋɟɪɝɟɣ ȼɥɚɞɢɦɢɪɨɜɢɱ — - ,

- , ɎȽɈɍ ȼɉɈ «ɆȽɍ

ɢɦ. Ɇ.ȼ. Ʌɨɦɨɧɨɫɨɜɚ», 119991, . , , , . 1, ,

8(495)939-43-43, sergey.sheshenin@mail.ru;

Ɂɚɤɚɥɸɤɢɧɚ ɂɪɢɧɚ Ɇɢɯɚɣɥɨɜɧɚ

-, ɎȽȻɈɍ ȼɉɈ «Ɇɨɫɤɨɜɫɤɢɣ ɝɨɫɭɞɚɪɫɬɜɟɧɧɵɣ ɫɬɪɨɢɬɟɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ» (ɎȽȻɈɍȼɉɈ «ɆȽɋɍ»), 129337, . , , . 26, 8(499)183-24-01, Irina. zakalyukina@mail.ru.

: Ʉɚɤɭɲɟɜɗ.Ɋ., ɒɟɲɟɧɢɧɋ.ȼ., Ɂɚɤɚɥɸɤɢɧɚɂ.Ɇ.

// . 2012. № 9. . 129—136.

E.R. Kakushev, S.V. Sheshenin, I.M. Zakalyukina

ITERATIVE METHODS OF SOLVING THE COUPLED FILTRATION PROBLEM

This paper represents a summary of the iterative solution to the problem of linearized coupled fi ltration. The formulation of the coupled fi ltration problem can be applied for the purposes of simula-tion of the land surface subsidence caused by the pumping of the fl uid out of a well located near the land surface. The pumping process causes pressure redistribution and, consequently, undesirable subsidence of the land surface. The fi ltration problem considered by the authors is a direct problem, therefore, domain dimensions, ground properties and pumping characteristics are supposed to be available. With this assumption in hand, coupled differential equations are derived on the basis of the Biot’s fi ltration model and the Darcy’s law.

First, spatial discretization is based on the fi nite element method, while the fi nite-difference scheme is used to assure discretization within the course of time. Discretization of the linear coupled problem leads to the generation of a linear saddle system of algebraic equations. It is well-known that the stability condition of such a system is usually formulated as the LBB condition (inf-sup condition). The condition is satisfi ed for a differential problem (to say more accurately, for a varia-tional problem). The validity of the stability condition for an algebraic system depends on the fi nite elements used for the purpose of the problem discretization. For example, the LBB condition is not always satisfi ed for most simple Q1-Q1 elements. Therefore, fi rst of all, stability of the fi nite element system is studied in the paper. The fi ltration problemhas a number of parameters; therefore, it is not easy to identify analytically the domain in which the stability condition is satisfi ed. Therefore, the stability condition is under research that includes some numerical tests and examination of physical dimensionality. The analysis completed by the authors has ended in the derivation of the formula that determines the stability condition formulated on the basis of the problem parameters.

(8)

Key words: Biot’s fi ltration model, coupled fi ltration problem, Darcy’s law, LBB condition, con-jugate gradient method.

References

1. Biot M.A. General Theory of Three-dimensional Consolidation. J. Appl. Phys. 1941, no. 12, pp. 155—164.

2. Naumovich A. On Finite Volume Discretization of the Three-dimensional Biot Poroelasticty System in Multilayer Domains. Computational Methods in Applied Mathematics. 2006, no. 3, vol. 6, pp. 306—325.

3. Naumovich A., Gaspar F.J. On a Multigrid Solver for the Three-dimensional Biot Poroelasticity System in Multilayered Domains. Comput. Vis. Sci. 2008, no. 11, pp. 77—87.

4. Gaspar F.J., Gracia J.L., Lisbona F.J. and Vabishchevich P.N. A Stabilized Method for a Secondary Consolidation Biot’s Model. Numerical Methods Partial Differential Equations. 2008, no. 24, pp. 60—78.

5. Schanz M. On the Equivalence of the Linear Biot’s Theory and the Linear Theory of Porous Media. 16th ASCE Engineering Mechanics Conference. July 16—18, 2003. University of Washington, Seattle.

6. Kiselev F.B., Sheshenin S.V. Raznostnaya skhema dlya zadachi nestatsionarnoy fi l’tratsii v sloistykh gruntakh [Finite-Difference Scheme for Non-stationary Boundary-value Filtration Problem for the Layered Ground]. Izvestiya RAN. MTT. [News of the Russian Academy of Sciences. Solid Body Me-chanics]. 1996, no. 4, pp. 129—135.

7. Sheshenin S.V., Kakushev E.R., Artamonova N.B. Modelirovanie nestatsionarnoy fi l’tratsii, vyz-vannoy razrabotkoy mestorozhdeniy [Simulation of Non-Stationary Filtration Caused by Oilfi eld Develop-ment]. Vestnik Moskovskogo un-ta. Ser. 1, Matematika. Mekhanika. [Bulletin of the Moscow University. Series 1. Mathematics, Mechanics]. 2011, no. 5, pp. 66—68.

8. Bychenkov Yu.V., Chizhonkov E.V. Iteratsionnye metody resheniya sedlovykh zadach [Iterative Solution Methods for Saddle Systems]. Moscow, BINOM Publ., 2010.

9. D’yakonov E.G. Minimizatsiya vychislitel’noy raboty [Minimization of Computing Work]. Moscow, Nauka Publ., 1989, 272 p.

10. Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. Springer-Verlag Publ., New York, 1991, 223 p.

11. Elman H.C., Silvester D.J., Wathen A.J. Finite Elements and Fast Iterative Solvers: with Applica-tions in Incompressible Fluid Dynamics. Oxford, Oxford University Press, 2005, 400 p.

12. Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Solution Methods for Grid Equations]. Moscow, Nauka Publ., 1978.

A b o u t t h e a u t h o r s: Kakushev El’dar Ramazanovich — postgraduate student, Department of Composite Mechanics, Faculty of Mechanics and Mathematics, LomonosovMoscow State University (MSU), 1 Leninskie Gory, Moscow, 119991, Russian Federation; aladdin9103@yandex.ru;

Sheshenin Se rgey Vladimirovich — Doctor of Physical and Mathematical Sciences, Professor, Department of Composite Mechanics, Faculty of Mechanics and Mathematics, LomonosovMoscow State University (MSU), 1 Leninskie Gory, Moscow, 119991, Russian Federation; sergey.sheshenin@ mail.ru, +7 (495) 939-43-43;

Zakalyukina Irina Mikhailovna — Associated Professor, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Irina.zakalyukina@mail.ru, +7 (499) 183-24-01.

F o r c i t a t i o n: Kakushev E.R., Sheshenin S.V., Zakalyukina I.M. Iteratsionnye metody resheniya svya-zannoy zadachi fi l’tratsii [Iterative Methods of Solving the Coupled Filtration Problem]. Vestnik MGSU

Referências

Documentos relacionados

11.892, de 29 de dezembro de 2008, determina no caput dos seus artigos 9º e 11, respectivamente, que “cada Instituto Federal é organizado em estrutura multicampi, com

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Immobilization has long been used to improve enzyme activity and stability in aqueous media, and, more recently, also in nonaqueous media (Bickerstaff, 1997; Bornscheuer, 2003),

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

O conhecimento dos processos que regulam a estabilização da matéria orgânica do solo (MOS) é necessário para predizer as alterações nos estoques de C com

— a fundamentação teórica exigida pelo estatuto científico da disciplina não se coaduna com os princípios "teóricos" que têm sustentado o paradigma histórico-tecnicista, uma