• Nenhum resultado encontrado

Detection and quantification of antibodies to Newcastle disease virus in ostrich and rhea sera using a liquid phase blocking enzyme-linked immunosorbent assay

N/A
N/A
Protected

Academic year: 2017

Share "Detection and quantification of antibodies to Newcastle disease virus in ostrich and rhea sera using a liquid phase blocking enzyme-linked immunosorbent assay"

Copied!
6
0
0

Texto

(1)

10.1128/CDLI.7.6.940-944.2000.

2000, 7(6):940. DOI:

Clin. Diagn. Lab. Immunol.

Aramis Augusto Pinto

Ricardo Luiz Moro de Sousa, Helio José Montassier and

Enzyme-Linked Immunosorbent Assay

Rhea Sera Using a Liquid Phase Blocking

to Newcastle Disease Virus in Ostrich and

Detection and Quantification of Antibodies

http://cvi.asm.org/content/7/6/940

Updated information and services can be found at:

These include:

REFERENCES

http://cvi.asm.org/content/7/6/940#ref-list-1

This article cites 24 articles, 1 of which can be accessed free at:

CONTENT ALERTS

more»

articles cite this article),

Receive: RSS Feeds, eTOCs, free email alerts (when new

http://journals.asm.org/site/misc/reprints.xhtml

Information about commercial reprint orders:

http://journals.asm.org/site/subscriptions/

To subscribe to to another ASM Journal go to:

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

Downloaded from

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

(2)

1071-412X/00/$04.00

1

0

Copyright © 2000, American Society for Microbiology. All Rights Reserved.

Detection and Quantification of Antibodies to Newcastle Disease

Virus in Ostrich and Rhea Sera Using a Liquid Phase

Blocking Enzyme-Linked Immunosorbent Assay

RICARDO LUIZ MORO

DE

SOUSA,

1,2

HELIO JOSÉ MONTASSIER,

3AND

ARAMIS AUGUSTO PINTO

3

*

Graduate Program in Microbiology, Instituto de Ciências Biomédicas, Universidade de Sa

˜o Paulo,

1

and Fundaça

˜o de

Amparo à Pesquisa do Estado de Sa

˜o Paulo,

2

Sa

˜o Paulo, and Departamento de Patologia Veterinária, Faculdade

de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, 14870-000, Jaboticabal,

3

Sa

˜o Paulo, Brazil

Received 22 May 2000/Returned for modification 19 July 2000/Accepted 24 August 2000

A liquid phase blocking ELISA (LPB-ELISA) was adapted for the detection and quantification of antibodies

to Newcastle disease virus. Sera from vaccinated and unvaccinated commercial flocks of ostriches (

Struthio

camelus

) and rheas (

Rhea americana

) were tested. The purified and nonpurified virus used as the antigen and

the capture and detector antibodies were prepared and standardized for this purpose. The

hemagglutination-inhibition (HI) test was regarded as the reference method. The cutoff point for the LPB-ELISA was determined

by a two-graph receiver operating characteristic analysis. The LPB-ELISA titers regressed significantly (

P

<

0.0001) on the HI titers with a high correlation coefficient (

r

5

0.875). The two tests showed good agreement

(

k 5

0.82;

P

< 0.0001), relative sensitivity (90.91%) and specificity (91.18%), and accuracy (91.02%), suggesting

that they are interchangeable.

Newcastle disease (ND) is caused by an avian paramyxovirus

(APMV-1 serotype) that belongs to the genus

Rubulavirus

of the family

Paramyxoviridae

(19). Newcastle disease virus

(NDV) occurs worldwide and has a considerable economic

impact on the world poultry industry, ranging from losses due

to disease and the expense of vaccination to the significant cost

of diagnostic laboratory investigations (14). The breeding of

ratites (ostriches, emus, and rheas) has expanded considerably

all over the world in recent years. They are susceptible to

several diseases of domestic fowl, including ND (15, 20).

Ef-forts to control and prevent ND through efficient vaccination

programs and corresponding serological monitoring are

con-stant.

The hemagglutination-inhibition (HI) test is still the most

widely used conventional serological method for measuring

anti-NDV antibody levels in poultry sera, and it is considered

the standard laboratory test for this disease (30). However,

sera from other species tend to give a high incidence of

false-positive results. And although the number of nonspecific

ag-glutination reactions can be reduced by pretreatment with heat

and kaolin, these procedures decrease the sensitivity of this test

(28).

Indirect enzyme-linked immunosorbent assays (I-ELISA)

have been developed, evaluated, and well correlated to the HI

test for serodiagnosis of NDV in poultry (4, 8, 18). In spite of

their high sensitivity, easy standardization, lack of requirement

for serum pretreatment, and possible computerization of the

system, these assays have the disadvantage of not being

appli-cable to the testing of ratite sera in a single system unless

ratite species conjugates are used in place of an

anti-chicken conjugate (5, 28).

An APMV-1-specific monoclonal antibody blocking ELISA

with the ability to test sera from exotic or wild avian species for

NDV-specific antibodies in serial twofold dilutions or a single

dilution has been described (9, 13). However, production and

maintenance of hybridoma cells are time-consuming and

sometimes expensive for laboratories with limited facilities.

Moreover, assays with a single serum dilution are faster and

more practical than serial dilution assays (7, 25, 26).

Additionally, the determination of a suitable cutoff point in

ELISA and other quantitative serodiagnostic tests becomes a

useful tool of analysis for better test performance as well as

reliable sensitivity and specificity, principally when no specific

assumptions are made concerning the distribution of the

ELISA data (30). If sensitivity and specificity are equally

im-portant, the two-graph receiver operating characteristic

(TG-ROC) method is appropriate (11).

In this study a liquid phase blocking ELISA (LPB-ELISA)

with polyclonal immunoreagents was adapted for the detection

and quantification of antibodies to NDV in sera from

vacci-nated and unvaccivacci-nated commercial flocks of ostriches (

Stru-thio camelus

) and rheas (

Rhea americana

) in a single system.

Furthermore, TG-ROC analysis was carried out to determine

the optimum cutoff point for the LPB-ELISA. Values obtained

in the HI test and LPB-ELISA were compared for relative

sensitivity and specificity, predictive values, accuracy,

agree-ment, and likelihood ratio by linear regression analysis and

determination of the correlation coefficient.

MATERIALS AND METHODS

Virus antigen.The NDV live vaccine strain La Sota was propagated in the allantoic cavities of 9- to 11-day-old embryonated specific-pathogen-free chicken eggs by inoculation with 0.1 ml of infectious allantoic fluid containing 107.4

median embryo infective doses (EID50). The infected allantoic fluid (IAF) was

harvested and clarified by centrifugation at 8,0003gfor 1 h at 4°C in a Sorvall SLA-1500 rotor (Sorvall Products, Newtown, Conn.). The reciprocal of the hemagglutination (HA) titer of the stock NDV harvested was 2,048. Approxi-mately 800 ml of IAF was subjected to protein precipitation with 8.7% (wt/vol) polyethylene glycol (PEG-8000) (Sigma Chemical Co., St. Louis, Mo.) and 2.7% (wt/vol) sodium chloride (NaCl) under gentle stirring for 18 h at 4°C. The concentrated IAF was centrifuged at 4°C for 1 h at 8,0003g in a Sorvall SLA-1500 rotor, and the pellet was resuspended in 30 ml of TNE buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA [pH 7.4]). Next, 10-ml volumes of concen-trated virus suspension were layered over a discontinuous 30 to 55% (wt/vol)

* Corresponding author. Mailing address: Laboratório de Virologia

e Imunologia, Departamento de Patologia Veterinária, Faculdade de

Ciências Agrárias e Veterinárias, Universidade Estadual Paulista

(UNESP), Via de Acesso Prof. Paulo Donato Castellane, Km 05,

14870-000, Jaboticabal, Sa˜o Paulo, Brazil. Phone: 55-16-3232500, ext.

225. Fax: 55-16-3224275. E-mail: aramisap@asbyte.com.br.

940

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

(3)

sucrose gradient in TNE buffer. The gradient was ultracentrifuged at 4°C for 4 h at 96,0003gin a Sorvall AH-629 rotor. The 1-ml fractions from each tube which highly adsorbed at 254 nm (viral RNA) and 280 nm (total protein) were pooled and run through a second, identical gradient. Fractions collected from the second run of gradients were pooled, diluted with TNE buffer, and ultracentrifuged at 4°C for 4 h at 96,0003gin a Sorvall AH-629 rotor for sucrose removal. The pellet was resuspended in 4 ml of TNE buffer, subsequently layered on top of a continuous 20 to 55% (wt/vol) sucrose gradient (TNE buffer), and ultracentri-fuged at 96,0003gfor 12 h at 4°C in a Sorvall AH-629 rotor. The fractions collected as described above were pooled and centrifuged for sucrose removal. The final pellet was resuspended in 4 ml of TNE buffer, and the protein con-centration was estimated by a bicinchoninic acid (BCA) assay (23). The resultant TNE suspension containing the purified viral antigen was stored at270°C in 0.30-ml aliquots. The efficiency of all purification processes with regard to viral hemagglutinin reactivity was monitored by an HA test using aliquots from each viral purification step. The IAF clarified by centrifugation at 8,0003gfor 1 h at 4°C in a Sorvall SLA-1500 rotor was used as nonpurified antigen in the LPB-ELISA and the HI test.

Capture antibody.The capture antibody was prepared by the immunization of three guinea pigs with purified NDV (6). Previously the purified NDV was subjected to an adsorption-elution assay with chicken red blood cells (22) in order to achieve a higher purity level by removing undesirable IAF-derived residual protein components from the purified NDV suspension. The resultant guinea pig anti-NDV serum was inactivated at 56°C for 30 min, titrated by an HI test, and stored at220°C. The specific reactivity of the capture antibody to NDV was tested by checking nonspecific reactions between the guinea pig antiserum and noninfected allantoic fluid at a protein concentration of 1mg/ml in coating buffer using an I-ELISA (10) with a preprepared rabbit anti-guinea pig immu-noglobulin G (IgG)-horseradish peroxidase conjugate diluted 1:1,000 in phos-phate-buffered saline (PBS).

Detector antibody.The chicken anti-NDV serum was used as the detector antibody as described previously (26). Briefly, the purified NDV was subjected to the procedure described above for enhancing the purity level. The chicken anti-NDV serum obtained was inactivated at 56°C for 30 min, titrated by an HI test, and stored at220°C. The reactivity of the detector antibody to noninfected allantoic fluid was also determined by an I-ELISA (10) as described above, using a rabbit anti-chicken IgG-horseradish peroxidase conjugate prepared as de-scribed below and diluted 1:2,000 in PBS.

Conjugate.A rabbit anti-chicken IgG coupled to horseradish peroxidase (Sig-ma Chemical Co.) was used as the conjugate (18, 29). Possible reactivity between the conjugate and ratite sera was tested by a double antibody sandwich ELISA (6) using two serum pools consisting of a mixture of three sera, one from each ratite species, showing high HI titers.

Test sera.A total of 78 ratite serum samples from ostrich and rhea breeder farms, divided into four groups, were tested by both the HI test and the LPB-ELISA. Twenty-five of the sera were from a population of unvaccinated 3-month-old ostrich chicks, 11 were obtained from vaccinated 3.5-3-month-old os-trich chicks, 11 were from unvaccinated 3-month-old rhea chicks, and 31 were from vaccinated 4-month-old rhea chicks. The birds were vaccinated with the La Sota live strain of NDV by eye drop instillation and were bled 20 days after the vaccination. No clinical signs of disease were observed in any of the birds tested. HI test.The micro-beta HI test was performed using 4 HA units of the La Sota vaccine strain of NDV (clarified IAF) and 1% chicken red blood cells (2). A duplicate twofold dilution series of each test serum was made, and titers were expressed as log2values of the highest reciprocal of the dilution which showed

hemagglutination inhibition. Titers equal to or greater than 3 log2were

consid-ered positive results. Each test serum sample was pretreated at 56°C for 30 min and then incubated with kaolin at 37°C for 30 min to extract nonspecific inhib-itors (28).

LPB-ELISA.The LPB-ELISA was performed as described by Hamblin et al. (12) for foot-and-mouth disease antibodies, with some modifications for the detection and quantification of NDV antibodies with regard to the percentage of blocking or inhibition of each test serum.

Briefly, optimal dilutions of guinea pig anti-NDV serum, chicken anti-NDV serum, and nonpurified antigen were determined using checkerboard titration (6). The working dilution of the rabbit anti-chicken IgG conjugated to horse-radish peroxidase was obtained by a direct ELISA (27).

Flat-bottom 96-well microtiter plates (Immunoplate Maxisorp F96; Nunc, Roskilde, Denmark) were used. All reagents were delivered in 50-ml volumes.

The microplate wells were coated with an optimal dilution (1:4,000) of guinea pig anti-NDV serum in 0.05 M carbonate-bicarbonate buffer (pH 9.6) and incu-bated overnight at 4°C to provide a trapping antibody. After four washes with PBS containing 0.05% Tween 20, which was the wash buffer used throughout, the plates were blocked using 100ml of PBS containing 5% normal guinea pig serum and 10% skim milk powder/well to minimize nonspecific binding sites. This was followed by a 45-min incubation at 37°C. The liquid phase was carried out in U-bottom 96-well microtiter plates (Nunc), and a mixture of nonpurified NDV La Sota at a constant predetermined dilution (1:8) in PBS and duplicates of 1:8-diluted test sera in PBS was used. After incubation at 37°C for 90 min, 50-ml volumes of test serum-virus mixtures were transferred from the carrier plates to the ELISA plates and incubated at 37°C for 60 min. Thereafter, ELISA plates were washed as before, and a pretitrated optimal dilution (1:1,000) of chicken

anti-NDV serum in PBS containing 0.05% Tween 20, 5% normal guinea pig serum, and 10% skim milk powder (PBSTGM) was added. The plates were incubated for 60 min at 37°C and then washed. A pretitrated optimal dilution (1:2,000) of the conjugate in PBSTGM was added to measure the amount of detector antibody complexed with the virus which had been trapped by the capture antibody. After incubation for 60 min at 37°C, the plates were again washed as described above, a mixture of 0.006% H2O2and 0.4 mg ofo

-phenyl-enediamine (Sigma Chemical Co.)/ml in 0.1 M Na2HPO4–0.1 M citric acid buffer

(pH 5.0) was added to all the wells, and the reaction was allowed to develop for 15 min at room temperature. The reaction was then stopped by the addition of 2 M HCl. Plates were read spectrophotometrically at 490 nm on an ELISA plate reader (Bio-Rad, Hercules, Calif.).

On each plate, 22 wells were reserved for the antigen control with no test sera added, and they were used to define the mean optical density corresponding to a 100% detector antibody bound to the antigen (max OD). The degree of blocking or inhibition for each test serum was then calculated by the following formula: percentage of inhibiton (PI)5(max OD2sample OD)/(max OD)]3

100.

Calculation of LPB-ELISA cutoff point.The cutoff point was determined by TG-ROC analysis (11, 28, 30), which is, briefly, a plot of the test sensitivity (Se) and specificity (Sp) against the cutoff (threshold) value (PI value), the latter being an independent variable. At the intersection point of the two graphs, known as the point of equivalence, the assay Se is equal to the assay Sp. This point was selected as the cutoff point (CTP) for the LPB-ELISA, and titers expressed as PIs equal to or greater than the CTP were regarded as positive.

Statistical analysis.The HI and LPB-ELISA titers were analyzed to deter-mine relative sensitivity and specificity, predictive values, and accuracy. Sensitiv-ity was defined as the proportion of HI-positive samples that were correctly identified by LPB-ELISA, and specificity was defined as the proportion of cor-rectly identified HI-negative samples (15). Predictive values (positive and nega-tive) were defined as the probability that a LPB-ELISA result reflected the true HI status. Accuracy was defined as the proportion of two tests, both positive and negative, which were corrected. Fisher’s exact test was used to compare the sensitivity and the specificity of the two tests. LPB-ELISA values were linearly regressed on HI titers, and the correlation coefficient (Pearson’sr) was obtained (4). Kappa (k) was calculated to measure the strength of the agreement between the two methods (24). The likelihood ratio at a 95% confidence interval (CI) was used to express the probability that LPB-ELISA results came from birds with opposed HI results. For this purpose, the likelihood ratio for a positive test was defined as sensitivity/(12specificity) and the likelihood ratio for a negative test was defined as (12sensitivity)/specificity (24). StatsDirect (CamCode, Ashwell, England) and EXCEL 97 (Microsoft, Bellevue, Wash.) were used for the calcu-lations.

RESULTS

Capture and detector antibodies and conjugate nonspecific

reactivity.

The guinea pig antiserum tested by I-ELISA at a 1:8

dilution showed a mean OD of 0.088 at 490 nm, and the

re-spective blank mean OD was 0.030; the chicken antiserum at a

1:10 dilution showed a mean OD of 0.040, and the

correspond-ing blank mean OD was 0.035. However, when the noninfected

allantoic fluid was changed to IAF, mean OD readings

in-creased to 1.991 for the guinea pig antiserum and 1.755 for the

chicken antiserum; the blank mean OD readings were 0.035 and

0.038, respectively. Similarly, the conjugate at a 1:2,000

dilu-tion exhibited a mean OD of 0.069 at 490 nm to a 1:8-diluted

ostrich serum pool and a mean OD of 0.071 to a 1:8-diluted

rhea serum pool by a double antibody sandwich ELISA.

How-ever, mean OD readings increased to 2.790 when ratite serum

pools were replaced by a detector antiserum at a 1:8 dilution.

LPB-ELISA cutoff point.

The proportion of HI-seropositive

(HI titer,

$

3 log2) ratites was 56%. The sensitivity and

speci-ficity curves of the LPB-ELISA as functions of the cutoff points

used are shown in Fig. 1. By TG-ROC analysis, the intersection

point of the two curves indicates that with a cutoff point of

29.00% (PI value), the LPB-ELISA presents a relative Se and

Sp of approximately 0.93, or 93% (point of equivalence). The

selection of this cutoff point is based on count data

(nonpara-metric approach), because TG-ROC indicated deviations from

a normal distribution. The accuracy level for this analysis was

95%. Thereafter, a PI of

$

29.00% was regarded as indicating

an LPB-ELISA-positive serum, and a PI of

,

29.00% was

con-sidered as indicating an LPB-ELISA-negative serum.

V

OL

. 7, 2000

LPB-ELISA FOR SERODIAGNOSIS OF NDV

941

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

(4)

Relationship between the LPB-ELISA and the HI test.

The

relationship between the LPB-ELISA and the HI test is shown

in Table 1. Of all the sera tested, 40 (51.28%) were positive and

31 (39.74%) were negative with both the LPB-ELISA and the

HI test. Three sera (3.85%) were positive only with the

LPB-ELISA, whereas four (5.13%) were positive only with the HI

test (Table 1). The relative sensitivity of the LPB-ELISA was

90.91%, and the specificity was 91.18% (

P

,

0.0001); the

ac-curacy between the two tests was 91.02%. The positive

predic-tive value (93.02%) and the negapredic-tive predicpredic-tive value (88.57%)

are also shown.

There was good agreement between the two serological

methods (

k 5

0.82) (

P

,

0.0001). By convention, kappa values

of 0.8 to 1.0 express almost perfect agreement between tests

(24).

A close correlation (

r

5

0.875) was found between the

LPB-ELISA and HI titers (

P

,

0.0001) by a linear regression

anal-ysis (Fig. 2).

The likelihood ratio for a positive test (LR

1

) was 10.30

(95% CI, 3.94 to 29.94), meaning that an LPB-ELISA titer of

$

29.00% was 10 times as likely to have come from an

HI-positive bird as from an HI-negative bird. The likelihood ratio

for a negative test (LR

2

) was 0.1 (95% CI, 0.04 to 0.23),

meaning that an LPB-ELISA titer of

,

29.00% was 1/10 as

likely to have come from an positive bird as from an

HI-negative bird. LR

1

and LR

2

are graphically displayed in

Fig. 3.

DISCUSSION

In order to overcome the problems of routine NDV serology

for ratites species, an LPB-ELISA was used and evaluated for

the detection and titration of NDV-specific antibodies. The

basic procedure for the LPB-ELISA was that used by Hamblin

et al. (12) and Cardoso et al. (7), with the optimal

concentra-tions of reagents being determined by checkerboard titration.

The usefulness of the ELISA based on the indirect method

has been evaluated and correlated to the HI test many times.

Brown et al. (4) obtained a correlation coefficient of 0.85 and

a kappa value of 0.84 as well as high relative sensitivity (98.2%)

and specificity (91.7%). A similar correlation coefficient (

r

5

0.85) was reported by Cvelic-Cabrilo et al. (8); this was

some-what better than the 0.75 calculated by Adair et al. (1).

How-ever, in both cases, the authors tested only chicken sera, using

a commercial anti-chicken conjugate.

Cadman et al. (5) compared the reactivity of ostrich sera to

NDV by an I-ELISA and an HI test. Using a

peroxidase-labeled goat anti-ostrich IgG, a sigmoidal relationship (

r

5

0.612) (3rd-degree polynomial) was found when serum

sam-ples from vaccinated and naturally infected birds were tested.

FIG. 1. Curves of relative Se and Sp of the LPB-ELISA using TG-ROC analysis. The intersection point of the two curves indicates the cutoff point (PI value5 29.00%) at which Se5Sp50.93 (dotted and dashed horizontal line). The accuracy level used was 95%.

TABLE 1. Comparative results between the HI test and

the LPB-ELISA in ratite sera

a

LPB-ELISA result

No. of specimens with the indicated result(s)

HI test

Total

Positive Negative

Positive

40

3

43

Negative

4

31

35

Total

44

34

78

aRelative sensitivity

540/443100590.91%. Relative specificity531/343 100591.18%. Accuracy5(40131)/783100591.02%. Positive predictive value540/(4013)3100593.02%. Negative predictive value531/(4131)3 100588.57%.

FIG. 2. Correlation between serum titers obtained by the LPB-ELISA (PI) and the HI test (log2).

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

(5)

Nevertheless, this I-ELISA could not be used for sera from

other species, limiting its applicability to laboratory routine.

Our significant correlation result also confirms the report of

Jestin et al. (13) that a PMV-1-specific monoclonal antibody

blocking ELISA (B-ELISA) to test a twofold dilution series of

sera from vaccinated specific-pathogen-free chickens and

Mus-covy ducks obtained a high coefficient correlation (

r

5

0.90)

(

P

,

0.001). Czifra et al. (9) described a B-ELISA to test sera

from chickens experimentally infected with NDV, chickens

vaccinated against NDV, and field samples from chickens and

turkeys; high sensitivity was found relative to either the HI test

or the I-ELISA (mean,

.

90%), and the B-ELISA was

consis-tently more sensitive than the HI test.

Recently, Koch et al. (15) used a similar B-ELISA to test 211

ostrich sera in a twofold dilution series; a kappa value slightly

greater (

k 5

0.85) than that calculated in the present study was

found, but a lower correlation was found (

r

5

0.71); sensitivity

relative to the HI test was 91%, and relative specificity was

96%. The positive predictive value (97%) was greater than that

described here, but a similar negative predictive value (87%)

was observed, although predictive values are dependent on

disease prevalence. The false-positive rate among the sera

examined was lower (1.42%) than that found in our study

(3.85%), which included two ostrich sera and one rhea serum,

while the false-negative rate (5.21%) was similar to our

find-ings (5.13%), including two sera for each ratite species.

Polyclonal immunoreagents (capture and detector

antibod-ies) are cheaper than monoclonal antibodies for the B-ELISA,

and the LPB-ELISA is easy to perform, dispensing with special

skills and showing adequate applicability, as observed in our

study, for testing sera from different avian species, while

ex-cluding possible nonspecific reactions to allantoic fluid

com-ponents or reactivity between the sera tested and the

conju-gate. Probably the further purification of purified NDV by

red-cell adsorption-elution (22) before the production of

cap-ture and detector antiserum enhanced the effectiveness of

an-tigen purification. Furthermore, the use of a single untreated

serum dilution, as described, in our test system is more

prac-tical than serial dilution (28) because it decreases the

prepa-ration time and the number of microtiter plates required. The

working test serum dilution of 1:8 was chosen as being the

minimum serum dilution at which no gelation was observed

during the liquid phase incubation for rhea serum-virus

mix-tures, thus enabling these suspensions to be transferred to solid

phase microplates more easily. Probably this phenomenon is

related to high-fat or low-protein diets offered to the ratites

surveyed (16, 17); it continued even when the respective sera

were submitted to clarification by centrifugation (10,000

3

g

for 10 min at 4°C). Koch et al. (15) used a starting ostrich

serum dilution of 1:10 for B-ELISA, while Schelling et al. (21)

assayed poultry sera for NDV antibodies by a similar B-ELISA

using a sample dilution of 1:10.

On the other hand, the determination by TG-ROC analysis

of a suitable cutoff point for obtaining balanced Se and Sp or

a specific Se or Sp provided a useful tool for obtaining better

performance of the test, particularly with data deviating from

a normal distribution. The TG-ROC analysis used to compare

the Se and Sp of an I-ELISA with those of an HI test using sera

from vaccinated and unvaccinated ostriches showed that the

I-ELISA was superior to the HI test in both Se and Sp, with

both Se and Sp equaling 97.2% at the cutoff point for the

I-ELISA (28). Moreover, because likelihood ratio

determina-tion is derived from the test Se and Sp only, it is unaffected by

disease prevalence, making it an especially stable expression of

test performance as found here.

In a previous study (26) we used a similar LPB-ELISA to

detect antibodies against NDV in sera from vaccinated and

unvaccinated partridges. High relative sensitivity (96.82%) and

specificity (90.54%), as well as good accuracy (94.5%), were

found. The correlation coefficient (

r

5

0.8217;

P

,

0.0005) was

lower than that described here. However, a cutoff point

deter-mination was derived from the mean titer of control birds plus

two times the standard deviation, a procedure widely used for

this purpose (11). In fact, this approach leads automatically to

an Sp of

>

97.5%, and this assumption holds true only in the

case of a normally distributed test variable, as shown by

Bara-jas-Rojas et al. (3). Thus, this procedure, without any

indica-tion of the resulting test Se, does not reflect the major funcindica-tion

of a cutoff value, which is to distinguish between seropositive

and seronegative individuals (11). In contrast, TG-ROC

anal-ysis provides an appropriate selection of cutoff values for

ob-taining Se and Sp for both parametric and nonparametric

ap-proaches.

The LPB-ELISA described above, together with TG-ROC

analysis for cutoff determination, showed statistically

signifi-cant test indices compared with those from earlier studies,

particularly a close correlation coefficient and a high level of

agreement with the HI test, emphasizing the diagnostic validity

of the LPB-ELISA. Therefore, LPB-ELISA was demonstrated

to be a very useful method and able to replace the B-ELISA,

FIG. 3. LR1and LR2as functions of the selected cutoff value.

V

OL

. 7, 2000

LPB-ELISA FOR SERODIAGNOSIS OF NDV

943

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

(6)

the I-ELISA, and the HI test in seroepidemiological surveys or

vaccinal monitoring for the determination of antibody levels to

NDV in sera from ratites without a serum pretreatment

re-quirement.

ACKNOWLEDGMENTS

We thank M. L. F. Tamanini and A. E. G. Lima for technical

assis-tance.

This work was supported by the Fundaça˜o de Amparo à Pesquisa do

Estado de Sa˜o Paulo (FAPESP) (grant 98/11301-0) and by the

Con-selho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

(grant 521722/93-4/NV).

REFERENCES

1.Adair, B. M., M. S. McNulty, D. Todd, T. J. Connor, and K. Burns.1989. Quantitative estimation of Newcastle disease virus antibody levels in chick-ens and turkeys by ELISA. Avian Pathol.18:175–192.

2.Allan, W. H., and R. E. Gough.1974. A standard hemagglutination inhibition test for Newcastle disease. 1. A comparison of macro and micro method. Vet. Rec.95:120–123.

3.Barajas-Rojas, J. A., H. P. Riemann, and C. E. Franti.1993. Notes about determining the cut-off value in enzyme-linked immunosorbent assay (ELISA). Prev. Vet. Med.15:231–233.

4.Brown, J., R. S. Resurreccion, and T. G. Dickson.1990. The relationship between the hemagglutination-inhibition test and the enzyme-linked immu-nosorbent assay for the detection of antibody to Newcastle disease. Avian Dis.34:585–587.

5.Cadman, H. F., P. J. Kelly, N. D. De Angelis, C. Rohde, N. Collins, and T. Zulu.1997. Comparison of enzyme-linked immunosorbent assay and haem-agglutination inhibition test for the detection of antibodies against Newcastle disease virus in ostriches (Struthio camelus). Avian Pathol.26:357–363. 6.Cardoso, T. C., R. L. M. Sousa, A. C. Alessi, H. J. Montassier, and A. A.

Pinto.1998. A double antibody sandwich ELISA for rapid diagnosis of virus infection and to measure the humoral response against infectious bursal disease on clinical material. Avian Pathol.27:450–454.

7.Cardoso, T. C., R. L. M. Sousa, C. Oliveira, G. Strighini, and A. A. Pinto. 1999. A liquid phase blocking ELISA for the detection of antibodies against infectious bronchitis virus. Braz. J. Med. Biol. Res.32:747–752.

8.Cvelic-Cabrilo, V., H. Mazija, Z. Bidin, and W. L. Ragland.1992. Correla-tion of hemagglutinaCorrela-tion inhibiCorrela-tion and enzyme-linked immunosorbent as-says for antibodies to Newcastle disease virus. Avian Pathol.21:509–512. 9.Czifra, G., M. Nilsson, D. J. Alexander, R. Manvell, S. Kecskeméti, and B. E.

Engström.1996. Detection of PMV-1 specific antibodies with a monoclonal antibody blocking enzyme-linked immunosorbent assay. Avian Pathol.25: 691–703.

10. Engvall, E., and P. Perlmann.1972. Enzyme linked immunosorbent assay (ELISA). III. Quantitation of specific antibodies by enzyme-linked anti-immunoglobulin in antigen coated tubes. J. Immunol.109:129–135. 11. Greiner, M., D. Sohr, and P. Göbel.1995. A modified ROC analysis for the

selection of cut-off values and the definition of intermediate results of sero-diagnostic tests. J. Immunol. Methods185:123–132.

12. Hamblin, C., I. T. R. Barnett, and R. S. Hedger.1986. A new enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus. I. Development and method of ELISA. J. Immu-nol. Methods93:115–122.

13. Jestin, V., M. Cherbonnel, R. L’Hospitalier, and G. Bennejean.1989. An ELISA blocking test using a peroxidase-labelled HN monoclonal

anti-body for the specific titration of antibodies to avian paramyxovirus type 1 (PMV1). Arch Virol.105:199–208.

14. Jørgensen, P. H., J. Herczeg, B. Lomniczi, R. J. Manvell, E. Holm, and D. J. Alexander.1998. Isolation and characterization of avian paramyxovirus type 1 (Newcastle disease) viruses from a flock of ostriches (Struthio camelus) and emus (Dromaius novaehollandiae) in Europe with inconsistent serology. Avian Pathol.27:352–358.

15. Koch, G., G. Czifra, and B. E. Engström.1998. Detection of Newcastle disease virus-specific antibodies in ostrich sera by three serological methods. Vet. Rec.4:10–12.

16. Mushi, E. Z., M. G. Binta, R. G. Chabo, J. F. W. Isa, and L. Modisa.1998. Serum biochemical values of farmed ostrich (Struthio camelus) in Botswana. Onderstepoort J. Vet. Res.65:189–193.

17. Perry, M. C., H. H. Obrecht, B. K. Williams, and W. J. Kunzel.1986. Blood chemistry and haematocrit of captive and wild canvasbacks. J. Wildl. Manag. 50:435–444.

18. Richtzenhain, L. J., A. C. Paulillo, A. A. Pinto, and S. N. Kronca.1993. Re-lation between the hemagglutination inhibition test and the indirect ELISA in the serologic monitoring of laying hens submitted to different systems of vaccination against Newcastle disease. Rev. Microbiol.24:187–191. 19. Rima, B., D. J. Alexander, M. A. Billeter, P. L. Collins, D. W. Kingsbury,

M. A. Lipkind, Y. Nagai, C. Orvell, C. R. Pringle, and V. Ter Meulen.1995. The Paramyxoviridae. Virus taxonomy, p. 268–274. In C. M. Murphy, D. H. L. Fauquet, A. S. Bishop, A. W. Ghabrial, G. P. Jarvis, M. A. Martelli, M. A. Mayo, and M. D. Summers (ed.), Sixth report of the International Committee on Taxonomy of Viruses. Springer-Verlag Wien, Vienna, Aus-tria.

20. Samberg, V., D. V. Hadash, B. Perelman, and M. Meroz.1989. Newcastle disease in ostriches (Struthio camelus): field case and experimental infection. Avian Pathol.18:221–226.

21. Schelling, E., B. Thu¨r, C. Griot, and L. Andigé.1999. Epidemiological study of Newcastle disease in backyard poultry and wild bird populations in Swit-zerland. Avian Pathol.28:263–272.

22. Sheffield, F. W., W. Smith, and G. Belyavin.1954. Purification of influenza virus by red-cell adsorption and elution. Br. J. Exp. Pathol.35:214–222. 23. Smith, P. K., R. L. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner,

M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk.1986. Measurement of protein using bicinchoninic acid. Anal. Bio-chem.150:76–85.

24. Smith, R. D.1995. Veterinary clinical epidemiology: a problem-oriented approach, 2nd ed. CRC Press, Inc., Boca Raton, Fla.

25. Snyder, D. B., W. W. Marquardt, E. T. Mallinson, and E. Russek.1983. Rapid serological profiling by enzyme-linked immunosorbent assay and con-ventional methods for avian serology. Avian Dis.27:161–170.

26. Sousa, R. L. M., T. C. Cardoso, A. C. Paulillo, H. J. Montassier, and A. A. Pinto.1999. Antibody response to Newcastle disease vaccination in a flock of young partridges (Rhynchotus rufescens). J. Zoo Wildl. Med.30:459–461. 27. Voller, A., D. E. Bidwell, and A. Bartlett.1976. Enzyme immunoassay in

diagnostic medicine. Theory and practice. Bull W. H. O.53:55–65. 28. Williams, R., C. H. Boshoff, D. Verwoerd, M. Schoeman, A. V. Wyk, T. H.

Gerdes, and K. Ross.1997. Detection of antibodies to Newcastle disease virus in ostriches (Struthio camelus) by an indirect ELISA. Avian Dis.41: 864–869.

29. Wilson, M. B., and P. K. Nakane.1978. Recent developments in periodate method conjugating horsedish peroxidase (HRPO) to antibodies, p. 215.In

W. Knapp, L. Holubar, and G. Wick (ed.), Immunofluorescence and related techniques. Elsevier-North Holland Biomedicas, Amsterdam, The Nether-lands.

30. Xu, H., J. Lohr, and M. Greiner.1997. The selection of ELISA cut-off points for testing antibody to Newcastle disease by two-graph receiver operating characteristic (TG-ROC) analysis. J. Immunol. Methods208:61–64.

on January 16, 2014 by UNESP - Universidade Estadual Paulista

http://cvi.asm.org/

Referências

Documentos relacionados

An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for ochratoxin A (OTA) detection in green, roasted and instant coffees was developed using anti-OTA

A liquid phase blocking ELISA (LPB-ELISA) was developed for the detection and measurement of antibodies against infectious bronchitis virus (IBV).. The purified and nonpurified

Figure 2 - Simple PTA-ELISA kit developed at the Plant Virus Laboratory from Federal University of Ceará, Brazil, composed of ELISA plate with holes treated with antigen for

Diante dos resultados encontrados nesta revisão de literatura, não foi possível encontrar resposta sobre a eficácia da manobra de esforço isolada na reabilitação

Existem INS outros fatores pré-analíticos que podem provocar erros ou variações nos resultados dos exames, dentre eles: Identificação: Para evitar erros, é

Estatisticamente, não foi observada diferença entre os pacientes com leucemias e linfoma, em relação às concentrações séricas de IL-1β, porém entre os pacientes com

Percebe-se que, mesmo sendo a informação parte importante na educação sobre sexualidade e prevenção das DST/AIDS, a disseminação do conhecimento para promover o sexo seguro e

Figura 42: Campo de direção e altura significativa das ondas – 25/08/2015 O mês de agosto apresentou, ao longo dos três anos analisados, um padrão dominante de ondas de leste