• Nenhum resultado encontrado

Obtaining and physical mechanical properties of cement composites with the use of fillers and mixing water from the Chechen Republic fields

N/A
N/A
Protected

Academic year: 2016

Share "Obtaining and physical mechanical properties of cement composites with the use of fillers and mixing water from the Chechen Republic fields"

Copied!
11
0
0

Texto

(1)

666.97

. .

,

.

.

*

, .

.

, . .

,

. .

, . .

, . .

«

. . .

ё

, *

«

»

ɉɪɟɞɫɬɚɜɥɟɧɵɪɟɡɭɥɶɬɚɬɵɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯɢɫɫɥɟɞɨɜɚɧɢɣɰɟɦɟɧɬɧɵɯɤɨɦ

-ɩɨɡɢɬɨɜ, ɧɚɩɨɥɧɟɧɧɵɯ ɩɨɪɨɲɤɚɦɢ ɝɨɪɧɵɯ ɩɨɪɨɞ, ɡɚɬɜɨɪɹɟɦɵɯ ɚɤɬɢɜɢɪɨɜɚɧɧɨɣ

ɜɨɞɨɣ ɦɟɫɬɨɪɨɠɞɟɧɢɣɑɟɱɟɧɫɤɨɣɊɟɫɩɭɛɥɢɤɢ. ɍɫɬɚɧɨɜɥɟɧɚɪɚɜɧɨɦɟɪɧɨɫɬɶ ɢɡɦɟ

-ɧɟɧɢɹɨɛɴɟɦɚɰɟɦɟɧɬɧɵɯɤɨɦɩɨɡɢɰɢɣɫɞɨɛɚɜɤɚɦɢɝɨɪɧɨɝɨɢɪɟɱɧɨɝɨɢɡɜɟɫɬɧɹɤɨɜ,

ɩɟɫɱɚɧɢɤɚɢɤɜɚɪɰɟɜɨɝɨɩɟɫɤɚ. ɉɪɟɞɫɬɚɜɥɟɧɵɪɟɡɭɥɶɬɚɬɵɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯɢɫ

-ɫɥɟɞɨɜɚɧɢɣɩɨɭɫɬɚɧɨɜɥɟɧɢɸɜɥɢɹɧɢɹɦɟɥɤɨɝɨɢɤɪɭɩɧɨɝɨɡɚɩɨɥɧɢɬɟɥɹɧɚɮɨɪɦɢ

-ɪɨɜɚɧɢɟɩɪɨɱɧɨɫɬɢɰɟɦɟɧɬɧɵɯɤɨɦɩɨɡɢɬɨɜɧɚɚɤɬɢɜɢɪɨɜɚɧɧɨɣɜɨɞɟɡɚɬɜɨɪɟɧɢɹ.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ: ɰɟɦɟɧɬɧɵɣɤɨɦɩɨɡɢɬ, ɮɢɡɢɤɨ-ɦɟɯɚɧɢɱɟɫɤɢɟɫɜɨɣɫɬɜɚ, ɧɚ

-ɩɨɥɧɢɬɟɥɢ, ɚɤɬɢɜɢɪɨɜɚɧɧɚɹɜɨɞɚɡɚɬɜɨɪɟɧɢɹ, ɩɪɨɱɧɨɫɬɶ.

-

.

, . .

,

-,

. [1—4].

,

--

-.

,

[4].

-,

[5].

,

-,

[6].

,

,

EN 197-1

CEM II/ -

35 %

,

20 % [7].

,

-:

;

,

(2)

;

,

,

,

,

0,5

,

1

.

[8]

(

,

,

,

.)

CSH ( ),

2

SH

.

CSH ( ),

.

,

.

,

.

[9—18].

3

l

2

O

3

CaCO

3

11H

2

O.

CaCO

3

(

)

2

,

.

(

)

2

-.

-.

-. [7]

,

30 %

28

10 %.

50 %

.

[7]

,

50 %

425…900

2

/

(

217

424

2

/ )

-.

,

-:

(

-

.- .

30...35

.

);

(

.

20

.

.

);

(

.

. .

-

25

.

.

)

(

. .

-

30

.

.

).

1

25094—94.

.

(3)

,

,

-,

SO

4

2H

2

O.

-.

,

,

. 1.

. 1.

,

. ,

1

2

3

4

5

100

100

100

100

100

15

15

.

15

15

15

SO

4

2H

2

O

8,65

8,65

8,65

8,65

8,65

23,5

24,9

23,5

22,5

22,5

-.

-.

3, 7 28

.

. 2.

. 2.

-

,

1

2

3

4

5

(4)

[11]:

(

-SiO

3

CaSO

4

CaCO

3

15H

2

O),

[4];

-

,

.

[19]:

Mg(CO

3

)

2

+ 2KOH = Mg(OH)

2

+ CaCO

3

+ R

2

CO

3

.

,

-,

(OH)

2

+ R

2

CO

3

= 2KOH + CaCO

3

.

-.

.

,

-.

,

.

.

, . . 85 %

008.

,

,

,

(

. 3).

. 3.

, %

, %

(

-,

)

10

20

30

40

50

. 3

,

,

,

.

,

-

(

,

,

)

(5)

-;

-, . .

.

:

(

)

(

)

.

0

100 %.

-,

-,

-

,

-.

[20].

,

:

R

.

=

a

α

=

2380

α

³ /

²,

= 2380 /

² —

;

α

.

α

= 0,5…0,6,

[20].

. .

, . .

-,

,

.

,

,

«

» [20].

-.

.

-,

,

,

. .

.

[1].

.

-.

-,

.

-,

= 2,

5…10.

.

: +

(1—1), + (3—3) + (6—6)

[1].

1 : 3,

1 : 1,053 : 1,789 (

:

:

-).

.

(6)

,

-,

,

:

,

. . [1—3].

,

.

(

-1,016 «

»)

(

-1 «

»),

.

. 4.

3

7

28

R

,

R

,

R

,

R

,

R

,

R

,

48,50

10,57

61,10

11,95

79,50

15,50

+ (1—1)

52,38

10,67

69,00

13,15

96,20

18,00

+ (3—3)

50,90

11,55

67,21

13,63

91,40

18,00

+ (6—6)

49,00

12,54

70,30

13,03

100,20

15,50

. 5.

3

7

28

R

,

R

,

R

,

R

,

R

,

R

,

11,00

7,50

24,00

8,57

26,50

9,55

+ (1—1)

11,00

7,64

25,68

9,00

27,60

10,51

+ (3—3)

11,22

7,62

26,40

8,83

28,40

10,70

+ (6—6)

13,75

8,10

30,72

9,17

29,20

10,22

. 6.

3

7

28

R

,

R

,

R

,

R

,

R

,

R

,

32,25

5,83

38,04

6,82

46,42

8,04

+ (1—1)

35,54

6,35

41,88

7,16

55,40

8,37

+ (3—3)

32,29

6,05

47,29

7,10

63,25

8,15

+ (6—6)

32,83

6,24

43,33

7,25

53,17

8,61

,

-

.

. 1.

,

,

(7)

-,

-.

2.

-.

3.

,

-,

,

10 %.

1.

. .,

. .,

. .,

. .,

. .,

. .,

. .

-

-.

:

-

-, 2011. 128 .

2

.

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .

--

//

-

.

:

.

2012.

. 2 (22). . 4.

: http://vestnik.vgasu.ru/attachments/1_

BazhenovFomichev-2012_2(22).pdf.

: 15.07.2014.

3

.

. .,

. .,

. .,

. .,

. .

//

-

.

:

. 2013.

. 30 (49). . 179—183.

4.

. .,

. .,

. .,

.

.,

. .,

. .

//

. 2014. № 5. . 88—91.

5.

. .

.

. :

, 1951.

. 509—511.

6.

. .,

. .,

. .,

. .,

. .,

. .,

. .

«

-

» //

. 2006. № 10. . 13—18.

7

.

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .,

. .

/

.

. .

. . :

, 1985. 222 .

8.

. .

//

.

.

. 902.

:

.

. /

. . .

. . :

,

1997. . 48—51.

9.

. .,

. .,

. .,

. .

//

. 2013. № 7. . 59—62.

10.

. .,

. .,

. .,

. .

//

. 2013. № 2. . 26—31.

11

.

. .

,

-,

//

-

.

http://www.

giprocement.ru/about/articles.html/p=25.

: 06.10.2009.

12.

. .,

. .,

. .

. 3-

(8)

13.

Lothenbach B., Le Saout G., Ben Haha M., Figi R., Wieland E.

Hydration of a

low-alkali CEM III/B–SiO2 cement (LAC) // Cement and Concrete Research. 2012. Vol. 42.

No. 2. Pp. 410—423.

14.

Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J.

The early hydration of

Ordinary Portland Cement (OPC): An approach comparing measured heat fl ow with calculated

heat fl ow from QXRD // Cement and Concrete Research. 2012. Vol. 42. No. 1. Pp. 134—138.

15.

Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat,

George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas.

Mechanisms

of cement hydration // Cement and Concrete Research. 2011. Vol. 41. Pp. 1208—1223.

16.

Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu.

Hydration

and microstructure of ultra high performance concrete incorporating rice husk ash // Cement

and Concrete Research. 2011. Vol. 41. No. 11. Pp. 1104—1111.

17.

Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A.

Pore Structure Formation

of Modifi ed Cement Systems, Hardening over the Temperature Range from +22°C to

–10°C // Applied Mechanics and Materials. 2014. Vols. 584—585. Pp. 1659—1664.

18.

Sabine M. Leisinger, Barbara Lothenbach, Gwenn Le Saout, C. Annette Johnson

Thermodynamic modeling of solid solutions between monosulfate and monochromate

3CaO—Al2O3—Ca[(CrO4)x(SO4)1-x]

nH2O // Cement and Concrete Research. 2012.

Vol. 42. p. 158—165.

19

.

.

/

.

.

. .

.

. :

, 1971. 238 .

20.

Hewlett

P.

Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann,

2003. 1092 p.

2014 .

:

,

-,

,

--

,

. . .

ё

(

«

. . .

ё

»)

, 430005, .

,

.

, . 68, 8 (8342) 47-40-19, AL_Rodin@mail.ru;.

,

,

,

(

«

»)

, 129337, .

,

, . 26, 8 (495) 287-49-14 (

. 31-02, 31-03, 31-01), tvvib@mgsu.ru;

,

. . .

ё

»

(

«

.

. .

ё

»)

, 430005, .

,

.

,

. 68, 8 (8342) 47-40-19, AL_Rodin@mail.ru;

,

,

-,

.

. .

ё

» (

«

.

. .

ё

»)

, 430005, .

,

.

, . 68, 8 (8342)

47-40-19, mitinaea@list.ru;

,

,

-. -. -.

ё

(

«

. . .

ё

»)

,

430005, .

,

.

, . 68, emelyanoffdv@yandex.ru;

,

,

-.

. .

ё

(

«

.

. .

ё

»)

,

(9)

,

.

. .

ё

(

«

.

. .

ё

»)

, 430005, .

,

.

,

. 68, karpushin1990snk@mail.ru.

:

. .,

. .,

. .,

. .,

. .,

. .,

. .

-

//

. 2014. № 12. . 141—151.

V.T. Erofeev, Yu.M. Bazhenov, E.M. Balatkhanova, E.A. Mitina, D.V. Emel’yanov, A.I. Rodin, S.N. Karpushin

OBTAINING AND PHYSICAL MECHANICAL PROPERTIES OF CEMENT COMPOSITES WITH THE USE OF FILLERS AND MIXING WATER FROM THE CHECHEN REPUBLIC FIELDS

Improving physical mechanical and operational properties of concretes and other composite materials is one of the most important tasks in construction material science. At the present time various methods are applied for that, which includes the use of addi-tives, composite binders, activated mixing water, etc.

Composite construction materials based on cement binders with mineral additives are widelu used, because they possess improved physical mechanical and technological properties. Implementation of additives improve placeability and nonsegregation factors of concrete and mortar mixes, lead to compaction of concrete and mortars structure. The additives substantially lower heat generation of concretes, which is of great importance in concrete casting of large structures.

The article presents the results of experimental studies of cement composites fi lled with powders of rocks and mixable with activated water from the deposits of the Chechen Republic. The soundness of cement compositions with the additives of mountain and river limestone, sandstone and quartz sand was established. The results of experimental studies on establishing the effect of fi ne and coarse aggregate on strength formation of cement composites activated by water mixing were presented.

Key words: cement composite, physical mechanical properties, fi llers, activated mixing water, strength.

References

1. Bazhenov Yu.M., Fedosov S.V., Erofeev V.T., Matvievskiy A.A., Mitina E.A., Emel’ya-nov D.V., Yudin P.V. Tsementnye kompozity na osnove magnitno- i elektrokhimicheski aktivi-rovannoy vody zatvoreniya [Cement Composites on the Basis of the Magnetic and Electro-chemical Activated Mixing Water]. Saransk, Mordovia University Publ., 2011, 128 p. (In Russian) 2. Bazhenov Yu.M., Fomichev V.T., Erofeev V.T., Fedosov S.V., Matvievskiy A.A., Osi-pov A.K., Emel’yanov D.V., Mitina E.A., Yudin P.V. Teoreticheskoe obosnovanie polucheniya betonov na osnove elektrokhimicheski- i elektromagnitnoaktivirovannoy vody zatvoreniya [Theoretical Justifi cation of Obtaining Concretes on a Basis of Electrochemical and electro-magnetically-driven Water]. Internet-Vestnik VolgGASU. Seria: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Poly-tematic]. 2012, vol. 2 (22), p. 4. Available at: http://vestnik.vgasu.ru/attachments/1_Bazhenov-Fomichev-2012_2(22).pdf/. Date of access: 15.07.2014. (In Russian)

(10)

4. Kalashnikov V.I., Erofeev V.T., Moroz M.N., Troyanov I.Yu., Volodin V.M., Suzdal’-tsev O.V.Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Tech-nologies for Production of Concretes]. Stroitel’nye materialy [Construction Materials]. 2014, no. 5, pp. 88—91. (In Russian)

5. Jung V.N. Osnovy tekhnologii vyazhushchikh veshchestv [Bases of the Technology of Binding Substances]. Moscow, Gosstroyizdat Publ., 1951, pp. 509—511. (In Russian)

6. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheynfel’d A.V., Kardumyan G.S., Kisele-va Ya.A., Prigozhenko O.V. Modifi tsiroKisele-vannye betony novogo pokoleniya v sooruzheniyakh MMDTs «Moskva-Siti» [Modifi ed Concretes of New Generation in the Constructions of Busi-ness Centre “Moscow City”]. Stroitel’nye materialy [Construction Materials]. 2006, no. 10, pp. 13—18. (In Russian)

7. Entin Z.B., Khomich V.Kh., Ryzhov L.K. i dr. Ekonomiya tsementa v stroitel’stve [Econ-omy of Cement in Construction]. Moscow, Stroyizdat Publ., 1985, 222 p. (In Russian)

8. Takhirov M.K. Rol’ prirody poverkhnosti v protsessakh strukturoobrazovaniya tse-mentnoy kompozitsii s voloknistym napolnitelem [Role of the Surface Nature in the Processes of Structurization of Cement Composition with a Fibrous Filler]. MIIT. Trudy [Moscow State University of Railway Engineering. Works]. Vyp. 902. Novoe v stroitel'no materialovedenii : mezhvuzovskiy sbornik [No. 902. New in Construction Material Science : Interuniversity Col-lection]. V.I. Solomatov, editor . Moscow, MIIT Publ., 1997, pp. 48—51. (In Russian)

9. Adamtsevich A.O., Pustovgar A.P., Eremin A.V., Pashkevich S.A. Issledovanie vliya-niya formiata kal’tsiya na protsess gidratatsii tsementa s uchetom fazovogo sostava i temper-aturnogo rezhima tverdeniya [Research of the Infl uence of Calcium Formate on the Process of Cement Hydration with Account for the Phase Structure and Temperature Mode of Curing].

Stroitel’nye materialy [Construction Materials]. 2013, no. 7, pp. 59—62. (In Russian)

10. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirova-nii fazovogo sostava struktury tsementnogo kamnya [Time Factor in the Formation of Phase Composition of a Cement Stone Structure]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2013, no. 2, pp. 26—31. (In Russian)

11. Zozulya P.V. Karbonatnye porody kak zapolniteli i napolniteli, v tsementakh, tsement-nykh rastvorakh i betonakh [Carbonate Breeds as Aggregates and Fillers, in Cements, Cement Mortars and Concretes]. Giprotsement-nauka [Giprotsement Science]. Available at http://www. giprocement.ru/about/articles.html/p=25/. Date of access: 06.10.2009. (In Russian)

12. Chekhov A.P., Sergeev A.M., Dibrov G.D. Spravochnik po betonam i rastvoram [Ref-erence Book on Concretes and Solutions]. 3rd edition, revised and enlarged. Kiev, Budivel’nik Publ., 1983, pp. 34—35. (In Russian)

13. Lothenbach B., Le Saout G., Ben Haha M., Figi R., Wieland E. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research. 2012, vol. 42, no. 2, pp. 410—423. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.11.008.

14. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The Early Hydra-tion of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow from QXRD. Cement and Concrete Research. 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.

15. Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat, George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas. Mechanisms of Ce-ment Hydration. CeCe-ment and Concrete Research. 2011, vol. 41, no. 12, pp. 1208—1223. DOI: http://dx.doi.org/10.1016/j.cemconres.2010.09.011.

16. Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cement and Concrete Research. 2011, vol. 41, no. 11, pp. 1104—1111.

17. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modifi ed Cement Systems, Hardening over the Temperature Range from +22°C to –10°C. Applied Mechanics and Materials. 2014, vols. 584—585, pp. 1659—1664.

(11)

19. Stork Yu. Teoriya sostava betonnoy smesi [Theory of Concrete Mix Composi-tion]. Transl. from Slovakian by M.A. Smyslova. Leningrad, Stroyizdat Publ., 1971, 238 p. (In Russian)

20. Hewlett P. Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann, 2003. 1092 p.

A b o u t t h e a u t h o r s : Erofeev Vladimir Trofi movich — Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; AL_Ro-din@mail.ru;

Bazhenov Yuriy Mikhailovich — Doctor of Technical Sciences, Professor, Chair, De-partment of Binders and Concrete Technology, Moscow State University of Civil Engineer-ing (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 31-02, 31-03, 31-01; tvvib@mgsu.ru;

Balatkhanova Elita Mahmudovna — doctoral candidate, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; AL_Rodin@ mail.ru;

Mitina Elena Aleksandrovna — Candidate of Technical Sciences, Associate Professor, Department of Highways and Special Engineering Structures, Ogarev Mordovia State Uni-versity (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; mitinaea@list.ru;

Emel’yanov Denis Vladimirovich — Candidate of Technical Sciences, Senior Lecturer, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; emely-anoffdv@yandex.ru;

Rodin Alexander Ivanovich — Candidate of Technical Sciences, Senior Lecturer, De-partment of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; AL_Ro-din@mail.ru;

Karpushin Sergey Nikolaevich — postgraduate student, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (987) 692-36-98, karpushin-1990snk@mail.ru.

F o r c i t a t i o n : Erofeev V.T., Bazhenov Yu.M., Balatkhanova E.M., Mitina E.A., Emel’ya-nov D.V., Rodin A.I., Karpushin S.N. Poluchenie i fi ziko-mekhanicheskie svoystva tsement-nykh kompozitov s primeneniem napolniteley i vody zatvoreniya mestorozhdeniy Chech-enskoy Respubliki [Obtaining and Physical Mechanical Properties of Cement Composites with the Use of Fillers and Mixing Water from the Chechen Republic Fields]. Vestnik MGSU

Referências

Documentos relacionados

In this study is concerned with the preparation of TPU-Barium metaborate composites and to investigate the thermal and mechanical properties of these composite

In order to investigate the potential use of these materials for electromagnetic shielding applications, the electrical and mechanical properties of PU/MMt-PPy.DBSA composites

Analisar a relação entre ambiente da prática de enfermagem e os resultados assistenciais, a segurança dos pacientes e o Burnout entre profissionais em unidades

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The three dimensional model used finite solid elements, with eight nodes and three degrees of freedom in each node (translations). The dimension of the mesh was defined based

a grant from the Department of Water and Power (DAEE), and obtaining a license from the Environmental Company of the State of São Paulo (CETESB), as an alternative to the lack