• Nenhum resultado encontrado

Respostas Oxidativas em Plantas de Arroz Duplamente Silenciadas em APX Citosólica Submetidas a Estresses Abióticos

N/A
N/A
Protected

Academic year: 2018

Share "Respostas Oxidativas em Plantas de Arroz Duplamente Silenciadas em APX Citosólica Submetidas a Estresses Abióticos"

Copied!
117
0
0

Texto

(1)

AURENÍVIA BONIFÁCIO

RESPOSTAS OXIDATIVAS EM PLANTAS DE ARROZ

DUPLAMENTE SILENCIADAS EM APX CITOSÓLICA

(2)

AURENÍVIA BONIFÁCIO

RESPOSTAS OXIDATIVAS EM PLANTAS DE ARROZ (

Oryza

sativa

L.) DUPLAMENTE SILENCIADAS EM APX CITOSÓLICA

SUBMETIDA A ESTRESSES ABIÓTICOS

Tese de doutorado apresentada à coordenação do Curso de

Pós-Graduação em Bioquímica, da

Universidade Federal do Ceará, como requisito parcial para a obtenção do grau de Doutor em Bioquímica.

Orientador: Prof. Dr. Joaquim Albenísio Gomes da Silveira

(3)

Ficha catalográfica

Setor de Processos Técnicos da Biblioteca Central – UFC

_______Bonifácio, Aurenívia

Respostas oxidativas em plantas de arroz (Oryza sativa L.) duplamente silenciadas em APX citosólica submetida a estresses abióticos / Aurenívia Bonifácio. – 2008.

192f. :il.

Orientador: Joaquim Albenísio Gomes da Silveira

Tese (Doutorado em Bioquímica) - Universidade Federal do Ceará. Departamento de Bioquímica e Biologia Molecular. Inclui anexo e bibliografia.

CDD

1. Oryzasativa L. 2. Salinidade

3. Peroxidase do ascorbato 4. Catalase

5. Enzimas

(4)

Tese de Doutorado apresentada a Coordenação do Programa de Pós-Graduação em Bioquímica como parte dos requisitos para obtenção do grau de Doutor em Bioquímica, área de concentração Bioquímica Vegetal, outorgado pela Universidade Federal do Ceará e se encontra a disposição dos interessados na Biblioteca desta Universidade.

A transcrição de qualquer trecho desta Tese é permitida, desde que feita de acordo com as normas da ética cientifica.

Tese aprovada em _____ / _____ / _______

Aurenívia Bonifácio

Joaquim Albenísio Gomes da Silveira, Dr. UFC/DBBM - Orientador

Victor Alexandre Vitorello, Dr. USP/CENA – Conselheiro

André Dias de Azevedo Neto, Dr.

UFRB/CETEC – Conselheiro

(5)
(6)
(7)

AGRADECIMENTOS

A Deus pela minha existência.

A minha mãe Severina; meu pai Pereira (in memoriam); meus irmãos Audenir, Audenise, Pereira Junior, Israel Lima; meus sobrinhos Luiz Henrique, Maria Fernanda e Carlos Fernando; e aos meus cunhados Nivaldo Batinga e Izabela Gomes que acompanharam mesmo de longe todas as etapas dessa jornada. Agradeço por todo amor e compreensão.

Ao meu querido orientador Prof. Joaquim Albenísio Gomes da Silveira, pelo qual tenho enorme carinho, respeito e admiração. Obrigada por proporcionar todo suporte que precisei durante o desenvolvimento deste trabalho, por todos os conselhos e pelos ensinamentos humanos e científicos.

A Profa. Marcia Pinheiro Margis, chefe do Laboratório de Genética da UFRGS, pela valiosa orientação e colaboração na pesquisa e por todos os ensinamentos e receptividade que teve quando estive em seu laboratório.

Aos amigos Karina Guimarães, Luiz Evandro da Silva, Gilberto Silva Junior, Hedwiges Guadallupi Bezerra, Marcio Martins, Milton Costa Lima Neto, Ana Karla Lobo, Fabricio Eulálio Carvalho, Lurian Duarte, Cecília Renata Sales e Leonília Ferreira (in memoriam) pela valiosa amizade, boas conversas, conselhos, broncas, ensinamentos, apoio e colaboração científica.

A Rafaela Watanabe, Daniela Queiroz Zuliani, Ayrles Fernanda Brandão e Raiana Cabral pela paciência, companheirismo diário e conversas em casa.

Aos que fazem ou fizeram parte dos Laboratórios de Metabolismo de Plantas (LABPLANT) que de forma direta ou indireta contribuíram para a realização deste trabalho: Ana Karla, Fabricio Eulálio, Marcio, Milton, Cristina, Sérgio, Raquel Ribeiro, João Victor, Cinthya, Tathiana, Adilton, Jamille, Rachel, Naélia, Suyanne, Evandro, Josemir, Naiara, André, Luiz Aguiar e Rafael.

A Maria Edinilda Nascimento (Dona Nêga) e ao Marcio Souza (secretário da Pós-Graduação em Bioquímica/UFC) pela amizade e colaboração.

A Carolina Ribeiro, Andréia Caverzan, João Abreu Neto, Gisele Passaia e demais membros do Laboratório de Genética da UFRGS pela ajuda concedida.

(8)

SUMÁRIO

LISTA DE FIGURAS... ix

LISTA DE TABELAS ... xi

RESUMO GERAL ... xii

1. Introdução e revisão de literatura ... 13

1.1 O estresse oxidativo nas espécies vegetais ... 14

1.2 Processos fotossintéticos e produção de EROs em espécies vegetais ... 19

1.3 O arroz como modelo vegetal ... 22

2. Bibliografia ... 24

Capítulo I ... 30

Photosynthetic modulations prevent oxidative stress in rice plants submitted to combined salinity and heat stress ... 30

Abstract ... 32

1. Introduction ... 33

2. Material and methods ... 35

2.1 Plant material, growth conditions and treatments ... 35

2.2 Photosynthetic and chlorophyll a fluorescence parameters ... 35

2.3 Electrolyte leakage and sodium and potassium content ... 36

2.4 Lipid peroxidation and hydrogen peroxide determinations ... 37

2.5 Reduced ascorbate and glutathione determinations ... 38

2.6 Enzymatic extraction ... 38

2.7 Enzyme activity assays ... 39

2.8 Statistical analysis ... 41

3. Results ... 41

4. Discussion ... 44

5. References ... 48

Capítulo II ... 59

Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress ... 59

(9)

Application of the 3-aminotriazole treatment ... 84

CO2 photosynthetic assimilation parameters ... 85

Pigment determination... 85

Membrane damage and lipid peroxidation... 85

Determination of H2O2 content and ascorbate and glutathione redox states .... 86

Sample extraction and enzyme activity assays ... 87

Statistical analysis and experimental design ... 90

Results ... 90

Discussion ... 93

References ... 97

ANEXOS ... 109

LISTA DE FIGURAS Figura 1 – Ciclo Ascorbato-Glutationa na célula vegetal. Abreviações: SOD, dismutase de superóxido; APX, peroxidase de ascorbato; CAT, catalase; GPX, peroxidase de glutationa; GSH e GSSG, glutationa reduzida e oxidada; MDA, monodehidroascorbato; DHA, dehidroascorbato; GR, redutase de glutationa; PrxR, peroxirredoxina; GLR, glutarredoxina; Trx, tiorredoxina; MDAR, redutase de MDA; DHAR, redutase de DHA (Fonte: MITTLER e POULOS, 2005)... 17

Figura 2 – Sítios de produção de EROs durante a transferência de elétrons entre os PSII e PSI (Adaptado de FOYER e NOCTOR, 2011).... 20

(10)

Figure 3. Modifications in electrolyte leakage (A), sodium (B) and potassium (C) ions content in rice plants under multiples stress (heat, salt and salt+heat). Determinations were performed in leaves of rice plants grown under experimental conditions. Different lower case letters represent significant differences at p<0.05. ………... 56

Figure 4. Changes in hydrogen peroxide (A), lipid peroxidation (B), reduced ascorbate (C) and reduced glutathione (D) in rice plants under multiples stress (heat, salt and salt+heat). Determinations were performed in leaves of rice plants grown under experimental conditions. Different lower case letters represent significant differences at p<0.05…. 57

Figure 5. Changes in ascorbate peroxidase (A), catalase (B), glutathione peroxidase (C), guaiacol peroxidase (D), superoxide dismutase (E) and glycolate oxidase (F) in rice plants exposed to multiples stress (heat, salt and salt+heat). Determinations were performed in leaves of rice plants grown under experimental conditions. Different lower case letters represent significant differences at p<0.05…. 58

Capítulo III

Figure 1. (A) Membrane damage, (B) photosynthesis, (C) transpiration and (D) stomatal conductance in leaves of NT and APx1/2s plants exposed to 3-AT treatment. Different capital letters represent significant differences among the NT and APx1/2s plants whereas different lowercase letters represents significant differences among control and the 3-AT treatments, at a confidence of 0.05. Data are mean of four replicates and were compared by Tukey‟s test……….. 103

Figure 2. (A) Chlorophyll, (B) pheophytin a, (C) anthocyanin and (D) carotenoid in leaves of NT and APx1/2s plants exposed to 3-AT treatment. Different capital letters represent significant differences among the NT and APx1/2s plants whereas different lowercase letters represents significant differences among control and the 3-AT treatments, at a confidence of 0.05. Asterisk indicates significant differences at a confidence of 0.05. Data are mean of four replicates and were compared by Tukey‟s test……… 104

(11)

Figure 4. (A) Reduced ascorbate, (B) reduced glutathione, (C) ascorbate redox state and (D) glutathione redox state in leaves of NT and APx1/2s plants exposed to 3-AT treatment. Different capital letters represent significant differences among the silenced and NT plants whereas different lowercase letters represents significant differences among control and the 3-AT treatments, at a confidence of 0.05. Data are mean of four replicates and were compared by Tukey‟s test………… 106

Figure5.Enzymatic activity of (A) catalase and (B)ascorbate peroxidase in leaves of NT and APx1/2s plants exposed to 3-AT treatment. Different capital letters represent significant differences among the NT and APx1/2s plants whereas different lowercase letters represents significant differences among control and the 3-AT treatments, at a confidence of 0.05. Data are mean of four replicates and were

compared by Tukey‟s test………..… 107

Figure 6. Enzymatic activity of (A) glutathione peroxidase, (B) guaiacol peroxidase, (C) superoxide dismutase and (D) glycolate oxidase in leaves of NT and APx1/2s plants exposed to 3-AT 5 mM treatment. Different capital letters represent significant differences among the NT and APx1/2s plants whereas different lowercase letters represents significant differences among control and the 3-AT treatments, at a confidence of 0.05. Data are mean of four replicates and were compared by Tukey‟s test.………...……… 108

LISTA DE TABELAS

Tabela 1 – Características químicas das principais espécies reativas de oxigênio (EROs) produzidas durante o metabolismo oxidativo... 15

(12)

RESUMO GERAL

(13)

1. Introdução e revisão de literatura

Os estresses ambientais, tais como seca, salinidade, temperaturas altas

ou baixas, limitam o desenvolvimento das espécies vegetais devido à redução

da produção e acúmulo de biomassa (XIONG et al., 2002; MAHAJAN e

TUTEJA, 2005). Em condições de campo, as plantas estão comumente

expostas a mais de um fator ambiental adverso como, por exemplo, a

combinação de seca e calor que ocorrem simultaneamente (GUO et al., 2006;

MITTLER, 2006). Embora os efeitos dos estresses abióticos isolados no

metabolismo vegetal sejam bem conhecidos, os seus efeitos e consequências

quando eles ocorrem simultaneamente ainda não são bem entendidos

(RIZHSKY et al., 2002; MILLER et al., 2007).

Em condições de estresses isolados ou combinados, as espécies

vegetais podem ainda sofrer os efeitos deletérios do estresse oxidativo, um

estresse secundário causado pelo acúmulo excessivo de espécies reativas de

oxigênio (EROs) (GUO et al., 2006; MØLLER et al., 2007). As EROs estão

presentes naturalmente dentro de diversos compartimentos celulares

participando de processos vitais, como a fotossíntese e a respiração, e é o desbalanço entre a produção e eliminação destas EROs que leva ao estresse

oxidativo (MÜLLER et al., 2001; GUO et al., 2006). Assim, as EROs podem ser

(14)

controle a fim de evitar seus efeitos danosos (MITTLER, 2002; MØLLER et al.,

2007). Para tal, a célula possui um sistema de defesa composto por

antioxidantes enzimáticos e não enzimáticos que são responsáveis em manter

os níveis aceitáveis das EROs levando a proteção contra os danos oxidativos

(del RIO et al., 2002; VRANOVÁ et al., 2002). O sistema não enzimático é

constituído principalmente por componentes hidrofílicos, como o ascorbato e a

glutationa, enquanto que a proteção enzimática é dada por um grupo de

enzimas, que estão presentes em várias organelas e atuam de forma

coordenada para proporcionar a proteção oxidativa (ARORA et al, 2002).

Embora exista um crescente interesse em compreender os processos

envolvidos na resposta ao estresse oxidativo, ainda não é possível afirmar

quais são os “níveis críticos” dos indicadores que levam à sinalização ou dano

oxidativo (SILVEIRA et al., 2005). Neste contexto, um melhor conhecimento

acerca da participação das isoformas de APX e CAT pode fornecer subsídios

que ajudem a compreender os mecanismos utilizados na defesa antioxidativa e

ainda fornecer variáveis que ajudem a uma melhor adaptação das espécies

vegetais a ambientes adversos.

1.1 O estresse oxidativo nas espécies vegetais

As plantas estão, de modo geral, adaptadas a conviverem com certos

(15)

peróxido de hidrogênio (H2O2), radical hidroxílico (•OH) e oxigênio “singleto”

(1O2), e estão presentes na célula vegetal como subprodutos normais do

metabolismo aeróbico e de processos fotoxidativos (ARORA et al., 2002;

MITTLER, 2002; GILL e TUTEJA, 2010; ver Tabela 1), sendo produzidas em

diferentes compartimentos celulares, tais como cloroplastos, mitocôndrias,

membrana plasmática, peroxissomos, entre outros (APEL e HIRT, 2004).

Tabela 1 – Características químicas das principais espécies reativas de oxigênio (EROs) produzidas durante o metabolismo oxidativo.

Espécie química Meia vida spins

Oxigênio singleto 1O2 ~10-6 s

Radical ânion superóxido O2-● ~10-6 s

Radical hidroperoxil HO2-● ~10-6 s

Peróxido de hidrogênio H2O2 ~10-3 s

Radical hidroxila ●OH ~10-9 s

Fontes: SCANDALIOS (2005); GILL e TUTEJA (2010).

Para conter possíveis danos oxidativos causados pelas EROs em

condições normais, um complexo sistema de antioxidantes enzimáticos e

não-enzimáticos existe na célula vegetal (MITLER, 2002; FOYER e NOCTOR,

(16)

Apesar do papel deletério que tem sido atribuído a grande parte das

EROs, alguns estudos mostram um papel de “sinalizador molecular” das

condições ambientais, em particular, ao peróxido de hidrogênio (H2O2) (XIONG

et al., 2002; MITTLER et al., 2004; MØLLER et al., 2007; VEAL et al., 2007). O

H2O2 pode ser removido pelas CAT e APX por meio de diferentes mecanismos

que resultam igualmente em água (MITTLER, 2002; FOYER e NOCTOR, 2003;

GILL e TUTEJA, 2010). Quando o H2O2 é produzido nos cloroplastos, este é

eliminado pelas enzimas APX, enquanto que aquele produzido nos

peroxissomos/glioxissomos é removido pelas CAT (MITTLER et al., 2004;

KOTCHONI e GACHOMO, 2006). Esta especificidade entre as enzimas e o

H2O2 reflete as diferentes afinidades existentes dentre estes, onde a APX teria

alta afinidade (µM) e a CAT baixa afinidade (mM) pelo H2O2. Assim, as APX

seriam responsáveis pela modulação fina destas EROs, enquanto que as CAT

seriam responsáveis pela remoção do excesso de EROs durante o estresse.

Desta forma, a CAT e a APX apresentam extrema importância na célula

vegetal e foco importante em estudos que visam compreender suas interações

sob os diferentes tipos de estresses ambientais (SHIGEOKA et al., 2002;

FOYER e NOCTOR, 2003).

As CAT são enzimas tetraméricas, contendo um grupo heme-protéico

em cada subunidade, que convertem o H2O2 em água e oxigênio molecular

(17)

reação de eliminação de H2O2, protegendo as células contra os danos

oxidativos e fotooxidativos (MITTLER, 2002; SHIGEOKA et al., 2002), sendo

encontradas principalmente nos cloroplastos e no citosol, e ainda nas

mitocôndrias, peroxissomos e no apoplasto (ASADA, 2006).

Além das CAT e APX e de outras enzimas do sistema antioxidativo,

ascorbato e glutationa, os mais importantes compostos antioxidativos não

enzimáticos presentes nas células vegetais, são requeridos como doadores de

elétrons para que alguns sistemas de defesa antioxidativa enzimática possam

atuar eliminando as EROs do interior das células e compõem o ciclo

Ascorbato-Glutationa (Figura 1). Estes metabólitos se encontram em alta concentração no

interior das células, estando distribuídos no citosol, nas mitocôndrias, nos

peroxissomos, no apoplasto e, principalmente, no interior dos cloroplastos

(18)

A síntese de ascorbato ocorre em mitocôndrias, enquanto a de

glutationa pode ocorrer nos cloroplastos e/ou no citosol (FOYER e NOCTOR,

2011). O ascorbato tem sido classificado como componente chave do sistema

antioxidativo das plantas, estando relacionado aos estresses biótico e abiótico

(SMIRNOFF et al., 2001; DIPIERRO et al., 2005). A manutenção da

concentração de ascorbato e de glutationa, em plantas submetidas à

determinada condição de estresse, envolve complexa interação entre síntese,

degradação, transporte e armazenamento no interior das células (FOYER e

NOCTOR, 2003) e é de fundamental importância para as plantas.

Como as EROs são constantemente produzidas nas células, seus níveis

basais devem ser mantidos fortemente controlados. Tal controle é fornecido por

uma complexa rede gênica que atua em compartimentos sub-celulares e por

intermédio de um elaborado “feedback” entre oxidantes e antioxidantes

(GADJEV et al., 2006; CHINNUSAMY et al., 2007) que pode resultar num

aumento da atividade de enzimas envolvidas na remoção das EROs e, desta

forma, potencializar as defesas dos vegetais sob situações de estresse

(MITTLER, 2006; ASADA, 2006).

O aumento da produção de EROs pode causar danos a proteínas, DNA

e lipídios, além de resultar na sinalização molecular nas plantas e, portanto,

numa mudança no padrão de expressão de genes (SCANDALIOS, 2002; APEL

(19)

de um sinal de estresse às respostas genômicas e podem resultar em

tolerância ao estresse (KOTCHONI e GACHOMO, 2006).

A alta concentração de EROs pode causar alterações no metabolismo

vegetal devido a uma restrição dos processos fotossintéticos (CATTIVELLI et

al., 2008). Sob condições de estresse, tais como seca, salinidade e/ou calor, a

fotossíntese é um dos processos do metabolismo vegetal que pode ser

primariamente afetada. Isso se dá tanto de forma direta, através da restrição

estomática e consequente baixa disponibilidade de CO2, ou de forma indireta,

pelo desbalanço entre a produção e remoção de EROs produzidas durante o

processo fotossintético - principalmente o H2O2 - que culminam no estresse

oxidativo (MØLLER et al., 2007; CHAVES et al., 2009; GILL e TUTEJA, 2010).

1.2 Processos fotossintéticos e produção de EROs em espécies vegetais

A fotossíntese constitui a base da produção de uma cultura e é um

processo de vital importância para as espécies vegetais. Nas plantas

superiores, a captura e o armazenamento de energia luminosa, que ocorre

durante a fotossíntese, são processos realizados pela associação dos

pigmentos captores de luz e do transporte de elétrons do fotossistema II (PSII)

para o fotossistema I (PSI). Este processo de transferência de elétrons que

(20)

durante o processo de dissipação do excesso de energia de moléculas de

clorofila excitadas associadas ao PSII (MÜLLER et al., 2001; MIYAKE e

OKAMURA, 2003; MORADI e ISMAIL, 2007). Isso se dá quando a luz

absorvida num determinado comprimento de onda excita as moléculas de

clorofila para um estado singleto e o excesso de energia é dissipado pela

emissão de calor, fluorescência, processo fotoquímico, ou então, pela formação

de clorofila no estado tripleto (3Chl*) que pode transferir energia para o oxigênio

molecular (O2) gerando o oxigênio singleto (1O2) (MÜLLER et al., 2001;

CHINNUSAMY et al., 2007).

Figura 2 – Sítios de produção de EROs durante a transferência de elétrons entre os PSII e PSI (Adaptado de FOYER e NOCTOR, 2011).

Quando as plantas são expostas a condições ambientais adversas, a

(21)

et al., 2008; CHAVES et al., 2009). Assim, o aparato fotossintético pode ser

danificado e a fotorrespiração favorecida, levando a geração de EROs, em

especial o H2O2 (ARORA et al., 2002; VEAL et al., 2007). Sob condições de

estresse salino, o aparato fotossintético pode também ser danificado, tanto por

um componente osmótico intrínseco da salinidade como também pelo excesso

de íons (MIYAKE e OKAMURA, 2003; CHAVES et al., 2009). Em condições de

alta temperatura, a Rubisco pode ter suas propriedades cinéticas alteradas

levando a uma diminuição de sua afinidade pelo CO2 e consequentemente num

aumento da fotorrespiração (MØLLER et al., 2007).

Além dos estresses isolados, os estresses múltiplos também levam a

alterações na fotossíntese (RIZHSKY et al., 2002; 2004). As alterações

metabólicas resultantes da exposição simultânea aos estresses de seca e

calor, por exemplo, são únicas, e não podem ser obtidas a partir dos efeitos

isolados dos respectivos estresses (MITTLER, 2006). Segundo Rizhsky et al.

(2002), quando plantas de tabaco são expostas ao calor ocorre um estimulo da

respiração e aumento da condutância estomática e temperatura foliar,

enquanto que sob estresse hídrico registra-se a redução da respiração,

fotossíntese e condutância estomática. No entanto, quando se combina a seca

e a alta temperatura, a respiração e a temperatura foliar nestas plantas são

(22)

(PAN et al., 2006). Estes danos podem ser peroxidação de lipídios, degradação

de proteínas, quebra da dupla fita do DNA e ainda pode resultar na morte

celular (APEL e HIRT, 2004; MØLLER et al., 2007; NGUYEN et al., 2009).

Uma forma simples, rápida e não destrutiva de analisar a absorção e uso

da energia luminosa pelos vegetais é a análise da fluorescência da clorofila

(MIYAKE e OKAMURA, 2003; van der TOL et al., 2009). A eficiência da

utilização da luz absorvida por cada fotossistema regula as reações de fixação

de CO2 e a geração de ATP pelas reações luminosas (MIYAKE e YOKOTA,

2001). Neste contexto, esse parâmetro pode ser utilizado para examinar o

desempenho fotossintético de plantas sob diferentes condições de estresse

isolado e também sob estresses múltiplos (BAKER e ROSENQVIST, 2004;

MORADI e ISMAIL, 2007; ELSHEERY e CAO, 2008; RYANG et al., 2009).

1.3 O arroz como modelo vegetal

O arroz pertence à família das gramíneas e é um importante cereal

cultivado mundialmente. Cerca de 70% da população do mundial,

principalmente na Ásia, África e América Latina, têm o arroz como principal

fonte de alimento (DEMIRAL e TÜRKAN, 2005) e diz-se que ele compõe

aproximadamente 20% de energia alimentar da população mundial (KOCHIAN

et al., 2004; YADAV e JINDAL, 2008).

(23)

organismo diploide com 24 cromossomos e que possui um genoma muito

pequeno de cerca de 420 Mb (GOFF et al., 2002) e com isso, este é

considerado um modelo para as monocotiledôneas sendo bastante utilizado em

estudos de expressão gênica (JAIN, 2009).

Foram identificados no genoma do arroz oito genes que codificam para a

enzima APX (APxs de 1 a 8) e variam de acordo com a localização sub-celular:

APx1 e 2 são codificadoras das APXs citosólicas; APx3 e 4 das peroxissomais;

APx5 e 6 das mitocondriais; e APx7 e 8 das cloroplastídicas (TEIXEIRA et al.,

2004; 2006; ver Tabela 2). Enquanto que para a CAT, três genes são relatados:

CatA, CatB e CatC (IWAMOTO et al., 2000; MENEZES-BENAVENTE et al.,

2004). As isoformas de CAT são localizadas nos peroxissomos e/ou

glioxissomos (SCANDALIOS, 2005). As enzimas APX e CAT são removedoras

de H2O2 e compreender o balanço entre elas ao nível gênico e bioquímico, e

como se dá a sincronia das atividades dessas enzimas na proteção

antioxidativa celular é de grande importância na fisiologia do estresse.

Tabela 2 – Estrutura e principais características dos genes das isoformas de APX presentes em plantas de arroz (Adaptado de TEIXEIRA et al., 2004).

Cromossomo exons introns Número de cDNA/ORF (pb) Proteína (AA) (kDa) PM Localização subcelular

OsAPx1 3 9 8 983/753 250 27.2 Citosol

OsAPX2 7 9 8 1160/756 251 27.1 Citosol

(24)

O estudo de como a ausência de um dos genes codificadores de APX

e/ou CAT pode alterar o metabolismo oxidativo de plantas transformadas de

arroz parece ser um enfoque importante. Pesquisas com plantas de

Arabidopsis sem APx1 (citosólica) mostraram um aumento nos níveis de H2O2

juntamente com a ocorrência de oxidação de proteínas do cloroplasto e

redução da atividade fotossintética, além de induzir um aumento da expressão

de genes ligados a CAT (ASAI et al., 2004; DAVLETOVA et al., 2005). De

forma inesperada, Rizhsky et al. (2002), mostraram que plantas de tabaco que

apresentam APX e CAT suprimidas exibiram melhor performance sob

condições de estresse em relação às plantas que apresentavam ausência de

apenas uma destas enzimas.

Tendo em vista o papel duplo exercido pelo H2O2– sinalizador e espécie

reativa de oxigênio capaz de causar danos celulares (MØLLER et al., 2007;

VEAL et al., 2007), saber como isoformas de APX e CAT contribuem para a

sinalização gênica e proteção oxidativa tem se tornado uma pergunta biológica

importante tanto para o arroz como também para outras espécies agricultáveis

e que pode resultar em dados úteis para pesquisas de melhoramento genético

(BENNETZEN, 2002).

2. Bibliografia

(25)

ASADA, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, v. 141, p. 391-396.

ASAI, N.; MATSUYAMA, T.; TAMAOKI, M.; NAKAJIMA, N.; KUBO, A.; AONO, M.; KATO, T.; TABATA, S.; SHIRANO, Y.; SHIBATA, D. 2004. Compensation for lack of a cytosolic ascorbate peroxidase in an Arabidopsis mutant by activation of multiple antioxidative systems. Plant Science, v. 166, n. 6, p. 1547-1554.

BAKER, N.; ROSENQVIST, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities.

Journal of Experimental Botany, v. 55, p. 1607-1621.

BENNETZEN, J. 2002. Opening the door to comparative plant biology.

Science, v. 296, p. 60-63.

CATTIVELLI, L.; RIZZA, F.; BADECK, F.W.; MAZZUCOTELLI, E.; MASTRANGELO, A.M.; FRANCIA, E.; MARÉ, C.; TONDELLI, A.; STANCA, A.M. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, v. 105, p. 1-14.

CHAVES, M.M.; FLEXAS, J.; PINHEIRO, C. 2009. Photosynthesis and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, v. 103, p. 551-560.

CHINNUSAMY, V.; ZHU, J; ZHU, J.K. 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science, v. 12, p. 444-451.

DAVLETOVA, S.; RIZHSKY, L.; LIANG, H.J.; ZHONG, S.Q.; OLIVER, D.J.; COUTU, J.; SHULAEV, V.; SCHLAUCH, K.; MITTLER, R. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, v. 17, n. 1, p. 268-281.

(26)

FOYER, C.H.; NOCTOR, G. 2003. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria.

Physiologia Plantarum, v. 119, n. 3, p. 355-364.

FOYER, C.H.; NOCTOR, G. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, v. 155, p. 93-100.

FOYER, C.H.; BLOOM, A.J.; QUEVAL, G.; NOCTOR, G. 2009. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.

Annual Review of Plant Physiology, v. 60, p. 455-484.

GADJEV, I.; VANDERAUWERA, S.; GECHEV, T.S.; LALOI, C.; MINKOV, I.N.; SHULAEV, V.; APEL, K.; INZE, D; MITTLER, R.; BREUSEGEM, F.V. 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiology, v. 141, p. 436-445.

GILL, S.S.; TUTEJA, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and

Biochemistry, v. 48, p. 909-930.

GOFF, S.A.; RICKE, D.; LAN, T.H.; PRESTING, G.; WANG, R.; DUNN, M. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).

Science, v. 296, p. 92-100.

GUO, Y.P.; ZHOU, H.F.; ZHANG, L.C. 2006. Photosynthetic characteristics and protective mechanisms against photoxidation during high temperature stress in two citrus species. Scientia Horticulturae, v. 108, p. 260-267.

IWAMOTO, M.; HIGO, H.; HIGO, K. 2000. Differential diurnal expression of rice catalase genes: the 5%-flanking region of CatA is not sufficient for circadian control. Plant Science, v. 151, p. 39-46.

JAIN, M. 2009. Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice.

Plant Science, v. 176, p. 702-706.

KIM, Y.H.; KIM, C.Y.; LEE, H.S.; KWAK, S.S. 2009. Changes in activities of antioxidant enzymes and their gene expression during leaf development of sweet potato. Plant Growth Regulation, v. 58, p. 235-241.

KOCHIAN, L.V.; HOEKENGA, O.A.; PIÑEROS, M.A. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous

(27)

MAHAJAN, S.; TUTEJA, N. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, v. 444, n. 2, p. 139-158. MENEZES-BENAVENTE, L.; TEIXEIRA, F.K.; KAMEI, C.L.A.; MARGIS-PINHEIRO, M. 2004. Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.).

Plant Science, v. 166, p. 323-331.

MITTLER, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends

in Plant Science, v. 7, n. 9, p. 405-410.

MITTLER, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science, v. 11, n. 1, p. 15-19.

MITTLER, R.; VANDERAUWERA, S.; GOLLERY, M.; van BREUSEGEM, F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science, v. 9, n. 10, p. 490-498.

MILLER, G.; SUZUKI N.; RIZHSKY L.; HEGIE A.; KOUSSEVITZKY S.; MITTLER R. 2007. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant

Physiology, v. 144, p. 1777-1785.

MIYAKE, C.; OKAMURA, M. 2003. Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts.

Plant Cell Physiology, v. 44, n. 4, p. 457-462.

MIYAKE, C.; YOKOTA, A. 2001. Cyclic flow of electrons within PSII in thylakoid membranes. Plant Cell Physiology, v. 42, n. 5, p. 508-515.

MØLLER, I.M.; JENSEN, P.E.; HANSSON, A. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, v. 58, p. 459-481.

MORADI, F.; ISMAIL, A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, v. 99, p. 1161-1173.

(28)

cell death and pollen abortion. Journal of Agronomy & Crop Science, v. 195, p. 157-164.

PAN, Y.; WU, L.J.; YU, Z.L. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, v. 49, p. 157-165.

RIZHSKY, L.; LIANG, H.; MITTLER, R. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, v. 130, n. 3, p. 1143-1151.

RIZHSKY, L.; LIANG, H.; SHUMAN, J.; SHULAEV, V.; DAVLETOVA, S.; MITTLER. R. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, v. 134, p. 1683-1696.

RYANG, S.Z.; WOO, S.Y.; KWON, S.Y.; KIM, S.H.; LEE, S.H.; KIM, K.N.; LEE, D.K. 2009. Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone.

Photosynthetica, v. 47, n. 1, p. 19-25.

SILVEIRA, J.A.G.; LIMA, J.P.M.S.; CAVALCANTI, F.R.; MAIA, J.M.; VIÉGAS, R. A. 2005. Salt induced oxidative response in plants: Damage or Protection? In: NOGUEIRA, R.J.M.C.; ARAÚJO, E.L.; WILLADINO, L.G.; CAVALCANTE, U.M.T. (Ed.). Estresses Ambientais: Danos e Benefícios em Plantas. Recife, PE: MXM Gráfica e Editora. p. 106-117.

SCANDALIOS, J.G. 2002. The rise of ROS. Trends in Biochemical Sciences,

v. 27, p. 483-486.

SCANDALIOS, J.G. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal

of Medical and Biological Research, v. 38, p. 995-1014.

SHIGEOKA, S.; ISHIKAWA, T.; TAMOI, M.; MIYAGAWA, Y.; TAKEDA, T.; YABUTA, Y.; YOSHIMURA, Y. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, v. 53, n. 372, p. 1305-1319.

(29)

ascorbate peroxidase gene family: Inferences from the rice genome. Journal of

MolecularEvolution, v. 59, p. 761-770.

TEIXEIRA, F.K.; MENEZES-BENAVENTE, L.; GALVÃO, C.V.; MARGIS, R.; MARGIS-PINHEIRO, M. 2006. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments.

Planta, v. 224, p. 300-312.

VAIDYANATHAN, H.; SIVAKUMAR, P.; CHAKRABARTY, R.; THOMAS, G. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential response in salt-tolerant and sensitive varieties. Plant

Science, v. 165, p. 1411-1418.

van der TOL; C. VERHOEF, W.; ROSEMA, A. 2009. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agricultural and Forest

Meteorology, v. 149, p. 96-105.

VEAL, E.A.; DAY, A.M.; MORGAN, B.A. 2007. Hydrogen peroxide sensing and signaling. Molecular Cell, v. 26, p. 1-14.

VRANOVÁ, E.; INZE, D.; van BREUSEGEM, F. 2002. Signal transduction during oxidative stress. Journal of Experimental Botany, v. 53 n. 372, p. 1227-1236.

XIONG, L.; SCHUMAKER, K.S.; ZHU, J.K. 2002. Cell Signaling during cold, drought, and salt stress. The Plant Cell, suplemento, p. S165-S183.

(30)

Capítulo I

Photosynthetic modulations prevent oxidative stress in rice plants submitted to

(31)

Title

Photosynthetic modulations prevent oxidative stress in rice plants submitted to combined salinity and heat stress

Authors

Aurenivia Bonifacio1, Marcio O. Martins1, Milton C. Lima Neto1, Fabricio E. L. Carvalho1, Ana Karla M. Lobo1, Joaquim A. G. da Silveira1,2

Institute of origin

1

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do

Ceará, Brasil

2

Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTsal/CNPq)

Corresponding author

Joaquim A. G. Silveira. Departamento de Bioquímica e Biologia

Molecular/Instituto Nacional de Ciência e Tecnologia em Salinidade

(INCTsal/CNPq), Universidade Federal do Ceará, Laboratório de Metabolismo

e Estresse de Plantas (LABPLANT), Av. Humberto Monte, s/n, CP 6004, CEP

60451-970, Fortaleza, Ceará, Brasil. Tel: +55 85 3366 9821. E-mail:

(32)

Abstract

Plants in the field are exposed to multiple stresses, such as salinity, drought, high light, heat/cold and others, resulting in different physiological responses. To evaluate the consequences of some of these stresses to the photosynthetic apparatus and antioxidative metabolism, 30 day old rice plants, were submitted to the following treatments: control (without NaCl and at 27 °C), heat stress (without NaCl and at 42 °C), salt stress (with 100 mM NaCl and at 27 °C) and combined stress (salt+heat). The control and salt stress treatments lasted 8 days and the heat and combined stress treatments lasted 6 hours. At the end of the experimental period, gas exchange, chlorophyll fluorescence and electrolyte leakage were measured and the leaves were collected for biochemical determinations. Isolated salt and heat stresses were not sufficient to cause damage in the photochemical apparatus and heat stress only modified stomatal aperture. In combined heat and salt stress, the results indicate that photosynthetic processes were affected at the level of CO2 assimilation and quantum efficiency. Electrolyte leakage, TBARS and H2O2 content were elevated in salt+heat treatment, but in isolated heat stress the TBARS was decreased. Reduced ascorbate and glutathione were similarly decreased in plants exposed to the combination of salt and heat. All enzymes examined here were differently modulated in experimental treatments. Taken together, the data indicates more intense impairment of photosynthesis in rice plants in the combination of the salt and heat, however the effective modulation of the antioxidative system was effective in establishing a new redox homeostasis and providing tolerance to abiotic stress.

(33)

1. Introduction

Plants in the field are exposed to multiple stresses, such as salinity,

drought, high light, heat/cold and others, and their responses to these various

stressful conditions determines their capacity to survive (Dombrowski, 2003;

Davletova et al., 2005; Miller et al., 2010). In nature, salt stress is often

accompanied by high temperatures and these stressful conditions, depending

on the duration and intensity of exposure, can cause various physiological and

biochemical responses in plants such as reduction in leaf expansion, alteration

in photosynthetic apparatus, enhanced oxidative stress and modify the

antioxidant system (Foyer et al., 2009; Hussain et al., 2010; Miller et al., 2010).

Alterations in photosynthetic apparatus in plants under combined salt and

high temperature stresses are mostly due to the increase of the reactive oxygen

species (ROS) content in chloroplasts (Miller et al., 2009, 2010), mainly

superoxide radical (O2•-) and hydrogen peroxide (H2O2) produced during

electron transfer between PSII and PSI which can lead to damage in PSII

(Foyer et al. 2009). Furthermore, photorespiration may increase when

carboxylation reactions in the chloroplast are impaired by the effect of combined

stresses, increasing ROS production, especially H2O2. The H2O2 can migrate in

the cell via transport across the membranes (Veal et al., 2007).

(34)

causing oxidative damage and impairs normal performance of cells. To protect

cells from oxidative damage caused by the excess of ROS, plants have

developed a series of enzymatic and non-enzymatic detoxification systems

(Apel and Hirt, 2004; Munns and Tester, 2008). Ascorbate, α-tocopherol,

carotenoids and glutathione are responsible for the non-enzymatic control of

ROS, while superoxide dismutase (SOD), catalase (CAT) and ascorbate

peroxidase (APX) are the main enzymes involved in the control of ROS and

regulate some metabolic pathways (Foyer and Noctor, 2003; Miller et al., 2010).

The combination of stresses can alter plant metabolism in a different way

compared to a single stress (Rizhsky et al., 2004; Mittler, 2006; Volkov et al.,

2006; Xu and Zhou, 2006; Munns and Tester, 2008). Under high temperature

stress the PSII component is considered the most sensitive and its activity is

significantly inhibited. However, when prior abiotic stress exposure occurs this

sensitivity is reduced (Chaves et al., 2009). Information about the impact of

salinity on the physiology and biochemistry of plant species are well

documented (Munns and Tester, 2008; Chaves et al., 2009), however plant

responses under combined salt and heat stress are still little known. Knowledge

of the mechanisms by which plants perceive the environment and activate

adaptive responses at the cellular level is of fundamental importance for biology

(Penfield, 2008; Kolodyazhnaya et al., 2009). In this context, in this study we

(35)

2. Material and methods

2.1 Plant material, growth conditions and treatments

Rice seeds (Oryza sativa spp. Japonica; cv. Nipponbare) were

germinated in Germitest® paper under 240 µmol m-2 s-1 photosynthetically active

radiation (PAR), 27 ± 2 °C, 80% relative humidity and 12-h photoperiod. Eight

days after sown, rice seedlings were transferred to 2 L plastic pots filled with ¼

strength Hoagland-Arnon‟s nutritive solution (Hoagland and Arnon, 1950). The

seedlings were grown initially in a greenhouse (average maximum PAR of

800 µmol m-2 s-1; 29 ± 2 C; 12-h photoperiod; and 68% relative humidity).

When plants were 31 days old, they were transferred to a growth chamber at

27 °C with a PAR of 600 µmol m-2 s-1. At this time, two treatments were

imposed: nutrient solution + 27 °C (control) and 100 mM NaCl dissolved in

nutrient solution + 27 °C (salt stress). The NaCl was supplied in two steps of 50

mM each per day. After 8 days of treatment, the chamber temperature was

gradually elevated to 42 °C (4 °C hour-1). At this time, two more conditions were

imposed: nutrient solution + 42 °C (heat stress) and 100 mM NaCl + 42 °C

(salt+heat stress). The plants were subjected to these conditions for 6 h. At the

end of the experimental period, leaf discs were harvested to determine

electrolyte leakage. Then, the leaves were frozen in liquid N2 and stored at

(36)

flow of 200 mL min-1. Photosynthesis (PN), transpiration (E) and stomatal

conductance (gs) were measured as described previously (Silva et al., 2010).

With a modulated fluorometer (FMS1; Hansatech; England), fluorescence

measurements were taken by means of the saturation pulse method (Schreiber

et al., 1994) for light and 30 min-dark-adapted completely expanded leaves.

Leaf gas exchange and chlorophyll fluorescence were measured

simultaneously, in fully expanded and mature leaves of plants exposed to PPFD

of 260 µmol m-2 s-1. The intensity and duration of the saturation light pulse were

18,000 µmol m-2 s-1 and 0.7 s, respectively. The following fluorescence

parameters were obtained: the maximum quantum yield of photosystem II (PSII)

[Fv/Fm = (Fm - Fo)/Fm], the electron transport rate (ETR) [ETR = ΔF/Fm' x PPFD x

0.5 x 0.84)], the excitation capture efficiency of PSII open centers [Fv'/Fm' = (Fm'

- Fo')/Fm'], the effective quantum yield of PSII [ΔF/Fm' = (Fm' - Fs)/Fm'] and the

photochemical (qP) and non-photochemical quenching coefficient [qNP=(Fm

-Fm')/Fm'], where Fm and Fo are, respectively, maximum and minimum

fluorescence of dark-adapted leaves; Fm' and Fs are, respectively, maximum

and steady state fluorescence in the light-adapted state and Fo' is minimum

fluorescence after far-red illumination of the previously light-exposed leaves.

The ratio ETR/PN was calculated to estimate the use of electrons in other

processes not related to photosynthetic CO2 assimilation rate (Ribeiro et al.,

(37)

tubes containing 20 mL deionized water. The tubes were incubated in a shaking

water bath at 25 °C for 6 h and the electric conductivity of the medium (L1) was

measured. After that, the discs were boiled at 95 °C for 60 min, cooled to 25 °C

and the electric conductivity (L2) was measured. Relative electrolyte leakage

(EL) was estimated using the formula: EL[%]=L1/L2×100.

Sodium and potassium contents were determined according Cavalcanti

et al. (2004). Dry leaves were finely grinded and 50 mg samples were extracted

with 20 mL of deionized water at 95 °C for 60 min in hermetically closed tubes.

After cooling, the extract was filtered through cotton cloth and the

determinations were performed by a flame photometer (Micronal, Brazil).

2.4 Lipid peroxidation and hydrogen peroxide determinations

Lipid peroxidation was assayed by measuring thiobarbituric acid-reactive

substances (TBARS) in accordance with Cakmak and Horst (1991), with minor

modifications as described previously (Rosa et al., 2010). The concentration of

TBARS was calculated using the absorption coefficient of 155 mM-1 cm-1 and

the results were expressed as ηmol MDA-TBA g FW-1.

Hydrogen peroxide content was detected by the titanium tetrachloride

method in accordance to Brennan and Frenkel (1977). Fresh leaf samples were

(38)

2.5 Reduced ascorbate and glutathione determinations

Reduced ascorbate content was assayed according to Kampfenkel et al.

(1995). Fresh leaf samples were homogenized in 5% (w/v) TCA, centrifuged at

12,000 g (4 °C) for 20 min and the supernatant was then used. The assay is

based on the reduction of Fe3+ to Fe2+ by ascorbate (AsA) and the detection by

spectrophotometry of the Fe2+ complex with 2,2`-bipirydyl and read at 525 nm.

The reduced ascorbate content was expressed as µmol AsA g FW-1.

The reduced glutathione (GSH) content was assayed as described by

Griffith (1980). Fresh leaf samples were homogenized in 5% (w/v) TCA,

centrifuged at 12,000 g (4 °C) for 20 min and the supernatant was then used.

The assay mixture was prepared by adding extract, DTNB

(5,5-dithio-bis-(2-nitrobenzoic acid)) and 150 mM phosphate potassium buffer. The mixture was

stabilized at 30 °C for 10 min. Then the absorbance was read at 412 nm in the

spectrophotometer and the GSH content was expressed as µmol GSH g FW-1.

2.6 Enzymatic extraction

Leaf samples (0.5 g FW) were ground to fine powder in presence of

liquid N2 in a mortar and pestle and extracted in 3 mL of ice-cold 100 mM

K-phosphate buffer pH 6.8 for 5 min, containing 0.1 mM EDTA and 1 mM

ascorbate. After filtration through cheesecloth, the homogenate was centrifuged

at 4 °C at 15,000 g for 15 min and the obtained extract was used for

(39)

2.7 Enzyme activity assays

Ascorbate peroxidase (APX; EC 1.11.1.1) activity was measured

following ascorbate (AsA) oxidation by the decrease in absorbance at 290 nm

(Nakano and Asada, 1981). APX activity was assayed in a reaction mixture

containing 0.5 mM ascorbate (AsA) and 0.1 mM EDTA dissolved in 100 mM

K-phosphate buffer (pH 7.0) and enzyme extract. The reaction was started by

addition of 30 mM H2O2. The enzyme activity was measured by the decrease in

absorbance at 290 nm at 25 °C over 300 s. APX activity was estimated utilizing

the molar extinction coefficient of AsA (2.8 mM-1 cm-1) and expressed as µmol

H2O2 mg protein-1 min-1.

Glutathione peroxidase (GPX; EC 1.11.1.9) activity was measured by the

method of Awasthi et al. (1975) with cumene hydroperoxide as a substrate.

Aliquots (0.1 mL) of the enzyme extract were mixed with a reaction mixture

consisting of 4 mM GSH, 0.2 mM NADPH, 0.05 U of GR (type II from wheat;

Sigma) and 0.5 mM substrate in phosphate buffer (0.1 M; pH 7.0). The GPX

activity was determined by the decrease of NADPH absorption at 340 nm. The

nonspecific NADPH decrease was corrected by using additional measurements

without substrate. The GPX activity was estimated utilizing the molar extinction

coefficient of NADPH (6.22 mM-1 cm-1) and expressed as µmol NADPH mg

(40)

hydrogen peroxide and enzyme extract. In order to avoid APX interference, two

determinations were carried out in parallel as described above for APX activity

assay. GPOD activity was estimated utilizing the molar extinction coefficient of

pyrogallol (2.47 mM-1 cm-1) and expressed as µmol H2O2 mg protein-1 min-1.

Catalase (CAT; EC 1.11.1.6) activity was measured following the

oxidation of H2O2 at 240 nm. CAT was determined after the reaction of the

enzymatic extract in the presence of 50 mM potassium phosphate buffer (pH

7.0) containing 20 mM H2O2. The reaction took place at 30 °C, with monitoring

of the absorbance at 240 nm over 300 s (Havir and Mchale, 1987). The CAT

activity was calculated using the molar extinction coefficient of H2O2 (36 mM-1

cm-1) and expressed as µmol H2O2 mg protein-1 min-1.

Superoxide dismutase (SOD; EC 1.15.1.1) activity was determined by

inhibition of blue formazane production by means of the NBT photoreduction.

SOD was measured by adding leaf extract to a mixture containing 50 mM

potassium phosphate buffer (pH 7.8), 0.1 mM EDTA, 13 mM L-methionine, 2

µM riboflavin and 75 µM p-nitro blue tetrazolium chloride (NBT) in the dark. The

reaction was carried out under illumination (30 watt fluorescent lamp) at 25 C

for 6 min. The absorbance was measured at 540 nm (Giannopolotis and Ries,

1977). One SOD activity unit (U) was defined as the amount of enzyme required

to inhibit 50% of the NBT photoreduction and the activity was expressed as

(41)

8.3), 40 mM glycolic acid, 100 mM L-cysteine and 100 mM phenylhydrazine.

The reaction was started with the addition of the 1 mM FMN and the

absorbance was monitored over 300 s. The GO activity was calculated using

the molar extinction coefficient of the glyoxylate-phenylhydrazone complex (17

mM-1 cm-1) and expressed as ηmol H2O2 produced mg protein-1 min-1.

2.8 Statistical analysis

The experiment was arranged in a completely randomized design, with

four independent replicates, each consisting of one pot containing three plants.

Data were analyzed by ANOVA and means were compared by the Tukey´s test

at the 0.05 level of confidence.

3. Results

In the present study, rice plants were exposed to 100 mM NaCl in the

root medium, followed or not by heat stress after 8 days of salt treatment. Under

the experimental conditions, alterations in photosynthetic parameters and

chlorophyll fluorescence were observed. Rice plants submitted to isolated heat

stress did not show alterations in photosynthesis and transpirations parameters;

(42)

photosystem II, photochemical (qP) and apparent electron transport rate (ETR),

which are variables related to photochemical activity, were all decreased in rice

plants submitted to salt+heat treatment (Fig. 2A, 2B, 2C and 2E). The

non-photochemical quenching (NPQ) and ETR/PN ratio were increased by 65% and

4-fold, respectively, due to combination of salt and high temperature when

compared to controls (Fig. 2D and 2F).

Electrolyte leakage increased significantly in rice plants submitted to salt

and salt+heat stress, but not in plants exposed to heat stress in comparison to

control plants (Fig. 3). In rice plants subjected to the combination of salt and

heat stress, electrolyte leakage increased by about 71% in relation to control,

while in plants exposed to isolated salt stress this parameter was increased by

53% (Fig. 3A). Sodium content showed a pattern similar to electrolyte leakage

in rice plants subjected to experimental conditions (Fig. 3B). Plants submitted to

salt+heat stress showed 16-fold increases in sodium content in comparison to

control, while in plants exposed only to salt stress this increase was about 8-fold

(Fig. 3B). The potassium ion content was elevated in rice leaves submitted to

salt stress alone (35%), but not in plants exposed to salt+heat stress in relation

to control (Fig. 3C). The Na/K ratio was similar in plants submitted to salt and

salt+heat stress (varying by about 0.07).

The leaf H2O2 concentration increased significantly in rice plants exposed

(43)

significantly reduced by about 25% when compared to control (Fig. 4B). Plants

exposed to isolated salt stress exhibited elevation in lipid peroxidation by

around 45% in comparison to control.

When compared to control plants, reduced forms of ascorbate and

glutathione (non-enzymatic antioxidants) showed significant alterations.

Reduced ascorbate (AsA) showed decrease in rice plants under salt stress by

about 20%, while under salt+heat stress this reduction reached 50% (Fig. 4C).

Glutathione (GSH) content varied in saline treatments similarly to AsA, where

salt stress alone was responsible for a 50% reduction when compared to

untreated plants. In plants submitted to salt+heat treatment, GSH decreased

62% in relation to control plants. Under heat stress, GSH content was reduced

by 13% and AsA content exhibited a 19% increase in comparison to control.

In the present study, the activity of APX, GPX, GPOD, GO and SOD was

increased in the leaves of rice plants exposed to salt+heat treatment (Fig. 5).

APX and GPOD, enzymes that degrade H2O2, were increased by 29% and 38%

in comparison to control, respectively (Fig. 5A and 5D). GPX, which is also

involved in H2O2 degradation was slightly stimulated in relation to non-treated

plants (Fig. 5C). APX, GPX and GPOD enzymes were stimulated only in plants

exposed to salt stress (isolated or combined with heat; see Fig. 5). SOD activity

(44)

treated plants (Fig. 5B). For GO activity, a slight increase (12%) was observed

in salt+heat stress in relation to control (Fig. 5F).

4. Discussion

Salinity is known to cause an imbalance in physiological and biochemical

processes in plant species. According to Munns and Tester (2008), salts at the

outside of roots have an immediate effect on cell growth and associated

metabolism and an accumulation of the salts inside the plants may affect their

metabolic functions. Under salt stress, the photosynthetic responses may be

affected by the ionic component of salinity or by disturbances in the water

relations (Munns, 2002; Kolodyazhnaya et al., 2009). In this work,

photosynthetic restriction accompanied by stomatal closure, alterations in

transpiration and chlorophyll fluorescence parameters were observed in plants

exposed to salt+heat stress. This response, which was exclusive to combined

salt and heat stress, seems to be associated with increased sodium

concentrations in leaves mediated by the elevated temperature. In accordance

to Wang et al. (2003), salt ions may be transported from root to shoot via the

transpiration stream and accumulated in leaf apoplast following water

evaporation from the leaf. Furthermore, salts may build up in the chloroplast

exerting a direct toxic effect on photosynthetic processes (Wang et al., 2003;

(45)

and the Mehler reaction (Noctor et al., 2002; Makino et al., 2002; Ribeiro et al.,

2009). Photochemical reactions are considered the most heat sensitive and

photosystem II is the critical site of damage caused by a variety of stress factors

such as salinity, drought, low and high temperatures, high light and UV radiation

(Allakhverdiev et al., 2008; Chaves et al., 2009). The photochemistry

parameters, indicated by chlorophyll a fluorescence parameters such as

effective (ΔF/Fm‟) and potential (Fv/Fm) quantum efficiency of photosystem II,

non-photochemical quenching (NPQ) and photochemical quenching (qP), may

be assessed non-destructively in vivo to indicate the impact of abiotic stresses

on the photosynthetic apparatus (Makino et al., 2002; Baker, 2008; Dias and

Brüggemann, 2010).

Some studies with salt stress have shown that actual photochemical

efficiency of PSII, a parameter of the chlorophyll a fluorescence usually

assessed by ΔF/Fm‟, may be inhibited by salinity (Hasegawa et al., 2000;

Munns, 2002; Ashraf and Shahbaz, 2003), while other authors have sustained

that salinity has no effect on this parameter (Abadía et al., 1999; Lu and Zhang,

2000). According to Dias and Brüggemann (2010), ΔF/Fm‟ and Fv/Fm are usually

not changed by mild drought stress, however, under severe drought stress

these parameters are strongly altered in C3 plants. The ΔF/Fm‟ indicates the

(46)

with an increase in NPQ in response to a combination of salinity and heat. The

NPQ is an important photoprotective mechanism to avoid light-induced damage

in plant tissues, where its increase is related to non-radioactive dissipation of

light energy and development of trans-thylakoidal ΔpH, since cyclic electron

flow around PSI does not produce any harmful ROS species (Makino et al.,

2002; Allakhverdiev et al., 2008).

Imbalance between photosynthetic CO2 assimilation and photochemical

activity under abiotic stresses, such as salinity and high temperature, can

provoke increases in the production of reactive oxygen species (ROS) and alter

the properties of plant cell membranes (Penfield, 2008; Forman et al., 2010).

Electrolyte leakage reflects damage to cellular membranes and the elevation of

this parameter indicates higher membrane permeability and reduced cell

tolerance to temperature change (Campos et al., 2003; Kolodyazhnaya et al.,

2009). In this work, electrolyte leakage, measured by electric conductivity, was

increased in rice plants, mainly in plants submitted to salt combined with heat.

However, this response may probably be due to higher sodium content in

vacuoles that overstepped with the disruption of cell (Antunes and Sfakiotakis,

2008), since the accumulation of ions apoplast in the salt stressed leaves,

mainly Na+, will contribute to electrical conductivity increase although they are

not involved in cellular efflux (Ghoulam et al., 2002) and resulting in a false idea

(47)

Lipid peroxidation is a process that occurs by chain reactions initiated by

ROS, such as singlet oxygen, superoxide radicals and hydrogen peroxide.

Once started it spreads rapidly and affects a great number of lipid molecules

(Bor et al., 2003; Campos et al., 2003; Demiral and Turkan, 2005; Khan and

Panda, 2008). To contain this process during normal metabolism and

particularly under stress, the plant cell has antioxidant compounds, such as

ascorbate (AsA) and glutathione (GSH) and ROS-scavenging enzymes (Apel

and Hirt, 2004; Mittler et al., 2004; Miller et al., 2010). AsA reacts directly with

ROS in photosynthetic tissues, recycles α-tocopherol, protects enzymes with

prosthetic metal ions and is utilized as a substrate for ascorbate peroxidase

(APX) which catalyzes H2O2 detoxification (Mittler and Poulos, 2005; Khan and

Panda, 2008; Foyer and Noctor, 2011). Besides this, the GSH also plays a

protective role due to its important role as a redox buffer and in the expression

of defense genes (Gomez et al., 2004; Foyer and Noctor, 2011). In our study,

the AsA and GSH contents were reduced in rice plants exposed to salt stress,

combined or not with high temperature, indicating that these antioxidant

compounds could have been used by the antioxidant enzymes (Mittler and

Poulos, 2005; Asada, 2006; Chang et al., 2009) or used directly to contain the

levels of ROS and lower lipid peroxidation (Demiral and Türkan, 2005; Hussain

(48)

(APX), catalase (CAT), glutathione peroxidase (GPX) and phenol peroxidases

(GPOD) – a type III peroxidase (Cavalcanti et al. 2004; Mittler and Poulos,

2005; Møller et al., 2007; Forman et al., 2010). APX, CAT and/or GPOD remove

H2O2, which easily permeates cell membranes, produced during salt stress

(Asada, 2006; Penfield, 2008). In this work, APX, GPX and GPOD were

increased in rice plants submitted to salt stress combined with heat, in relation

to control, and this response was associated with a significant reduction in H2O2

content and lower TBARS levels. Despite the increase in SOD and GO, H2O2

-producing enzymes, the data indicates that antioxidative system was effective in

establishing a new redox homeostasis and providing tolerance to abiotic stress.

5. References

Abadía A., Belkohodja R., Morales F. & Abadía J. (1999) Effects of salinity on the photosynthetic pigment composition of barley (Hordeum vulgare L.) growth under a triple-line-source sprinkler system in the field. Journal of

Plant Physiology 154, 392-400.

Allakhverdiev S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier R. & Mohanty P. (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research 98(1-3): 541-550.

Amako K., Chen G.X. & Asada K. (1994) Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiology 35: 497-504.

(49)

Ashraf M. & Shahbaz M. (2003) Assessment of genotypic variation in salt tolerance of early cimmyt hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria. Photosynthetica 41(2): 273-280.

Awasthi Y.C., Beutler E. & Srivastava S.K. (1975) Purification and properties of human erythrocyte Glutathione Peroxidase. The Journal of Biological

Chemistry 250: 5144-5149.

Baker A.L. & Tolbert N.E. (1966) Glycolate oxidase (ferredoxin-containing form).

Methods in Enzymology 9: 339-340.

Baker N.R. (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo.

Annual Review of Plant Biology 59, 89-113.

Beauchamp C. & Fridovich I. (1971) Superoxide dismutase: Improved assay applicable to acrylamide gels. Analytical Biochemistry 44: 2762-2787. Blum A. & Ebercon A. (1981) Cell membrane stability as a measure of drought

and heat tolerance in wheat. Crop Science 21: 43-47.

Bor M., Ozdemir F. & Turkan I. (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Science 164: 77-84.

Bradford M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.

Analytical Biochemistry 722: 248-254.

Brennan T. & Frenkel C. (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology 59: 411-416.

Cakmak I. & Horst W.J. (1991) Effect of aluminum on lipid-peroxidation, superoxide-dismutase, catalase and peroxidase-activities in root-tips of soybean (Glycine max). Physiologia Plantarum 83: 463-468.

Campos P.S., Quartin V., Ramalho J.C. & Nunes M.A. (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology 160: 283-292.

(50)

Chaves M.M., Flexas J. & Pinheiro C. (2009) Photosynthesis and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103: 551-560.

Davletova S., Rizhsky L. & Liang H.Z. (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis.

The Plant Cell 17, 268-281.

Demiral, T. & Türkan, I. 2005 Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, v. 53, p. 247-257. Dias M.C. & Brüggemann W. (2010) Limitations of photosynthesis in Phaseolus

vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48(1): 96-102.

Dombrowski J.E. (2003) Salt Stress Activation of Wound-Related Genes in Tomato Plants. Plant Physiology 132: 2098-2107.

Forman H.J., Maiorino M. & Ursini F. (2010) Signaling functions of reactive oxygen species. Biochemistry 49: 835-42.

Foyer C.H. & Noctor G. (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia

Plantarum 119, 355-364.

Foyer C.H. & Noctor G. (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155, 93-100.

Foyer C.H., Bloom A.J., Queval G. & Noctor G. (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annual

Review of Plant Physiology 60: 455-484.

Ghoulam C., Foursy A. & Fares K. (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany 47: 39-50.

Giannopolotis C.N. & Ries S.K. (1977) Superoxide dismutases: I. Occurrence in Higher Plants. Plant Physiology 59, 309-314.

Gomez L.D., Noctor G., Knight M. & Foyer C. (2004) The intercellular distribution of glutathione synthesis and its response to chilling in maize.

Imagem

Tabela  1  –   Características  químicas  das  principais  espécies  reativas  de  oxigênio (EROs) produzidas durante o metabolismo oxidativo
Figura 2  –  Sítios de produção de EROs durante a transferência de elétrons  entre os PSII e PSI (Adaptado de FOYER e NOCTOR, 2011)
Tabela  2  –   Estrutura  e  principais  características  dos  genes  das  isoformas  de  APX presentes em plantas de arroz (Adaptado de TEIXEIRA et al., 2004)
Figure  1.  Alterations  in  photosynthesis  (A),  transpiration  (B)  and  stomatal  conductance (C) in leaves of rice plants under multiple stresses (heat, salt and  salt+heat)
+7

Referências

Documentos relacionados

Na lista de equipamentos em baixo é avaliado o contributo de cada sistema da plataforma para o objetivo do navio: Seleção do caso de estudo Aplicação da metodologia RBM e

A complete communication protocol was designed and implemented on top of Bluetooth Low Energy to establish the communication between a sensory node, such as a micro-controller

A amplitude de movimento de flexão anterior do tronco pode ser avaliada pela observação do individuo com o tronco totalmente flectido anteriormente, utilizando

Destaquei uma citação relacionada com a promoção de dramaturgias nacionais.. Embora não pretenda debruçar-me sobre este tema em demasia, pode dizer-se que, quando

This is known to lead to deformation of the sample, and possibly flattening, which may justify the absence of an envelope portion Figure 3.19 – Low resolution envelope

Diante de todos os erros histü ricos, principalmente os cometidos dentro da Modernidade pelo uso da razao instrumental (e que tende a se estender para o DNA humano, para os

melhoria das condições de vida e bem-estar das pessoas em situação de dependência; através da prestação de cuidados continuados de saúde e de apoio social; da manutenção