• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número4"

Copied!
5
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Impact

of

light

quality

on

flavonoid

production

and

growth

of

Hyptis

marrubioides

seedlings

cultivated

in

vitro

Rita

Cassia

N.

Pedroso

a

,

Núbia

Angelica

A.

Branquinho

a

,

Alessandra

C.B.A.M.

Hara

a

,

Alan

Carlos

Costa

a

,

Fabiano

Guimarães

Silva

a

,

Leticia

P.

Pimenta

b

,

Marcio

Luiz

A.

Silva

b

,

Wilson

Roberto

Cunha

b

,

Patricia

M.

Pauletti

b

,

Ana

Helena

Januario

b,∗

aInstitutoFederaldeEducac¸ão,CiênciaeTecnologiaGoiano,CâmpusRioVerde,RioVerde,GO,Brazil bNúcleodePesquisaemCiênciasExataseTecnológicas,UniversidadedeFranca,Franca,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2November2016 Accepted22December2016 Availableonline28March2017

Keywords:

Flavonoid

Hyptismarrubioides Invitroculture Lightquality

a

b

s

t

r

a

c

t

HyptismarrubioidesEpling,Lamiaceae,aspeciesfromBrazilianCerrado,hasbeenusedagainst gastroin-testinalinfections,skininfections,pain,andcramps.Herein,H.marrubioidesseedlingswerecultured invitrounderdifferentwavelengths(white,blue,green,red,andyellow)with50␮molm−2s−1

irra-dianceanda16-hphotoperiod.After20and30daysofcultivation,shootlength,leafnumber,fresh mass,anddrymasswereevaluated.TheflavonoidrutincontentwasdeterminedbytheHPLC-DAD method.Theshootswerelongerinplantscultivatedunderyellow(16.603±0.790cm,1.8-fold),red (15.465±0.461cm,1.7-fold),andgreen(14.677±0.737cm,1.6-fold)lightsthanincontrolplantsexposed towhitelight(9.203±0.388cm).Thenumberofleavesincreasedinplantsexposedtored(23.425±1.138, 1.1-fold)andgreen(22.725±1.814,1.1-fold)lights,comparedtocontrolplants(20.133±0.827).Fresh (0.665±0.048g,1.2-fold)and dry (0.066±0.005g,1.3-fold) mass ofseedlingswere thehighestin seedlingsgrownunderredlight,comparedtoseedlingsgrownunderwhitelight(0.553±0.048and 0.028±0.004,respectively).However,rutinproductionwashigherunderwhite(0.308mgg−1ofdry

weight)andbluelights(0.298mgg−1ofdryweight).Thus,redlightinducesplantgrowthandincreases

leafnumberanddryweightininvitro-cultivatedH.marrubioides,whereasblueandwhitelightspromote thegreatestrutinaccumulation.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The genus Hyptis, Lamiaceae, comprises about 300 species, widely distributed, occurring mainly in tropical regions of the AmericasandAfrica.HyptismarrubioidesEpling,commonlyknown asmint-of-field,isaspeciesoftheBrazilianCerradotraditionally usedtotreatgastrointestinalandskininfections,pain,andcramps (McNeiletal.,2011).ThepharmacologicalpotentialofH. marru-bioideshasbeenpreviously investigated,andmoststudieshave focusedon examination of thechemical composition of essen-tialoils, themaincomponentsof which arethesesquiterpenes caryophylla-4(14),8(15)-dien-5␤-ol,eudesma-4(15),7-dien-1␤-ol, caryophyllene oxide, and ␤-caryophyllene (Sales et al., 2007; McNeiletal.,2011).EssentialoilsofH.marrubioideshavealsobeen studiedtoinvestigatetheirpotentialforpestcontrolinagriculture, suchasthepreventionandcontrolof Asiansoybeanrust(Silva

Correspondingauthor.

E-mail:ana.januario@unifran.edu.br(A.H.Januario).

etal.,2012b)andtreatmentofColletotrichumtruncatum-infected soybeanseeds(Silvaetal.,2012a).

Theuseofmicropropagationtechniqueshasgreatadvantages intheproductionofhigh-qualityseedlings,astheyimprovetheir pharmacologicalpotential(RaoandRavishankar,2002)by ensur-ingthereproductionofidentical,high-qualityplants(Serafinietal., 2001),whichinturnenhancesthebiosynthesisofspecial metabo-lites(BhuiyanandAdachi,2003;Zhaoetal.,2005).However,the accumulationofsecondarymetabolitesinplantsisinfluencedby variousenvironmentalfactorssuchaslightquality,UVirradiation, temperature,irrigation,nutrientdeficiency,pathogenattack,and heavymetalstress(DixonandPaiva,1995;Winkel-Shirley,2002; KopsellandKopsell,2008).

Lightisakeyabioticelicitorinplantsthataffects,directlyor indirectly,growthanddevelopmentofplants,mainlyofthose dis-tributedinhigh-latitudeareas(MoriniandMuleo,2003;OuYang etal.,2015).Plantresponsesdonotdependonlyontheabsenceor presenceoflightbutalsoonthevariationinlightquality(Felippe, 1986).Theactionoflightonplantsoccursmainlyintwoaspects: first,thelightsourceprovidestheenergyrequiredbytheplantfor

http://dx.doi.org/10.1016/j.bjp.2016.12.004

(2)

photosynthesis,especiallyredandbluelight,andsecond,asa sig-nalreceivedbyphotoreceptorsitregulatesgrowth,differentiation, andplantmetabolism(Wangetal.,2001).

Lightisoneofthemostsignificantenvironmentalfactors affect-ingtheaccumulationofflavonoidsinplants(Huché-Thélieretal., 2016). However, the biosynthesis of flavonoids in response to lightqualityneedtobebetterunderstood,especiallyin invitro culture.

Studiesinvolvingtheinfluenceoflight ontheproduction of secondarymetabolitesandgrowthparametersinH.marrubioides seedlingscultivatedinvitroarenon-existent.Inapreviousstudy, wehaveevaluatedthephytochemicalprofileof H.marrubioides microplantsinoculatedwithisolatesofbacteriaand endophytic fungi(Vitorinoetal.,2013).PhotosyntheticstudiesinH. marru-bioidesinvitrocultureinvolvingmeasuringgasexchangewerealso conductedbyourresearchgroupandtheirradianceeffects,flow rate,andairhumidityparameterswereinvestigated.Inaddition, thechlorophyllafluorescenceand chloroplastidicpigment con-tentwerealsoassessed(Costaetal.,2014).Hence,theaimofthe presentstudywastoassesstheeffectoflightqualityongrowthof H.marrubioidesseedlingsinvitroandtheirflavonoidproduction. Thisstudyfurthersourunderstandingofthefactorsthatpromote thegrowthandincreasetheresistanceofthismedicinalspecies, throughtheproductionofflavonoids.

Materialsandmethods

Plantmaterialandinvitrocultivation

Seedlings previously established via in vitro germination of Hyptis marrubioidesEpling,Lamiaceae,seedssuitable for inocu-lation obtained onthe experimental field of the Laboratory of PlantTissue Cultureof theInstitutoFederal deEducac¸ão, Ciên-ciaeTecnologiaGoiano,CampusRioVerde.Avoucherspecimen (HRV71) hasbeen deposited at the Herbarium of the Institute (HerbariumHRV).

Theseedsweredisinfectedwith0.2%Bendazol(carbendazim) and0.2%Alterno(tebuconazole)for1h,followedbytreatmentwith 1%sodiumhypochlorite for30min,andthenrinsedthrice with steriledistilledwater.Seedsweregerminatedandmaintainedon Murashige&Skoogmedium(MurashigeandSkoog,1962) supple-mentedwith30gl−1ofsucroseandsolidifiedwithagarat3.5gl−1; thepHwasadjustedto5.8beforeautoclaving.Thecultureswere incubatedinagrowthchamberfor30daysat50␮molm−2s−1 pho-tosyntheticallyactiveradiation(PAR),atanaveragetemperature of23±1◦C,andaphotoperiodof16h.Thereafter,theseedlings

weresub-culturedonthesamemediumandincubatedinagrowth cabinetfor10daysat50␮molm−2s−1PAR,23±1C,and16-h

pho-toperiod.Allexperimentswerecarriedoutinglassflaskscontaining 50mlofsemisolidmediumwithfiveseedlingsperflaskwithatotal offortyseedlings.

Lightconditions

After 10 days, the cultures were transferred to a cabinet andexposed tocontinuingirradiationofdifferentlightspectra: white(300–750nm),blue(400–490nm),green(490–560nm),red (600–700nm),andyellow(560–590nm).Thespecificlight condi-tionsweremaintainedusingTP40Wlamps(Taschibra® Indaial, SantaCatarina,Brazil),atalightintensityof50␮molm2s−1 and aphotoperiodof16h.Thecultureswereevaluatedafter20and 30daysoflightexposure.Culturesgrownunderwhitelightwere usedasacontrol.Forweightmeasurements,thewholeseedlings withoutrootswasconsidered.

Chemicalanalysis

The seedlingswere driedat 35◦C in a forcedair circulation

ovenand thedrybiomass(200mg)fromtheinvitrocultureof H.marrubioides wasextractedwith4ml methanol ofhigh per-formanceliquid chromatography(HPLC)gradeusingultrasound bath(30min).Thesampleshadbeenpreviouslyfilteredthrough a0.2-␮msyringefilterwithhydrophilicPTFEmembrane (Advan-tec,Dublin,CA,USA)andtransferredinto1-mlHPLCvials.These procedureswereconductedintriplicate.

Forthequantitativeanalysis,solutionsweredoneinHPLCgrade methanoltoobtainsolutionscontaining0.500,0.250,0.125,and 0.063mgml−1 rutin.Eachstandardsolutionwasinjectedin trip-licate. The calibration curve wasconstructed to determine the linearityofthemethodbyplottingthepeakareaversusthe con-centrationofthesubstanceinmgml−1.Thequantitativeanalysis byHPLCwithdiode-arraydetection(DAD)wascarriedoutona ShimadzuProminenceLC-20AD binarysystemequippedwitha DGU-20A5 degasser, an SPD-20A series diode arraydetector, a CBM-20A communicationbus module,anSIL-20A HT autosam-pler,andaCTO-20Acolumnoven(Shimadzu,Kyoto,Japan).The analyseswereconductedonaGeminiODScolumn(250×4.6mm, 5␮m; Phenomenex,Aschaffenburg, Germany) equippedwith a pre-columnwiththesamematerialunderthefollowingconditions: injectionvolume setat20␮l,flow rateof 1.0mlmin−1, mobile phasewasCH3OH/H2O/HOAc(5:94.9:0.1,v/v/v)deliveredina lin-eargradientuntil100%CH3OHin30min,10minat100%CH3OH, and20mintoreturntotheinitialconditions.TheUVdetectionwas setat254nmand40◦C.

MethanolusedintheexperimentswasHPLCgradeanditwas obtainedfromJ.T. Baker (AvantorPerformance Materials, Cen-ter Valley, PA, USA). Ultrapure water was obtainedby passing redistilledwaterthrougha Direct-QUV3 systemfromMillipore (Billerica,MA,USA).Theflavonoidrutinusedasexternalstandard wasacquiredfromthestandardbankoftheNaturalProductsGroup oftheUniversidadedeFranca.

Statisticalanalyses

Thestatisticalanalysiswasperformedin Sisvar5.3software (Ferreira,2011).Theexperimentwasconductedinacompletely randomizeddesignwithfourreplications.Themulti-factorial anal-ysisofvariancefollowedbyTukeymultiplecomparisontestswere usedforstatisticalcomparisons(p≤0.05).

Results

Seedlingsgrowth

ThemeasuredgrowthparametersofH.marrubioidesseedlings cultivated in vitro under different wavelengths showed signif-icant difference (Table 1). During the 20-day cultivation, the seedlingsexposedtoredlightshowedthehighestshootlengths (10.175±0.669cm), which was 1.69-fold higher than the cor-responding lengths of control seedlings (6.035±0.511cm). In addition,after30daysofirradiationwithgreen,red,andyellow lights, thelengthof the shoots increased1.8-fold compared to seedlingsexposedtowhitelight.Thenumberofexpandedleaves wasnotaffectedbylightconditionsafter20daysoftreatment; however,after30daysofculture,greenandredlightpromoted themosttheincreaseinthenumberofleaves(22.725±1.814and 23.425±1.138,respectively).

(3)

Table1

ShootlengthandaveragenumberofexpandedleavesofHyptismarrubioidesseedlingssubmittedto20and30daysoflighttreatment.

Lighttreatments Evaluationtime(days) Evaluationtime(days)

20 30 20 30

Averageshootlength(cm) Averageleafnumber

White 6.035aBb±0.511b 9.203Ca±0.388 12.475Ab±0.927 20.133Ba±0.827

Blue 8.400Ab±0.453 13.030Ba±0.865 13.143Ab±0.667 17.750Ba±1.293 Green 9.900Ab±0.823 14.677Aa±0.737 13.514Ab±0.676 22.725Aa±1.814 Red 10.175Ab±0.669 15.465Aa±0.461 12.600Ab±1.223 23.425Aa±1.138 Yellow 9.871Ab± 0.462 16.603Aa± 0.790 11.143Ab± 1.166 20.067Ba± 0.935

CV(%) 15.46 18.87

Freshweight(g) Dryweight(g)

White 0.311Ab± 0.059 0.553Aa± 0.048 0.028Ab± 0.003 0.052Ba± 0.004 Blue 0.306Ab±0.024 0.549Aa±0.042 0.033Ab±0.002 0.057Ba±0.004 Green 0.334Ab±0.046 0.534Aa±0.053 0.034Ab±0.003 0.053Ba±0.004 Red 0.404Ab±0.067 0.665Aa±0.048 0.035Ab±0.004 0.066Aa±0.005 Yellow 0.246Ab±0.018 0.426Aa±0.025 0.025Ab±0.001 0.045Ba±0.002

CV(%) 29.77 22.14

aMeansfollowedbythesameuppercaseletterinthecolumnandlowercaseletterintherowdonotdiffersignificantlyaccordingtotheScott-Knotttestat5%probability.

b Mean±standarderror.

CV,coefficientofvariation.

Table2

Accumulationofrutin(mgg−1dryweight)inHyptismarrubioidesseedlings

irradi-atedwithwhite,blue,green,red,andyellowlightsfor20and30days.

Lighttreatment Evaluationtime

Rutincontent(20days) (mgg−1dryweight)

Rutincontent(30days) (mgg−1dryweight)

White 0.243aA±0.012b 0.308A±0.012

Blue 0.084D±0.004 0.298A±0.007 Green 0.101C± 0.002 0.198C± 0.002 Red 0.105C± 0.006 0.192C± 0.002 Yellow 0.126B±0.002 0.262B±0.006

aMeansfollowedbythesameletterdonotdiffersignificantlyaccordingtothe

Tukeytestat5%probability.

b Mean±standarderror.

seedlings increased1.27-fold (0.066±0.005g) compared to dry weightofthecontrolseedlings(0.052±0.004g).

Accumulationofrutinflavonoid

Methanolextracts ofrutin obtainedfrom seedlings cultured under different lights for 20 and 30 days was quantitatively assessedusingHPLC-DADanalysis(Table2).Theresponseofthe UVdetectorat254nmwaslinearfrom0.063a0.500mgml−1for rutin.Theobtainedregressionequationwasy=4.0×107x69,442 withacorrelationcoefficient(R2)of0.9998.After20daysof cul-ture,theaccumulationofrutininallsampleswaslowerthanthat inthecontrol(0.243mgg−1dryweight(DW));thelowestamount ofrutinwasdetectedinplantsexposedtobluelight(0.084mgg−1 DW).However,after30daysoftreatment,theamountofrutinin seedlingsexposedtobluelight(0.298mgg−1DW)wasnot signif-icantlydifferenttothatin controlseedlings(0.308mgg−1 DW), whereasitscontentinseedlingsexposedtogreen(0.198mgg−1 DW),red(0.192mgg−1DW),andyellow(0.262mgg−1DW)lights was reduced significantly compared to that in control plants. Overalltheresultsdemonstratedthattherutincontentin micro-propagatedplantswaslowerthanthatfoundinwildplantsofH. marrubioides(1.259mgg−1DW)obtainedinpreviousstudies con-ductedbyourresearchgroup.

Discussion

Lightqualityhasimportanteffectsonplantgrowthand develop-ment,especiallyforphotosynthesisandphotomorphogenesis,the twoprocessesthat,throughsignalsreceivedbythephotoreceptors, regulateplantgrowth,differentiation,andmetabolism(Guoetal., 2007).Plantgrowthcanbeaffectedbyendogenoushormonelevels interactionswithlightquality.Theinteractionoflightqualitywith planthormonepathwaysinregulationgrowthofvegetalspecies includesgibberellins(GAs),auxinsbeingthemostcommonisthe indoleaceticacid(IAA),cytokinins(CKs),andabscisicacid(ABA) (OuYangetal.,2015).

AnotherstudyfoundthatthelevelsofendogenousCKs,IAA,and GAsaremarkedlyincreasedinresponsetolow-intensityredto far-redlightatlowornormalPAR,promotingthegrowthofhypocotyls inHelianthusannuus(Kurepinetal.,2007).

Transcriptome analysis of Norway spruce (Picea abies) by OuYang and collaborators revealed that red and blue light are associated with plant growth and developmentand phytohor-monemetabolism(OuYangetal.,2015).Inaddition,theyreported thatbluelightpromotesIAAaccumulationandphenylpropanoid biosynthesis.Incontrast,redlightaffectsstemgrowthby regulat-ingbiosynthesisofGAs.Inlinewiththeseresults,Thweetal.(2014) reportedthatirradiationwithbluelightincreasespolyphenol con-tentinlettuceandinducestheproductionofrutinandcyanidin 3-O-rutinosideinFagopyrumtataricum.

The evaluation of growth parameters in H. marrubioides seedlingsculturedinvitroinourstudyshowthatredlightalmost doubledthelengthofshootsandincreasedthenumberofleaves anddrybiomasscomparedtothecontrol.Concerningthe produc-tionofsecondarymetabolites,wefoundthatblueandwhitelight favoredthebiosynthesisoftheflavonoidrutin.

(4)

Jeong et al. (2012) studied the influences of four differ-ent light-emitting diode lights on flowering and polyphenol variationsintheleavesofchrysanthemum(Chrysanthemum mori-folium).Theluteolin-7-O-glucoside,luteolin-7-O-glucuronideand quercetagetin-trimethylethershowedhighestyieldundergreen light.Ontheotherhand,dicaeoylquinicacidisomer,dicaeoylquinic acidisomer,naringenin,andapigenin-7-O-glucuronidewere great-est under red light. Taulavuori et al. (2016) evaluated the differences in synthesis offlavonoids and phenolic acids under increasing periodsof enhanced blue light in leaves red lettuce andbasil.Flavonoidsandphenolicacidswerefoundtobespecies dependent. Dicaffeoyltartaric acidwas the majorcompound in lettuce while rosmaric acid was the prodominant compound inbasil.

Theseexamplessuggestthatthepolyphenolproductionis influ-encedbylightqualitycomposition.

Ourresultsonthegrowthandmetabolismofinvitro-cultured seedlings of H. marrubioides are in accordance with the data describedbyOuYangetal.(2015)andThweetal.(2014)aswell thedatareportedforotherplantspecies(Vreugdenhiletal.,1998; Kvaalen andAppelgren, 1999;Leal-Costaet al.,2010;Ouzounis etal.,2015).

In summary, we concludethat for the invitro cultureof H. marrubioides light quality is an important parameter that can be utilized to optimize seedlings growth and accumulation of rutin,inparticulartheredandbluelights,whicharebeneficialto growthandrutinmetabolism,respectively.Therefore,ourresults may be useful as theoretical basis for studies related to qual-itycontrolofgrowthandproductionofsecondarymetabolismof H.marrubioides.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

RCNPandNAABperformedtheinvitroexperiments,ACBAMH contributed to the supervision of laboratory work,and critical reading of the manuscript, RCNP and LPP contributed to the chromatographicanalysis,ACC,FGS,MLAS,WRC,PMPandAHJ con-tributedtotheanalysisofexperimentaldataandcriticalrevision. Allauthorshelpedinpreparingthepaperandapprovedthe sub-missionofthefinalversion.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsaregratefultoCNPq(Grant#305783/2012-2)and FAPESP(Grant#2011/00631-5)forfinancial support.Fundac¸ão de Amparo a Pesquisa do Estado de Goiás (FAPEG, Grant # 201310267000257)arealsoacknowledgedforfellowship.

References

Awad,M.A.,Wagenmakers,P.S.,deJager,A.,2001.Effectsoflightonflavonoidand chlorogenicacidlevelsintheskinof‘Jonagold’apples.Sci.Hort.88,289–298. Bhuiyan,N.H.,Adachi,T.,2003.Stimulationofbetacyaninsynthesisthrough

exoge-nousmethyljasmonateandotherelicitorsinsuspension-culturedcellsof

Portulaca.J.Plant.Physiol.160,1117–1124.

Costa,A.C.,Rosa,M.,Megguer,C.A.,Silva,F.G.,Pereira,F.D.,Otoni,W.C.,2014.A reliablemethodologyforassessingtheinvitrophotosyntheticcompetenceof twoBraziliansavannaspecies:HyptismarrubioidesandHancorniaspeciosa.Plant CellTissueOrganCult.117,443–454.

Dixon,R.A.,Paiva,N.L.,1995.Stress-inducedphenylpropanoidmetabolism.Plant Cell7,1085–1097.

Felippe,G.M.,1986.Fotomorfogênese.In:Ferri,G.M.(Ed.),FisiologiaVegetal2.EPU, SãoPaulo,pp.231–280.

Ferreira,D.F.,2011.SISVAR–Sistemadeanálisedevariância.Versão5.3.UFLA, Lavras,MinasGerais.

Guo,B.,Liu,Y.G.,Yan,Q.,Liu,C.Z.,2007.Spectralcompositionofirradiation regu-latesthecellgrowthandflavonoidsbiosynthesisincallusculturesofSaussurea medusaMaxim.PlantGrowthRegul.52,259–263.

Huché-Thélier,L.,Crespel,L.,LeGourrierec,J.,Morel,P.,SoulaimanSakr,S.,Nathalie Leduc,L.,2016.LightsignalingandplantresponsestoblueandUVradiations– perspectivesforapplicationsinhorticulture.Environ.Exp.Bot.121,22–38. Jeong,S.W.,Park,S.,Jin,J.S.,Seo,O.N.,Kim,G.S.,Kim,Y.H.,Bae,H.,Lee,G.,Kim,

S.T.,Lee,W.S.,Shin,S.C.,2012.Influencesoffourdifferentlight-emittingdiode lightsonfloweringandpolyphenolvariationsintheleavesofChrysanthemum (Chrysanthemummorifolium).J.Agric.FoodChem.60,9793–9800.

Kopsell,D.A.,Kopsell,D.E.,2008.Geneticandenvironmentalfactorsaffectingplant lutein/zeaxanthin.Agro.FoodInd.Hi-Tech.19,44–46.

Kurepin,L.V.,Emery,R.J.,Pharis,R.P.,Reid,D.M.,2007.Theinteractionoflightquality andirradiancewithgibberellins,cytokininsandauxininregulatinggrowthof

Helianthusannuushypocotyls.PlantCellEnviron.30,147–155.

Kvaalen,H.,Appelgren,M.,1999.Lightqualityinfluencesgermination,rootgrowth andhypocotylelongationinsomaticembryosbutnotinseedlingsofNorway spruce.InVitroCell.Dev.Biol.Plant.35,437–441.

Leal-Costa,M.V.,Nascimento,L.B.,Moreira,N.,dos,S.,Reinert,F.,Costa,S.S.,Lage, C.L.,Tavares,E.S.,2010.Influenceofbluelightontheleafmorphoanatomyof

invitroKalanchoepinnata(Lamarck)Persoon(Crassulaceae).Microsc.Microanal. 16,576–582.

McNeil,M.,Facey,P.,Porter,R.,2011.EssentialoilsfromtheHyptisgenus–areview (1909–2009).Nat.Prod.Commun.6,1775–1796.

Morini,S.,Muleo,R.,2003.Effectsoflightqualityonmicropropagationofwoody species.In:Jain,S.M.,Ishii,K.(Eds.),MicropropagationofWoodyTreesand Fruits.KluwerAcademicPublishers,Dordrecht,pp.3–35.

Murashige,T.,Skoog,F.A.,1962.Arevisedmediumforrapidgrowthandbioassays withtobaccotissuescultures.Physiol.Plant.15,473–497.

OuYang, F.,Mao, J.F.,Wang, J.,Zhang,S.,Li, Y.,2015. Transcriptomeanalysis revealsthatredandbluelightregulategrowthandphytohormonemetabolism in Norway spruce [Picea abies (L.) Karst]. PLOS ONE, http://dx.doi.org/ 10.1371/journal.pone.0127896.

Ouzounis, T., Parjikolaei, B.R., Fretté, X., Rosenqvist, E., Ottosen, C.O., 2015. Predawnandhighintensityapplicationofsupplementalbluelightdecreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids,andpigmentsinLactucasativa.Front.PlantSci.,http://dx.doi.org/10. 3389/fpls.2015.00019.

Rao,S.R.,Ravishankar,G.A.,2002.Plantcellcultures:chemicalfactoriesofsecondary metabolites.Biotechnol.Adv.20,101–153.

Sales,J.F.,Pinto,J.E.B.P.,Botrel,P.P.,Oliveira,C.B.A.,Ferri,P.H.,Paula,J.R.,Seraphin, J.C.,2007.CompositionandchemicalvariabilityintheessentialoilinHyptis marrubioidesEpl.J.Essent.OilRes.19,552–556.

Serafini,L.A.,Barros,N.M.,Azevedo,J.L.,2001.Biotecnologia:princípioseaplicac¸ões. In:Serafini,L.A.,Barros,N.M.,Azevedo,J.L.(Eds.),Biotecnologianaagriculturae naagroindústria.Agropecuária,Guaíba,pp.25–75.

Silva,A.C.,Souza,P.E.,Machado,J.C.,Silva,B.M.,Pinto,J.E.B.P.,2012a.Effectiveness ofessentialoilsinthetreatmentofColletotrichumtruncatum-infectedsoybean seeds.Trop.PlantPathol.37,305–313.

Silva,A.C.,Souza,P.E.,Pinto,J.E.B.P.,Silva,B.M.,Amaral,D.C.,ArrudaCarvalho,E., 2012b.EssentialoilsforpreventativetreatmentandcontrolofAsiansoybean rust.Eur.J.PlantPathol.134,865–871.

Taulavuori, K.,Hyöky,V., Oksanen,J.,Taulavuori,E., Julkunen-Tiitto,R.,2016. Species-specificdifferencesinsynthesisofflavonoidsandphenolicacidsunder increasingperiodsofenhancedbluelight.Environ.Exp.Bot.121,145–150. Thwe,A.A.,Kim,Y.B.,Li,X.,Seo,J.M.,Kim,S.J.,Suzuki,T.,Chung,S.O.,Park,S.U.,2014.

Effectsoflight-emittingdiodesonexpressionofphenylpropanoidbiosynthetic genesandaccumulationofphenylpropanoidsinFagopyrumtataricumsprouts. J.Agric.FoodChem.62,4839–4845.

Vitorino,L.C.,Silva,F.G.,Lima,W.C.,Soares,M.A.,Pedroso,R.C.N.,Silva,M.R.,Dias, H.J.,Crotti,A.E.M.,Silva,M.L.A.,Cunha,W.R.,Pauletti,P.M.,Januário,A.H.,2013. MetabolicresponseinducedbyendophyticfungiandbacteriainH.marrubioides

Eplinginvitromicroplants.Quim.Nova36,1014–1020.

Vreugdenhil,D.,Boogaard,Y.,Visser,R.G.F.,deBruijn,S.M.,1998.Comparisonof tuberandshootformationfrominvitroculturedpotatoexplants.PlantCell TissueOrganCult.53,197–204.

(5)

Wang,Y.C.,Zhang,Z.X.,Zhao,X.F.,Yuan,X.F.,2001.ImprovedgrowthofArtemisia annuaL.hairyrootsand artemisinproductionunderredlightconditions. Biotechnol.Lett.23,1971–1973.

Winkel-Shirley,B.,2002.Biosynthesisofflavonoidsandeffectsofstress.Curr.Opin. PlantBiol.5,218–223.

Yousefzadi,M.,Sharifi,M.,Behmanesh,M.,Ghasempour,A.,Moyano,E.,Palazon,J., 2012.Theeffectoflightongeneexpressionandpodophyllotoxinbiosynthesis inLinumalbumcellculture.PlantPhysiol.Biochem.56,41–46.

Referências

Documentos relacionados

f) Honorários advocatícios na base usual de 20% sobre o valor total do débito e demais cominações de direito, sob pena de assim, não o fazendo ser efetivada

Foi possível através desta breve explanação sobre as pinturas noturnas impressionistas e neoimpressionistas perceber que as cores amarela e branca eram utilizadas

These results indicate that the cutting intensity management is fundamentally important to obtain higher yields and that the vegetative growth of this cactus can

Chen  et  al.  (2010), studied different qualities of light (red, green, yellow, white, and blue) and reported that the greatest accumulation of phycocyanin was observed under

3 - Na caixa de texto “ Modificar estilo ” proceda às alterações no formato do estilo para adequá-lo à norma (Seção 1: fonte Arial ou Times New Roman, caixa alta, tamanho

• Reduz a duração máxima dos cursos • Alarga as condições habilitacionais de acesso • Torna obrigatória a celebração de protocolo para prosseguimento de

With this study, it can be said that using avatars with a natural user interface in which the avatar ’s movements and morphology are similar to the user is important in

Este trabalho teve como objetivo sintetizar os catalisadores Fe(TPP)Cl, CuTPP e Mn(TPP)Cl e observar o comportamento dos complexos mais ativos (Fe(III) e Mn(II)) na reação