• Nenhum resultado encontrado

Factors that alter the biochemical biomarkers of environmental contamination in Chironomus sancticaroli (Diptera, Chironomidae)

N/A
N/A
Protected

Academic year: 2021

Share "Factors that alter the biochemical biomarkers of environmental contamination in Chironomus sancticaroli (Diptera, Chironomidae)"

Copied!
6
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution w w w . r b e n t o m o l o g i a . c o m

Medical

and

Veterinary

Entomology

Factors

that

alter

the

biochemical

biomarkers

of

environmental

contamination

in

Chironomus

sancticaroli

(Diptera,

Chironomidae)

Débora

Rebechi-Baggio

a

,

Vinicius

S.

Richardi

a

,

Maiara

Vicentini

a

,

Izonete

C.

Guiloski

b

,

Helena

C.

Silva

de

Assis

b

,

Mário

A.

Navarro-Silva

a,∗

aUniversidadeFederaldoParaná,DepartamentodeZoologia,Curitiba,PR,Brazil bUniversidadeFederaldoParaná,DepartamentodeFarmacologia,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17April2016 Accepted9July2016 Availableonline30July2016 Associateeditor:MariaAniceSallum Keywords: Centrifugation Freezing Foodstress Thermalstress

a

b

s

t

r

a

c

t

Changesinphysiologyofthenervoussystemandmetabolismcanbedetectedthroughtheactivityof acetylcholinesterase(AChE),alphaesterase(EST-␣)andbetaesterase(EST-␤)inchironomidsexposed topollutants.However,tounderstandtherealeffectofxenobioticsonorganisms,itisimportantto investigatehowcertainfactorscaninterferewithenzymeactivity.Weinvestigatedtheeffectsof dif-ferenttemperatures,foodstressandtwostepsoftheenzymaticprotocolontheactivityofAChE,EST-␣ andEST-␤inChironomussancticaroli.Inexperimentofthermalstressindividualsfromtheeggstage tothefourthlarvalinstarwereexposedtodifferenttemperatures(20,25and30◦C).Infoodstress

experiment,larvaewerereareduntilIVinstarinastandardsetting(25◦Cand0.9gweeklyration),but

fromfourthinstarontheyweredividedintogroupsandoffereddifferentfeedingregimes(24,48and 72hwith/withoutfood).Insamplefreezingexperiment,agroupofsampleswasprocessedimmediately afterhomogenizationandanotherafterfreezingfor30days.Totesttheeffectofcentrifugationon sam-ples,enzymeactivitywasquantifiedfromcentrifugedandnon-centrifugedsamples.Theactivityofeach enzymereachedanoptimumatadifferenttemperature.Theabsenceoffoodtriggereddifferentchanges inenzymeactivitydependingontheperiodofstarvation.Freezingandcentrifugationofthesamples significantlyreducedtheactivityofthreeenzymes.Basedontheseresultsweconcludethatthefour factorsstudiedhadaninfluenceonAChE,EST-␣andEST-␤andthisinfluenceshouldbeconsideredin ecotoxicologicalapproaches.

©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Biochemicalbiomarkerresponsesenabledetectionofthefirst biological effects associatedwithexposureto xenobiotics,even atlow concentrations (Lionetto etal., 2003).Theenzyme AChE is widelyusedas a biomarkerofexposureto organophosphor-ateandcarbamatescompounds,whichinhibitthisenzyme,thus compromisingthenervoussystemoforganisms(FultonandKey,

2001;GallowayandHandy, 2003).Themetabolicenzymes

EST-␣andEST-␤bindtoxenobioticsandtransformthemintoamore hydrosolublecompoundsfacilitatingtheirexcretion(Hemingway

andRanson,2000).

However,priortousingtheenzymesAChE,EST-␣andEST-␤as biomarkers,itisnecessarytoinvestigatewhethercertainfactors

∗ Correspondingauthor.

E-mail:mnavarro@ufpr.br(M.A.Navarro-Silva).

canchangetheiractivity.Organismsinthenaturalenvironment face adverse situations on a daily basis, for instance fluctua-tionsintemperatureandfoodavailability.Inlaboratorystudies, acutetoxicitybioassaysareusuallyperformedintheabsenceof food,whichcanleadtometabolicstress.Studiesusingdifferent bioindicatorsorganisms(copepods,crustaceansandbivalves)have investigatedtheinfluenceofseasonalvariationsonselected bio-chemical biomarkers (AChE, glutathione S-transferase, catalase, metallothionein)andtheircorrelationwithseasonalfluctuations inabioticparameterssuchastemperature,salinity,turbidityand foodavailability(LeiniöandLehtonen,2005;Pfeiferetal.,2005;

Menezesetal.,2006;Cailleaudetal.,2007;Tuetal.,2012).

Inadditiontoenvironmentalvariations,theeffectsoflaboratory protocolsthataimtoquantifyenzymaticactivityneedtobe stan-dardizedforthebioindicatorspecies.Somestepsoftheprotocol,for examplecentrifugationandfreezingofsamples,caninfluencethe enzymatic analysisof thebiochemical biomarkers(Guilhermino

etal.,1996;Muriasetal.,2005).

http://dx.doi.org/10.1016/j.rbe.2016.07.002

0085-5626/©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

ImmatureChironomidae(Diptera)inhabitthebenthic compart-mentofaquaticecosystems(Lagauzèreetal.,2009;DiVerolietal.,

2012a).Theyare importantcomponentsofthefoodchain,

rep-resenting thestrongest link betweenproducers and secondary consumers(PorinchuandMacDonald,2003).Becausetheyare sen-sitivetovariouspollutants(Preston2002),areeasytorearandhave ashortlifespan(FonsecaandRocha,2004),chironomidsarewidely usedasbioindicatorsofacuteandchronictoxicityincontaminated sedimentsandwater(Leeetal.,2006;Roulieretal.,2008;Yoshimi

etal.,2009;Al-Shamietal.,2010;DeJongeetal.,2012;DiVeroli

etal.,2012b;Ebauetal.,2012;Choungetal.,2013).Chironomus

sancticaroliStrixinoandStrixino,1981isawell-knownbioindicator ofwaterquality,andhasbeenusedinvariousbiochemicalstudies involvingbiomarkers,inanattempttoelucidateitsresponsesto environmentalcontamination(Moreira-Santosetal.,2005;Printes

etal.,2007,2011).

Theaimof this studywastoinvestigate experimentallythe potentialeffectsoffoodandthermalstressontheactivityofthe enzymesAChE,EST-␣andEST-␤ofC.sancticarolilarvae.In addi-tion,theeffectsoftwostepsoftheenzymaticprotocol(freezingand centrifugationofsamples)onenzymaticactivitywereassessedin ordertostandardizethemethodology.

Materialandmethods Biologicalmaterial

SpecimenswereobtainedfromtheLaboratoryoftheMedical andVeterinaryEntomology,FederalUniversityofParaná(UFPR). TheirbreedingcolonyismaintainedfollowingMaieretal’sprotocol

(1990),withmodificationsinthetemperature(25◦C±2)and

pho-toperiod(12hlight:12hdark).Voucherspecimensaredeposited inthePe.JesusSantiagoMoureEntomological Collectionofthe DepartmentofZoology,UFPR(DZUP),numbers249269to249276. Enzymaticassay

Larvaewerestoredina−80◦Cfreezerandweresubsequently homogenizedin300␮L0.1MpH7.5potassiumphosphatebuffer (for the enzyme AChE) and in 150␮L 0.2M pH 7.2 potassium phosphatebuffer(fortheenzymesEST-␣andEST-␤),followedby centrifugationat12,000×gfor1minat4◦C.

TheprotocolusedfortheenzymeAChEwasbasedonEllman

et al. (1961),modified for microplatesfollowing Silva deAssis

(1998).TheactivitiesoftheEST-␣andEST-␤wereascertained

fol-lowingthemethodologyofValleetal.(2006).Totalproteinperlarva wasmeasuredfollowingBradford(1976),usingbovineserum albu-minasstandard.BiochemicalanalyseswerecarriedoutinaBioTek microplatereader.

Temperatureeffectsonthelarvae

Fromhatchinguptothefourthinstar,differentgroupsoflarvae werekeptatthreedifferenttemperatures:20◦C,25◦Cand30◦C. Thetemperaturewascontrolledina BODconstanttemperature chamber(photoperiod12/12h).Thelarvaeweresubsequently sub-jectedtotheenzymaticquantificationprotocolsalreadydescribed. Atotalof270larvae(90larvaeforeachenzyme,30larvaeforeach temperature)wereused.Inthisexperiment,theeffectof temper-atureonlarvaldevelopmentdurationwasalsoascertained. Theeffectoffoodstressonlarvae

StocklarvaeofC.sancticaroliintheIVinstarweresubjectedto sixdifferenttreatments.IntreatmentsA,BandC,4mgTetraMin®

perlarvawereofferedattime0.After24h,treatmentAwas dis-continued,followedbytreatmentBafter48handtreatmentCafter 72h.Larvaeintheremainingthreetreatments,D,EandF,werenot fedattimezeroandweremaintainedwithoutfoodfor24,48and 72h,respectively.Resultsfromthefeedingandfooddeprivation treatmentswerethencomparedforthesametimeperiods(Awith D,BwithEandCwithF).Thisexperimentwascarriedoutin con-tainerswith80mLofdechlorinatedwater.Larvaewereisolated fromoneanothertopreventpredation.Thetreatmentswere per-formedinaBODchamberwithconstanttemperature(25◦C±2◦C) andphotoperiod(12hlight/12hdark).Intotal,540IVinstarlarvae (180larvaeforeachenzyme,30larvaeforeachtreatment)were processed.

Effectsoffreezingonhomogenizedsamples

Stocklarvaewerehomogenizedasdescribedaboveforenzyme activityquantification.However,thevolumeofeachsamplewas dividedintotwoaliquots.Onewasusedimmediatelyforenzyme quantification,whiletheotherwasfrozenin−80◦Cfor30days beforeitwasusedforthispurpose.Atotalof90IVinstarlarvae(30 larvaeforeachenzyme)wereprocessed.

Effectsofcentrifugationonhomogenizedsamples

Stocklarvaewere homogenizedasdescribed abovefor each enzyme.However,thevolumeofeachsample wasdividedinto twoaliquots.Onewascentrifuged,whiletheotherwasnot.Both aliquotsweresubjectedtoenzymequantification.Atotalof90IV instarlarvae(30larvaeforeachenzyme)wereprocessed. Statisticalanalysis

Analyseswereperformedin Renvironment (RDevelopment

CoreTeam,2011).Theeffectsoftemperatureontheactivityofthe

enzymesAChEandEST-␤wereanalyzedwithanadjusted gen-eralizedlinearmodel(GLM)withGammadistribution,andforthe enzymeEST-␣,aninverseGaussiandistributionwasemployed.One wayANOVAwasapplied,andTukeycontrast(p≤0.05)wasused inaposterioricomparisons.MASS(VenablesandRipley,2002)and effects(Fox,2003)librarieswereusedforGLMandthemultcomp librarywasusedinposteriorianalyses(Hothornetal.,2008).To evaluatetheeffectofcentrifugationandfreezingonenzyme activ-ity,datawerelogaritmisedandthettestforpairedsampleswas used.Intheanalysisoffoodstressonenzymeactivity,datawere alsologaritmised,buta ttestforunpairedsampleswasapplied instead.

Results

Incrementsoffive-degreeCelsiusduringthedevelopmentofC. sancticarolishortenedthedevelopmenttimeofimmaturesfrom twelvedaysat20◦C,tosevendaysat25◦C,andtofourdaysat 30◦C.Theenzymeactivitychangedunderdifferenttemperatures (Fig.1).AChEactivitydecreasedwithincreasingtemperatures:at 20◦Cand25◦Citwas69%and59%lowerthanat30◦C,respectively. Nosignificantchangesinenzymeactivityweredetectedbetween 20◦Cand25◦C.

NochangesintheactivityofEST-␣wereobservedbetween20◦C and25◦C(Fig.1).However,at30◦Ctheenzymeactivityincreased by44%and45%whencomparedto20◦Cand25◦C,respectively.

The enzyme activityof EST-␤was highat the intermediate temperatureof25◦C.Atthistemperature,EST-activitywas24% higher than at20◦C and 18% higher than at 30◦C. In contrast, enzymeactivityat20◦Cand30◦Cdidnotdiffer(Fig.1).

(3)

AChE EST alpha EST beta 600 25 a a b a b a 15 10 5 20 15 10 5 0 0 a a b 20ºC Temperature 25ºC 30ºC 20ºC 25ºC 25ºC Temperature 30ºC 20ºC Temperature 30ºC

Enzymatic activity (mmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min)

400

200

0

Fig.1. Effectoftemperature(20,25and30◦C)ontheactivityofacetylcholinesterase(AChE),alphaesterase(EST-␣),andbetaalphaesterase(EST-␤)ofChironomussancticaroli.

Thevaluesareexpressedasthemeanvalueofenzymeactivity±SD(n=30foreachcondition).Differentlettersindicatesignificantdifferenceswhenp<0.05(usingANOVA –onewayandTukeycontrast).

400 25 20 a a a a 15 15 10 5 0 15 10 5 0 10 5 0 a a b a a b b a AChE

A

B

C

EST alpha EST beta

AChE EST alpha EST beta

Enzymatic activity (mmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min)

Enzymatic activity (nmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min)

300

200

100

0

400

Enzymatic activity (mmol/mg ptn/min)

300 200 100 0 30 20 10 0 Without Food - 24h With Without Food - 24h With Without Food - 24h With Without Food - 48h With Without Food - 48h With Without Food - 48h With 20 15 10 5 0 a a a a b a

AChE EST alpha EST beta

Enzymatic activity (nmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min)

400

Enzymatic activity (mmol/mg ptn/min)

300 200 100 0 25 20 15 10 5 0 Without Food - 72h With Without Food - 72h With Without Food - 72h With

Fig.2.Effectoffastingfor24h(A);48h(B)and72h(C)ontheactivityofacetylcholinesterase(AChE),alphaesterase(EST-␣),andbetaalphaesterase(EST-␤)ofChironomus sancticaroli.Thevaluesareexpressedasthemeanvalueofenzymeactivity±SD(n=30foreachcondition).Differentlettersindicatesignificantdifferenceswhenp<0.05 (usingunpairedt-test).

(4)

AChE EST alpha EST beta

Enzymatic activity (nm ol/mg ptn/min) Enzymatic activity (nm ol/mg ptn/min) Enzymatic activity (nm ol/mg ptn/min)

Without 600 60 15 10 5 0 40 20 0 a b b a b a 400 200 0 30 days Freezing Without 30 days Freezing Without 30 days Freezing

Fig.3.Effectofsamplefreezingontheactivityofacetylcholinesterase(AChE),alphaesterase(EST-␣),andbetaalphaesterase(EST-␤)ofChironomussancticaroli.Thevalues areexpressedasthemeanvalueofenzymeactivity±SD(n=30foreachcondition).Differentlettersindicatesignificantdifferenceswhenp<0.05(usingpairedt-test).

After24h of fooddeprivation, activityof the AChE enzyme increasedsignificantly(39%),whileactivityoftheEST-␣and EST-␤did not (Fig. 2A). AChE activitydid not changeafter 48h of fooddeprivation.Activity oftheEST-␣andEST-␤enzymeswas significantlylowerafter48hoffooddeprivation(34%and 41%, respectively)(Fig.2B).After72h,AChEandEST-activityremained constant,whereasEST-␤activitywassignificantlyreducedby47% (Fig.2C).

The resultsof the freezingand centrifugation tests indicate thatthesetwofactorsmaynegativelyinfluencetheactivityofthe threeenzymesevaluated.Freezingsamplesfor30daysat−80◦C decreasedenzymaticactivityoftheAChE,EST-␣andEST-␤by12%, 32%and25%,respectively(Fig.3).Centrifugationofsamplesalso affectedtheactivityoftheAChE,EST-␣andEST-␤:whensamples werecentrifuged,enzymeactivitydecreasedby18%,10%and10%, respectively(Fig.4).

Discussion

Itisimportanttoinvestigatehowcertainfactorssuchas tem-perature and food resources affect the activity of biochemical biomarkers used toassess theeffect of pollutants. A tempera-tureincreaseduringlarvaldevelopmentshortensthedevelopment periodofinsects,thusimpactingthefinalsizeoftheadults(Vogt

etal.,2007;Oetkenetal.,2009;Zillietal.,2009).Thisisanindication

thattemperaturecanbeametabolicstressor.ParkandKwak(2014)

investigatedtheeffectsofthermalstressonthedevelopmentof Chi-ronomusripariusMeigen,1804,showingthatitaltersthebiology (larvalsurvivalrate,sexratio,successfulpupationandadult emer-gence),metabolism(increasedexpressiongenerelatedtooxidative stressenzymes(catalase,peroxidase,superoxidedismutaseand glutathioneperoxidase)andendocrinesignaling(ecdysone recep-tor)oftheorganisms.

Theeffectsoftemperatureonbiochemicalbiomarkerssuchas theAChE enzyme of invertebrates have been investigated, and theresultsofvariousstudiesvariedaccordingtothespecies.For instance,activityofthisenzymemayincreaseordecreaseas tem-peratureincreases(ScapsandBorot,2000;Callaghanetal.,2002;

Pfeiferetal.,2005;Menezesetal.,2006;Cailleaudetal.,2007;Tu

etal.,2012).Inthisstudy,AChEactivitydecreasedathigher tem-peratures,corroboratingtheresultsofDominguesetal.(2007),who observedthattheactivityoftheAChEofC.ripariusMeigen,1804is higherat6◦Cand16◦Cthanat26◦C.

Thefactthateachenzymebehavesdifferentlyundervarious temperature regimes highlights the fact that each enzyme has an optimum temperature activity (Callaghan et al., 2002).This abioticfactoraltersthephysicalstructureofenzymes,and mod-ifiestheircatalytic efficacyorbindingcapacity (Hochachka and

Somero,1984).Therefore,whenenzymesareusedasbiomarkersof

environmentalcontaminationinaquaticecosystems,temperature mustbetakenintoconsiderationandenzymaticactivitycanonly becomparedamongspecimensfromsimilartemperatureranges. Additionally,seasonalvariationsintemperaturemustalsobe con-sideredinanalyses.

Theeffectsoffoodstressonbiochemicalmarkers,whichhave beenstudiedonlysporadically,arenotwellunderstood.Inourdata, thelackoffoodaffectedtheactivityofthethreetestedenzymes (AChE,EST-␣andEST-␤)differently,accordingtotheperiodof star-vation.AfterastudyusingC.riparius,Craneetal.(2002)foundno differencesinAChEactivityafter48and96hoffooddeprivation, althoughthedryweightofindividuals decreased.Studiesusing otherbiomarkers,suchasfish,indicatedthatfoodstressis associ-atedwithchangesinenzymaticbiomarkers,andcausedoxidative stressinindividuals(Pascualetal.,2003).

InanexperimentusingC.riparius,individualsthatweregiven enoughfoodwerelesssusceptibletopollutantsthanthosethat

AChE EST alpha EST beta

Enzymatic activity (mmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min) Enzymatic activity (nmol/mg ptn/min)

Without 350 15 15 10 5 0 10 5 0 a b b a b a 300 250 200 150 100 50 0 With Centrifugation Without With Centrifugation Without With Centrifugation

Fig.4.Effectofsamplecentrifugationontheactivityofacetylcholinesterase(AChE),alphaesterase(EST-␣),andbetaalphaesterase(EST-␤)ofChironomussancticaroli.The valuesareexpressedasthemeanvalueofenzymeactivity±SD(n=30foreachcondition).Differentlettersindicatesignificantdifferenceswhenp<0.05(usingpairedt-test).

(5)

werenot(Postmaetal.,1994).However,anoppositeeffectcanbe achievedwhenfoodisusedintoxicologicalexperiments, increas-ingthetoxicityofcertaincompounds,forinstancecadmium,which quickly binds to organicmaterials, suchas carbon-based com-poundsderivedfromfooddegradationintheexperiment(Postma

etal.,1994).

Sample freezing after homogenization has been previously investigated and can be part of laboratorial routine when the numberofsamplesislarge.Inourdata,itwasevidentthat freez-inglowersenzymeactivity.Thiswasexpected,asatendencyto decreasedenzymeactivityaftereachcycleoffreeze-thawhadbeen previouslydocumented(Muriasetal.,2005).Consequently,in lab-oratorialroutine,itisbesttohomogenizesamplesandperform enzymaticquantificationonthesamedayasameanstoachieve maximumenzymeactivityresponse.Thiscanbedifficult some-times,particularlywhenthenumberofsamplesislarge,andthe onlyalternativeisfreezing.Whenfreezingbecomesnecessary,we emphasizethatsamplesthatwillbeanalyzedtogethershouldbe processedonthesamedayandbesubjectedtothesamenumberof freeze-thawcycles,thusminimizingthevariationsintroducedby thisstep.

Anotherprotocol stepanalyzedin thisworkwas centrifuga-tion,whichalsoreducedenzymaticactivityofthesamples.This happensbecauseaportionoftheenzymescanberemovedfrom thesupernatantduringcentrifugation,asenzymesremainattached tolargerfragmentsthatdepositduringthisprocess(Guilhermino

etal.,1996).

Eventhoughcentrifugationcausesanegativeeffectonenzyme activity,this procedureshouldbeusedinallprotocols,because itpurifiesthesamplesforenzymaticquantification,reducingthe interferenceofresiduesinabsorbancereadings.

Conclusions

TheactivityoftheenzymesAChE,EST-␣andEST-␤decreased afterfreezingand centrifugationof samples,demonstratingthe importanceof standardizedprotocols. Additionally thermal and foodstresscausedchangesintheactivityofthethreeenzymes. Basedontheseresultswerecommendthattemperatureandfood supplyshouldbemaintainedconstantintoxicitybioassaytests. Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest. Acknowledgement

WethanktheConselhoNacionaldeDesenvolvimento Cientí-ficoeTecnológico(CNPq),#305038/2009-5(DR),#305470/2012-4 (MANS).

References

Al-Shami,S.A.,Rawi,C.S.M.,Ahmad,A.H.,Nor,S.A.M.,2010.Distributionof Chi-ronomidae(Insecta:Diptera)inpollutedriversoftheJuruRiverBasin,Penang, Malaysia.J.Environ.Sci.22,1718–1727.

Bradford,M.,1976.Arapidandsensitivemethodforthequantificationof micro-gramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.Anal. Biochem.72,248–254.

Cailleaud,K.,Maillet,G.,Budzinski,H.,Souissi,S.,Forget-Leray,J.,2007.Effects ofsalinityandtemperatureontheexpressionofenzymaticbiomarkersin Eurytemoraaffinis(Calanoida,Copepoda).Comp.Biochem.Physiol.,PartA147, 841–849.

Callaghan,A.,Fisher,T.C.,Grosso,A.,Holloway,G.J.,Crane,M.,2002.Effectof temper-atureandpirimiphosmethylonbiochemicalbiomarkersinChironomusriparius Meigen.Ecotoxicol.Environ.Saf.52,128–133.

Choung,C.B.,Hyne,R.V.,Stevens,M.M.,Hose,G.C.,2013.Theecologicaleffectsofa herbicide-insecticidemixtureonanexperimentalfreshwaterecosystem. Envi-ron.Pollut.172,264–274.

Crane,M.,Sildanchandra,W.,Kheir,R.,Callaghan,A.,2002.Relationshipbetween biomarkeractivityanddevelopmentalendpointsinChironomusripariuMeigen exposed to an organophosphate insecticide. Ecotoxicol. Environ. Saf. 53, 361–369.

DeJonge,M.,Belpaire,C.,Geeraerts,C.,DeCooman,W.,Blust,R.,Bervoets,L.,2012. Ecologicalimpactassessmentofsedimentremediationinametal-contaminated lowlandriverusingtranslocatedzebramusselsandresident macroinverte-brates.Environ.Pollut.171,99–108.

DiVeroli,A.,Goretti,E.,Paumen,M.L.,Kraak,M.H.S.,Admiraal,W.,2012a. Induc-tionofmouthpartdeformitiesinchironomidlarvaeexposedtocontaminated sediments.Environ.Pollut.166,212–217.

DiVeroli,A.,Selvaggi,R.,Goretti,E.,2012b.Chironomidmouthpartdeformitiesas indicatorofenvironmentalquality,acasestudyinLakeTrasimeno(Italy).J. Environ.Monit.14,1473–1478.

Domingues,I.,Guilhermino,L.,Soares,A.M.V.M.,Nogueira,A.J.A.,2007.Assessing dimethoatecontaminationintemperateandtropicalclimates:Potentialuse ofbiomarkersinbioassayswithtwochironomidspecies.Chemosphere69, 145–154.

Ebau,W.,Rawi,C.S.M.,Din,Z.,Al-Shami,S.A.,2012.Toxicityofcadmiumandlead ontropicalmidgelarvae,ChironomuskiiensisTokunagaandChironomusjavanus Kieffer(Diptera:Chironomidae).AsianPac.J.Trop.Biomed.2,631–634. Ellman,G.L.,Courtney,K.D.,Andres-Jr,V.,Featherstone,R.M.,1961.Anemandrapid

colorimetricdeterminationofacetylcholinesteraseactivity.Biochem. Pharma-col.7,88–95.

Fonseca,A.L.,Rocha,O.,2004.LaboratoryculturesofthenativespeciesChironomus. ActaLimnol.Brasil.16,153–161.

Fox,J.,2003.EffectdisplaysinRforgeneralisedlinearmodels.J.Stat.Softw.8,1–27. Fulton,M.H.,Key,P.B.,2001.Acetylcholinesteraseinhibitioninestuarinefishand invertebratesasanindicatoroforganophosphorusinsecticideexposureand effects.Environ.Toxicol.Chem.20,37–45.

Galloway,T.,Handy,R.,2003.Immunotoxicityoforganophosphorouspesticides. Ecotoxicology12,345–363.

Guilhermino,L.,Lopes,M.C.,Carvalho,A.P.,Soares,A.M.V.M.,1996.Inhibitionof acetylcholinesteraseactivityaseffectcriterioninacutetesteswithjuvenile Daphniamagna.Chemosphere32,727–738.

Hemingway,J.,Ranson,H.,2000.Inseticideresistanceininsectvectorsofhuman disease.Annu.Rev.Entomol.45,371–391.

Hochachka,P.W.,Somero,G.N.,1984.BiochemicalAdaptation.Princenton Univer-sityPress,Princenton,NJ.

Hothorn,T.,Bretz,F.,Westfall,P.,2008.Simultaneousinferenceingeneral paramet-ricmodels.Biom.J.50,346–363.

Lagauzère,S.,Pischedda,L.,Cuny,P.,Gilbert,F.,Stora,G.,Bonzom,J.-M.,2009. InfluenceofChironomusriparius(Diptera,Chironomidae)andTubifextubifex (Annelida,Oligochaeta)onoxygenuptakebysediments.Consequencesof ura-niumcontamination.Environ.Pollut.157,1234–1242.

Lee,S.-M.,Lee,S.-B.,Park,C.-H.,Choi,J.,2006.Expressionofheatshockprotein andhemoglobingenesinChironomustentans(Diptera,Chironomidae)larvae exposedtovariousenvironmentalpollutants:apotentialbiomarkerof fresh-watermonitoring.Chemosphere65,1074–1081.

Leiniö,S.,Lehtonen,K.K.,2005.Seasonalvariabilityinbiomarkersinthebivalve MytilusedulisandMacomabalthicafromthenorthernBalticSea.Comp.Biochem. Physiol.,PartC140,408–421.

Lionetto,M.G.,Caricato,R.,Giordano,M.E.,Pascariello,M.F.,Marinosci,L.,Schettino, T.,2003.Integrateduseofbiomarkers(acetylcholinesteraseandantioxidant enzymesactivities)inMytilusgalloprovincialisandMullusbarbatusinanItalian coastalmarinearea.Mar.Pollut.Bull.46,324–330.

Maier,K.J.,Kosalwat,P.,Knight,A.W.,1990.CultureofChironomusdecorus(Diptera: Chironomidae)andtheeffectoftemperatureonitslifehistory.Environ. Ento-mol.19,1681–1688.

Menezes,S.,Soares,A.M.V.M.,Guilhermino,L.,Peck,M.R.,2006.Biomarkerresponses oftheestuarinebrown shrimpCrangoncrangonL.to non-toxicstressors: temperature,salinityandhandlingstresseffects.J.Exp.Mar.Biol.Ecol.335, 114–122.

Moreira-Santos,M.,Fonseca,A.L.,Moreira,S.M.,Rendón-vonOsten,J.,Silva,E.M., Soares,A.M.V.M.,Guilhermino,L.,Ribeiro,R.,2005.Short-termsublethal (sed-iment and aquatic rootsof floating macrophytes) assays with a tropical chironomidbasedonpostexposurefeedingandbiomarkers.Environ.Toxicol. Chem.24,2234–2242.

Murias,M.,Rachtan,M.,Jodynis-Liebert,J.,2005.Effectofmultiplefreeze-thaw cyclesofcytoplasmsamplesontheactivityofantioxidantenzymes.J.Pharmacol. Toxicol.Methods52,302–305.

Oetken,M.,Jagodzinski,L.,Vogt,C.,Jochum,A.,Oehlmann,J.,2009.Combinedeffects ofchemicalandtemperaturestressonChironomusripariuspopulationswith differinggeneticvariability.J.Environ.Sci.Health,PartA44,955–962. Park,K.,Kwak,I.,2014.Theeffectoftemperaturegradientsonendocrinesignaling

andantioxidantgeneexpressionduringChironomusripariusdevelopment.Sci. TotalEnviron.1003–1011,470–471.

Pascual,P.,Pedrajas,J.R.,Toribio,F.,López-Barea,J.,Peinado,J.,2003.Effectoffood deprivationonoxidativestressbiomarkersinfish(Sparusaurata).Chem.Biol. Interact.145,191–199.

Pfeifer,S.,Schiedek,D.,Dippner,J.W.,2005.Effectoftemperatureandsalinityon acetylcholinesteraseactivity,acommonpollutionbiomarker,inMytilussp.from thesouth-westernBalticSea.J.Exp.Mar.Biol.Ecol.320,93–103.

Porinchu,D.F.,MacDonald,G.M.,2003.Theuseandapplicationoffreshwatermidges (Chironomidae:Insecta:Diptera)ingeographicalresearch.Prog.Phys.Geogr.27, 378–422.

(6)

Postma,J.F.,Buckert-deJong,M.C.,Staats,N.,Davids,C.,1994.Chronictoxicityof cadmiumtoChironomusriparius(Diptera,Chironomidae)atdifferentfoodlevels. Arch.Environ.Contam.Toxicol.26,143–148.

Printes,L.B.,Espíndola,E.L.G.,Fernandes,M.N.,2007.Biochemicalbiomarkersin individuallarvaeofChironomusxanthus(Rempel,1939)(Diptera, Chironomi-dae).J.Brazil.Soc.Ecotoxicol.2,53–60.

Printes,L.B.,Fernandes,M.N.,Espíndola,E.L.G.,2011.Laboratorymeasurementsof biomarkersandindividualperformancesinChironomusxanthustoevaluate pes-ticidecontaminationofsedimentsinariverofsoutheasternBrazil.Ecotoxicol. Environ.Saf.74,424–430.

RDevelopmentCoreTeam,2011.R:ALanguageandEnvironmentforStatistical Computing.RFoundationforStatisticalComputing,Vienna,Austria,ISBN 3-900051-07-0,availableat:http://www.R-project.org(accessed17.04.15). Roulier,J.L.,Tusseau-Vuillemin,M.H.,Coquery,M.,Geffard,O.,Garric,J.,2008.

Mea-surementofdynamicmobilizationoftracemetalsinsedimentsusingDGTand comparisonwithbioaccumulationinChironomusriparius:firstresultsofan experimentalstudy.Chemosphere70,925–932.

Scaps,P.,Borot,O.,2000.AcetylcholinesteraseactivityofthepolychaeteNereis diver-sicolor:effectsoftemperatureandsalinity.Comp.Biochem.Physiol.,PartC125, 377–383.

SilvadeAssis,H.C.,1998.Dereinsatzvonbiomarkernzursummarischen erfas-sungvomgewässerverschmutzungen.Ph.D.thesis,UniversityofBerlin,Berlin, Germany.

Tu,H.T.,Silvestre,F.,DeMeulder,B.,Thome,J.-P.,Phuong,N.T.,Kestemont,P.,2012. Combinedeffectsofdeltamethrin,temperatureandsalinityonoxidativestress biomarkersandacetylcholinesteraseactivityintheblacktigershrimp(Penaeus monodon).Chemosphere86,83–91.

Valle,D.,Montella,I.R.,Ribeiro,R.A.,Medeiros,P.F.V.,Martins-Jr,A.J.,Lima,J.B.P., 2006.Quantificationmethodologyforenzymeactivityrelatedtoinsecticide resistanceinAedesaegypti.Fundac¸ãoOswaldoCruzandSecretariadeVigilância emSaúde,MinistériodaSaúde,RiodeJaneiro,DistritoFederal.

Venables,W.N.,Ripley,B.D.,2002.ModernAppliedStatisticswithS-Plus,4thed. Springer,NewYork.

Vogt,C.,Pupp,A.,Nowak,C.,Jagodzinski,L.S.,Baumann,J.,Jost,D.,Oetken,M., Oehlmann,J.,2007.Interactionbetweengeneticdiversityandtemperature stressonlife-cycleparametersandgeneticvariabilityinmidgeChironomus ripariuspopulations.Clim.Res.33,207–214.

Yoshimi,T.,Odagiri,K.,Hiroshige,Y.,Yokobori,S.,Takahashi,Y.,Sugaya,Y.,Miura, T.,2009.InductionprofileofHSP70-cognategenesbyenvironmentalpollutants inChironomidae.Environ.Toxicol.Pharmacol.28,294–301.

Zilli,F.,Marchese,M.,Paggi,A., 2009.LifecycleofGoeldichironomus holopras-inus goeldi (Diptera: Chironomidae) in laboratory. Neotrop. Entomol. 38, 472–476.

Referências

Documentos relacionados

Item Eu gosto de dirigir perigosamente Eu gosto de dirigir em estradas com muitas curvas fechadas Eu gostaria de aprender a dirigir carros que podem exceder a velocidade de 300km/h

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Ainda assim, sempre que possível, faça você mesmo sua granola, mistu- rando aveia, linhaça, chia, amêndoas, castanhas, nozes e frutas secas.. Cuidado ao comprar

Habermas entende, a partir da tradição da teoria crítica, que a instância abridora de mundo, sendo um 1 A concepção tradicional de círculo hermenêutico entende que

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-